def classifier_multiclass_ecoc_discriminant (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,label_test_multiclass=label_testdat,lawidth=2.1,C=1,epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCDiscriminantEncoder, ECOCHDDecoder

    feats_train = RealFeatures(fm_train_real)
    feats_test  = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    encoder = ECOCDiscriminantEncoder()
    encoder.set_features(feats_train)
    encoder.set_labels(labels)
    encoder.set_sffs_iterations(50)

    strategy = ECOCStrategy(encoder, ECOCHDDecoder())

    classifier = LinearMulticlassMachine(strategy, feats_train, classifier, labels)
    classifier.train()
    label_pred = classifier.apply(feats_test)
    out = label_pred.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc = evaluator.evaluate(label_pred, labels_test)
        print('Accuracy = %.4f' % acc)

    return out
def classifier_multiclasslinearmachine_modular(
        fm_train_real=traindat,
        fm_test_real=testdat,
        label_train_multiclass=label_traindat,
        label_test_multiclass=label_testdat,
        width=2.1,
        C=1,
        epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine, MulticlassOneVsOneStrategy, MulticlassOneVsRestStrategy

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)
    mc_classifier = LinearMulticlassMachine(MulticlassOneVsOneStrategy(),
                                            feats_train, classifier, labels)

    mc_classifier.train()
    label_pred = mc_classifier.apply()
    out = label_pred.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc = evaluator.evaluate(label_pred, labels_test)
        print('Accuracy = %.4f' % acc)

    return out
def classifier_multiclasslinearmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,label_test_multiclass=label_testdat,width=2.1,C=1,epsilon=1e-5):
	from modshogun import RealFeatures, MulticlassLabels
	from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine, MulticlassOneVsOneStrategy, MulticlassOneVsRestStrategy

	feats_train = RealFeatures(fm_train_real)
	feats_test  = RealFeatures(fm_test_real)

	labels = MulticlassLabels(label_train_multiclass)

	classifier = LibLinear(L2R_L2LOSS_SVC)
	classifier.set_epsilon(epsilon)
	classifier.set_bias_enabled(True)
	mc_classifier = LinearMulticlassMachine(MulticlassOneVsOneStrategy(), feats_train, classifier, labels)

	mc_classifier.train()
	label_pred = mc_classifier.apply()
	out = label_pred.get_labels()

	if label_test_multiclass is not None:
		from modshogun import MulticlassAccuracy
		labels_test = MulticlassLabels(label_test_multiclass)
		evaluator = MulticlassAccuracy()
		acc = evaluator.evaluate(label_pred, labels_test)
		print('Accuracy = %.4f' % acc)

	return out
def classifier_multiclass_ecoc_random(fm_train_real=traindat,
                                      fm_test_real=testdat,
                                      label_train_multiclass=label_traindat,
                                      label_test_multiclass=label_testdat,
                                      lawidth=2.1,
                                      C=1,
                                      epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCRandomSparseEncoder, ECOCRandomDenseEncoder, ECOCHDDecoder
    from modshogun import Math_init_random
    Math_init_random(12345)

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    rnd_dense_strategy = ECOCStrategy(ECOCRandomDenseEncoder(),
                                      ECOCHDDecoder())
    rnd_sparse_strategy = ECOCStrategy(ECOCRandomSparseEncoder(),
                                       ECOCHDDecoder())

    dense_classifier = LinearMulticlassMachine(rnd_dense_strategy, feats_train,
                                               classifier, labels)
    dense_classifier.train()
    label_dense = dense_classifier.apply(feats_test)
    out_dense = label_dense.get_labels()

    sparse_classifier = LinearMulticlassMachine(rnd_sparse_strategy,
                                                feats_train, classifier,
                                                labels)
    sparse_classifier.train()
    label_sparse = sparse_classifier.apply(feats_test)
    out_sparse = label_sparse.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc_dense = evaluator.evaluate(label_dense, labels_test)
        acc_sparse = evaluator.evaluate(label_sparse, labels_test)
        print('Random Dense Accuracy  = %.4f' % acc_dense)
        print('Random Sparse Accuracy = %.4f' % acc_sparse)

