Пример #1
0
 def solve_for_DMD(self):
     '''
     Solve for the ritz_values, mode_norms and build_coefficients.
     '''
     self.dmd = modred.DMDHandles(vec_containers.inner_product)
     ritz_vals, mode_norms, build_coeffs = self.dmd.compute_decomp(
         self.direct_snapshots)
     fd_ritz = open((self.directory + 'ritz.cPickle'), 'w')
     cPickle.dump(ritz_vals, fd_ritz)
     fd_ritz.close()
     fd_mode = open((self.directory + 'mode.cPickle'), 'w')
     cPickle.dump(mode_norms, fd_mode)
     fd_mode.close()
     fd_coeffs = open((self.directory + 'coeffs.cPickle'), 'w')
     cPickle.dump(build_coeffs, fd_coeffs)
     fd_coeffs.close()
     print 'ritz_vals', ritz_vals
     print 'mode_norms', mode_norms
Пример #2
0
ny = 100
x_grid = 1. - np.cos(np.linspace(0, np.pi, nx))
y_grid = np.linspace(0, 1., ny)**2
Y, X = np.meshgrid(y_grid, x_grid)

# Create random snapshot data
num_vecs = 100
snapshots = [
    mr.VecHandlePickle('%s/vec%d.pkl' % (out_dir, i))
    for i in mr.range(num_vecs)
]
if parallel.is_rank_zero():
    for i, snap in enumerate(snapshots):
        snap.put(np.sin(X * i) + np.cos(Y * i))
parallel.barrier()

# Calculate DMD modes and save them to pickle files
weighted_IP = mr.InnerProductTrapz(x_grid, y_grid)
my_DMD = mr.DMDHandles(inner_product=weighted_IP)
my_DMD.compute_decomp(snapshots)
my_DMD.put_decomp('%s/eigvals.txt' % out_dir,
                  '%s/R_low_order_eigvecs.txt' % out_dir,
                  '%s/L_low_order_eigvecs.txt' % out_dir,
                  '%s/correlation_array_eigvals.txt' % out_dir,
                  '%s/correlation_array_eigvecs.txt' % out_dir)
mode_indices = [1, 4, 5, 0, 10]
modes = [
    mr.VecHandlePickle('%s/mode%d.pkl' % (out_dir, i)) for i in mode_indices
]
my_DMD.compute_exact_modes(mode_indices, modes)
Пример #3
0
num_vecs = 100
nx = 80
ny = 100
x_grid = 1. - np.cos(np.linspace(0, np.pi, nx))
y_grid = np.linspace(0, 1., ny)**2
Y, X = np.meshgrid(y_grid, x_grid)

snapshots = [
    mr.VecHandlePickle('%s/vec%d.pkl' % (out_dir, i)) for i in range(num_vecs)
]
if parallel.is_rank_zero():
    for i, snap in enumerate(snapshots):
        snap.put(np.sin(X * i) + np.cos(Y * i))
parallel.barrier()

weighted_IP = mr.InnerProductTrapz(x_grid, y_grid)

# Calculate DMD modes and save them to pickle files
my_DMD = mr.DMDHandles(weighted_IP)
my_DMD.compute_decomp(snapshots)
my_DMD.put_decomp('%s/eigvals.txt' % out_dir,
                  '%s/R_low_order_eigvecs.txt' % out_dir,
                  '%s/L_low_order_eigvecs.txt' % out_dir,
                  '%s/correlation_mat_eigvals.txt' % out_dir,
                  '%s/correlation_mat_eigvecs.txt' % out_dir)
mode_indices = [1, 4, 5, 0, 10]
modes = [
    mr.VecHandlePickle('%s/mode%d.pkl' % (out_dir, i)) for i in mode_indices
]
my_DMD.compute_exact_modes(mode_indices, modes)
Пример #4
0
def modal_decomposition(obj, kind='pod', obj2=None, wanted_modes='all',
                        max_vecs_per_node=1000, verbose=True):
    """
    Compute POD modes of the given fields using the snapshot method.

    Parameters
    ----------
    obj : TemporalFields, Profile or Points object
        Fields to extract modes from
    obj2 : same as obj
        Only used as second dataset for BPOD
    kind : string, optional
        Kind of decomposition, can be 'pod' (default), 'bpod' or 'dmd'.
    wanted_modes : string or number or array of numbers
        If 'all', extract all modes,
        If a number, extract first modes,
        If an array, extract the associated modes.
    max_vecs_per_node : integer, optional
        Number of fields that can be charged in memory.
        (More is faster but can lead to MemoryError)
    verbose : boolean, optional
        If 'True', display information.