    return out_sparse, out_dense
def classifier_multiclass_ecoc_ovr(fm_train_real=traindat,
                                   fm_test_real=testdat,
                                   label_train_multiclass=label_traindat,
                                   label_test_multiclass=label_testdat,
                                   lawidth=2.1,
                                   C=1,
                                   epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCOVREncoder, ECOCLLBDecoder, MulticlassOneVsRestStrategy

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    mc_classifier = LinearMulticlassMachine(MulticlassOneVsRestStrategy(),
                                            feats_train, classifier, labels)
    mc_classifier.train()
    label_mc = mc_classifier.apply(feats_test)
    out_mc = label_mc.get_labels()

    ecoc_strategy = ECOCStrategy(ECOCOVREncoder(), ECOCLLBDecoder())
    ecoc_classifier = LinearMulticlassMachine(ecoc_strategy, feats_train,
                                              classifier, labels)
    ecoc_classifier.train()
    label_ecoc = ecoc_classifier.apply(feats_test)
    out_ecoc = label_ecoc.get_labels()

    n_diff = (out_mc != out_ecoc).sum()
    #if n_diff == 0:
    #	print("Same results for OvR and ECOCOvR")
    #else:
    #	print("Different results for OvR and ECOCOvR (%d out of %d are different)" % (n_diff, len(out_mc)))

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc_mc = evaluator.evaluate(label_mc, labels_test)
        acc_ecoc = evaluator.evaluate(label_ecoc, labels_test)
        #print('Normal OVR Accuracy = %.4f' % acc_mc)
        #print('ECOC OVR Accuracy   = %.4f' % acc_ecoc)

    return out_ecoc, out_mc
Пример #6
0
def classifier_multiclass_ecoc_discriminant(
        fm_train_real=traindat,
        fm_test_real=testdat,
        label_train_multiclass=label_traindat,
        label_test_multiclass=label_testdat,
        lawidth=2.1,
        C=1,
        epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCDiscriminantEncoder, ECOCHDDecoder

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    encoder = ECOCDiscriminantEncoder()
    encoder.set_features(feats_train)
    encoder.set_labels(labels)
    encoder.set_sffs_iterations(50)

    strategy = ECOCStrategy(encoder, ECOCHDDecoder())

    classifier = LinearMulticlassMachine(strategy, feats_train, classifier,
                                         labels)
    classifier.train()
    label_pred = classifier.apply(feats_test)
    out = label_pred.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc = evaluator.evaluate(label_pred, labels_test)
        print('Accuracy = %.4f' % acc)

    return out
def classifier_liblinear_modular (train_fname, test_fname,
		label_fname, C, epsilon):

	from modshogun import RealFeatures, SparseRealFeatures, BinaryLabels
	from modshogun import LibLinear, L2R_L2LOSS_SVC_DUAL
	from modshogun import Math_init_random, CSVFile
	Math_init_random(17)

	feats_train=RealFeatures(CSVFile(train_fname))
	feats_test=RealFeatures(CSVFile(test_fname))
	labels=BinaryLabels(CSVFile(label_fname))

	svm=LibLinear(C, feats_train, labels)
	svm.set_liblinear_solver_type(L2R_L2LOSS_SVC_DUAL)
	svm.set_epsilon(epsilon)
	svm.set_bias_enabled(True)
	svm.train()

	predictions = svm.apply(feats_test)
	return predictions, svm, predictions.get_labels()
def classifier_multiclass_ecoc_ovr (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,label_test_multiclass=label_testdat,lawidth=2.1,C=1,epsilon=1e-5):
	from modshogun import RealFeatures, MulticlassLabels
	from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
	from modshogun import ECOCStrategy, ECOCOVREncoder, ECOCLLBDecoder, MulticlassOneVsRestStrategy