    Returns
    -------
    modal_field : ModalField object
        .

    Notes
    -----
    You can use partially masked fields as input.
    If so, the asked values are lineary interpolated before doing the
    decomposition.
    """
    # check if modred is available
    if not MODRED:
        raise Exception("This feature need 'modred' to be installed")
    # Test parameters
    if not isinstance(obj, (TemporalFields)):
        raise TypeError()
    if kind == "bpod":
        if obj2 is None:
            raise ValueError()
        if not isinstance(obj2, obj.__class__):
            raise TypeError()
        if not obj2.shape == obj.shape:
            raise ValueError()
    if not isinstance(kind, STRINGTYPES):
        raise TypeError()
    if kind not in ['pod', 'bpod', 'dmd']:
        raise ValueError()
    if isinstance(wanted_modes, STRINGTYPES):
        if not wanted_modes == 'all':
            raise ValueError()
        wanted_modes = np.arange(len(obj.fields))
    elif isinstance(wanted_modes, NUMBERTYPES):
        wanted_modes = np.arange(wanted_modes)
    elif isinstance(wanted_modes, ARRAYTYPES):
        wanted_modes = np.array(wanted_modes)
        if wanted_modes.min() < 0 or wanted_modes.max() > len(obj.fields):
            raise ValueError()
    else:
        raise TypeError()
    try:
        max_vecs_per_node = int(max_vecs_per_node)
    except:
        raise TypeError()
    # getting datas
    if isinstance(obj, TemporalScalarFields):
        obj_type = 'TSF'
        snaps, props = _tsf_to_POD(obj)
        if kind == "bpod":
            snaps2, _ = _tsf_to_POD(obj2)
    elif isinstance(obj, TemporalVectorFields):
        obj_type = 'TVF'
        snaps, props = _tvf_to_POD(obj)
        if kind == "bpod":
            snaps2, _ = _tvf_to_POD(obj2)
    else:
        raise TypeError()
    globals().update(props)
    # Setting the decomposition mode
    eigvals = None
    eigvect = None
    ritz_vals = None
    mode_norms = None
    growth_rate = None
    pulsation = None
    if kind == 'pod':
        my_decomp = modred.PODHandles(np.vdot,
                                      max_vecs_per_node=max_vecs_per_node,
                                      verbosity=verbose)
        eigvals, eigvect = my_decomp.compute_decomp(snaps)
        del snaps
        wanted_modes = wanted_modes[wanted_modes < len(eigvals)]
        eigvect = np.array(eigvect)
        eigvect = eigvect[:, wanted_modes]
        eigvals = Profile(wanted_modes, eigvals[wanted_modes], mask=False,
                          unit_x=props['unit_times'], unit_y='')
    elif kind == 'bpod':
        my_decomp = modred.BPODHandles(np.vdot,
                                       max_vecs_per_node=max_vecs_per_node,
                                       verbosity=verbose)
        eigvect, eigvals, eigvect_l = my_decomp.compute_decomp(snaps, snaps2)
        del snaps
        del snaps2
        wanted_modes = wanted_modes[wanted_modes < len(eigvals)]
        eigvect = np.array(eigvect)
        eigvect = eigvect[:, wanted_modes]
        eigvals = Profile(wanted_modes, eigvals[wanted_modes], mask=False,
                          unit_x=props['unit_times'], unit_y='')
    elif kind == 'dmd':
        my_decomp = modred.DMDHandles(np.vdot,
                                      max_vecs_per_node=max_vecs_per_node,
                                      verbosity=verbose)
        ritz_vals, mode_norms, build_coeffs = my_decomp.compute_decomp(snaps)
        del snaps
        wanted_modes = wanted_modes[wanted_modes < len(ritz_vals)]
        # supplementary charac
        delta_t = props['times'][1] - props['times'][0]
        lambd_i = np.imag(ritz_vals)
        lambd_r = np.real(ritz_vals)
        lambd_mod = np.abs(ritz_vals)
        lambd_arg = np.zeros((len(ritz_vals)))
        mask = np.logical_and(lambd_i == 0, lambd_r <= 0)
        filt = np.logical_not(mask)
        lambd_arg[mask] = np.pi
        lambd_arg[filt] = 2*np.arctan(lambd_i[filt]/(lambd_r[filt] +
                                                     lambd_mod[filt]))
        sigma = np.log(lambd_mod)/delta_t