	feats_train = RealFeatures(fm_train_real)
	feats_test  = RealFeatures(fm_test_real)

	labels = MulticlassLabels(label_train_multiclass)

	classifier = LibLinear(L2R_L2LOSS_SVC)
	classifier.set_epsilon(epsilon)
	classifier.set_bias_enabled(True)

	mc_classifier = LinearMulticlassMachine(MulticlassOneVsRestStrategy(), feats_train, classifier, labels)
	mc_classifier.train()
	label_mc = mc_classifier.apply(feats_test)
	out_mc = label_mc.get_labels()

	ecoc_strategy = ECOCStrategy(ECOCOVREncoder(), ECOCLLBDecoder())
	ecoc_classifier = LinearMulticlassMachine(ecoc_strategy, feats_train, classifier, labels)
	ecoc_classifier.train()
	label_ecoc = ecoc_classifier.apply(feats_test)
	out_ecoc = label_ecoc.get_labels()

	n_diff = (out_mc != out_ecoc).sum()
	#if n_diff == 0:
	#	print("Same results for OvR and ECOCOvR")
	#else:
	#	print("Different results for OvR and ECOCOvR (%d out of %d are different)" % (n_diff, len(out_mc)))

	if label_test_multiclass is not None:
		from modshogun import MulticlassAccuracy
		labels_test = MulticlassLabels(label_test_multiclass)
		evaluator = MulticlassAccuracy()
		acc_mc = evaluator.evaluate(label_mc, labels_test)
		acc_ecoc = evaluator.evaluate(label_ecoc, labels_test)
		#print('Normal OVR Accuracy = %.4f' % acc_mc)
		#print('ECOC OVR Accuracy   = %.4f' % acc_ecoc)

	return out_ecoc, out_mc
def classifier_multiclass_ecoc_random (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,label_test_multiclass=label_testdat,lawidth=2.1,C=1,epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCRandomSparseEncoder, ECOCRandomDenseEncoder, ECOCHDDecoder
    from modshogun import Math_init_random;
    Math_init_random(12345);

    feats_train = RealFeatures(fm_train_real)
    feats_test  = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    rnd_dense_strategy = ECOCStrategy(ECOCRandomDenseEncoder(), ECOCHDDecoder())
    rnd_sparse_strategy = ECOCStrategy(ECOCRandomSparseEncoder(), ECOCHDDecoder())

    dense_classifier = LinearMulticlassMachine(rnd_dense_strategy, feats_train, classifier, labels)
    dense_classifier.train()
    label_dense = dense_classifier.apply(feats_test)
    out_dense = label_dense.get_labels()

    sparse_classifier = LinearMulticlassMachine(rnd_sparse_strategy, feats_train, classifier, labels)
    sparse_classifier.train()
    label_sparse = sparse_classifier.apply(feats_test)
    out_sparse = label_sparse.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc_dense = evaluator.evaluate(label_dense, labels_test)
        acc_sparse = evaluator.evaluate(label_sparse, labels_test)
        print('Random Dense Accuracy  = %.4f' % acc_dense)
        print('Random Sparse Accuracy = %.4f' % acc_sparse)

    return out_sparse, out_dense
Пример #10
0
def main():
	fright=open(r'circle counterclockwise/train_cc_10_dim.txt','r')
	fleft=open(r'letters/Z/train_Z_10_dim.txt','r')
	data_right=np.load(fright)
	data_left=np.load(fleft)
	lenr=len(data_right[0])
	lenl=len(data_left[0])
	dim=10
	endr=int(0.9*lenr)
	endl=int(0.9*lenl)
	data_right_train=data_right[:,0:endr]
	data_left_train=data_left[:,0:endl]
	data_right_test=data_right[:,endr:]
	data_left_test=data_left[:,endl:]
	
	len_right_train=len(data_right_train[0])
	len_left_train=len(data_left_train[0])
	len_right_test=len(data_right_test[0])
	len_left_test=len(data_left_test[0])
	
	label_right_train=np.ones(len_right_train)
	label_right_test=np.ones(len_right_test)
	
	label_left_train=-1*np.ones(len_left_train)
	label_left_test=-1*np.ones(len_left_test)
	