        omega = lambd_arg/delta_t
        # creating profiles
        unit_times = props['unit_times']
        ritz_vals = Profile(wanted_modes, ritz_vals[wanted_modes], mask=False,
                            unit_x=unit_times, unit_y='')
        mode_norms = Profile(wanted_modes, mode_norms[wanted_modes],
                             mask=False, unit_x=unit_times, unit_y='')
        growth_rate = Profile(wanted_modes, sigma[wanted_modes], mask=False,
                              unit_x=unit_times, unit_y=1./unit_times)
        pulsation = Profile(wanted_modes, omega[wanted_modes], mask=False,
                            unit_x=unit_times,
                            unit_y=make_unit('rad')/unit_times)
    else:
        raise ValueError("Unknown kind of decomposition : {}".format(kind))
    f_shape = props['f_shape']
    unit_values = props['unit_values']
    unit_times = props['unit_times']
    times = props['times']
    ind_fields = props['ind_fields']
    # Decomposing and getting modes
    if kind in ['pod', 'dmd']:
        modes = [modred.VecHandleInMemory(np.zeros(f_shape))
                 for i in np.arange(len(wanted_modes))]
        my_decomp.compute_modes(wanted_modes, modes)
    elif kind in ['bpod']:
        modes = [modred.VecHandleInMemory(np.zeros(f_shape))
                 for i in np.arange(len(wanted_modes))]
        adj_modes = [modred.VecHandleInMemory(np.zeros(f_shape))
                     for i in np.arange(len(wanted_modes))]
        my_decomp.compute_direct_modes(wanted_modes, modes)
        my_decomp.compute_adjoint_modes(wanted_modes, adj_modes)
    # Getting temporal evolution
    temporal_prof = []
    if kind in ['pod']:
        for n in np.arange(len(modes)):
            tmp_prof = eigvect[:, n]*eigvals.y[n]**.5
            tmp_prof = Profile(times, tmp_prof, mask=False,
                               unit_x=unit_times,
                               unit_y=unit_values)
            temporal_prof.append(tmp_prof)
    if kind in ['bpod']:
        for n in np.arange(len(modes)):
            tmp_prof = eigvect[:, n]*eigvals.y[n]**.5
            tmp_times = times[0:len(tmp_prof)]
            tmp_prof = Profile(tmp_times, tmp_prof, mask=False,
                               unit_x=unit_times,
                               unit_y=unit_values)
            temporal_prof.append(tmp_prof)
    elif kind == 'dmd':
        for n in np.arange(len(modes)):
            tmp_prof = np.real([ritz_vals.y[n]**(k) for k in ind_fields])
            tmp_prof = Profile(times, tmp_prof, mask=False, unit_x=unit_times,
                               unit_y=obj.unit_values)
            temporal_prof.append(tmp_prof)
    # Returning
    if obj_type == "TSF":
        modes_f = _POD_to_tsf(modes, props)
    elif obj_type == "TVF":
        modes_f = _POD_to_tvf(modes, props)
    del modes
    modal_field = ModalFields(kind, props['mean_field'], modes_f, wanted_modes,
                              temporal_prof,
                              eigvals=eigvals, eigvects=eigvect,
                              ritz_vals=ritz_vals, mode_norms=mode_norms,
                              growth_rate=growth_rate, pulsation=pulsation)
    return modal_field
Пример #5
0
import modred as MR
import numpy as N

num_vecs = 100
# Non-uniform grid and corresponding inner product weights.
nx = 80
ny = 100
x_grid = 1. - N.cos(N.linspace(0, N.pi, nx))
y_grid = N.linspace(0, 1., ny)**2
Y, X = N.meshgrid(y_grid, x_grid)

snapshots = [MR.VecHandlePickle('vec%d.pkl' % i) for i in range(num_vecs)]
parallel = MR.parallel_default_instance
if parallel.is_rank_zero():
    for i, snap in enumerate(snapshots):
        snap.put(N.sin(X * i) + N.cos(Y * i))
parallel.barrier()

weighted_IP = MR.InnerProductTrapz(x_grid, y_grid)

# Calculate DMD modes and save them to pickle files.
my_DMD = MR.DMDHandles(weighted_IP)
my_DMD.compute_decomp(snapshots)
my_DMD.put_decomp('ritz_vals.txt', 'mode_norms.txt', 'build_coeffs.txt')
mode_indices = [1, 4, 5, 0, 10]
modes = [MR.VecHandlePickle('mode%d.pkl' % i) for i in mode_indices]
my_DMD.compute_modes(mode_indices, modes)