	C=10
	
	train_dataset=np.hstack((data_right_train,data_left_train))
	normalization_mean=[]
	normalization_std=[]
	
	for i in range(0,dim):
		mean1=np.mean(train_dataset[i])
		std1=np.std(train_dataset[i])
		train_dataset[i]=(train_dataset[i]-mean1)/std1
		normalization_mean.append(mean1)
		normalization_std.append(std1)
	feats_train=RealFeatures(train_dataset)
	f,axes=subplots(2,2)
	fig = figure()
	ax = fig.add_subplot(111, projection='3d')
	ax.scatter(data_right_train[0],data_right_train[1],data_right_train[2],c='r')
	ax.scatter(data_left_train[0],data_left_train[1],data_left_train[2],c='b')
	ax.set_xlabel('STD X')
	ax.set_ylabel('STD Y')
	ax.set_zlabel('STD Z')
	ax.set_title('3D PLOT OF STD')
	axes[0,0].plot(data_right_train[0],data_right_train[1],'*')
	axes[0,0].plot(data_left_train[0],data_left_train[1],'x')
	axes[0,0].set_xlabel('STDX')
	axes[0,0].set_ylabel('std y')
	axes[0,0].set_title('STDX VS stdy')
	axes[0,1].plot(data_right_train[1],data_right_train[2],'*')
	axes[0,1].plot(data_left_train[1],data_left_train[2],'x')
	axes[0,1].set_xlabel('std Y')
	axes[0,1].set_ylabel('std Z')
	axes[0,1].set_title('stdY  VS stdZ')
	axes[1,0].plot(data_right_train[0],data_right_train[2],'*')
	axes[1,0].plot(data_left_train[0],data_left_train[2],'x')
	axes[1,0].set_xlabel('std X')
	axes[1,0].set_ylabel('std z')
	axes[1,0].set_title('std X VS stdz')
	show()
	train_labels=np.hstack((label_right_train,label_left_train))
	test_dataset=np.hstack((data_right_test,data_left_test))
	normalization_file=open('normalization_parameters_cc_vs_letters.txt','w')
	norm_params=[normalization_mean,normalization_std]
	norm_params=np.asarray(norm_params)
	np.save(normalization_file,norm_params)
	
	for i in range(0,dim):
		test_dataset[i]=(test_dataset[i]-normalization_mean[i])/normalization_std[i]
	
	labels_train=BinaryLabels(train_labels)
	
	
	print 'the length of test_dataset is ',len(test_dataset[0])
	feats_test=RealFeatures(test_dataset)
	
	test_labels=np.hstack((label_right_test,label_left_test))
	print 'the length is test_labels is ',len(test_labels)
	labels_test=BinaryLabels(test_labels)
	
	svm=LibLinear(C,feats_train,labels_train)
	epsilon=1e-3
	svm.set_epsilon(epsilon)
	svm.train()
	predictions=svm.apply(feats_test)
	predictions_on_train=svm.apply(feats_train)
	evaluator1=ROCEvaluation()
	evaluator2=AccuracyMeasure()
	
	evaluator1.evaluate(predictions_on_train,labels_train)
	evaluator2.evaluate(predictions,labels_test)
	file_name="z_vs_cc/accuracy="+ str(evaluator2.get_accuracy()) + " liblinear_cc_vs_Z_svm_classifier_with_C_10_and_normalized.h5"
	
	f3=SerializableHdf5File(file_name, "w")
	svm.save_serializable(f3)
	p_test=predictions.get_labels()
	for i in range(0,len(test_labels)):
		print 'predicted : ',p_test[i] ,' and actual ',test_labels[i] 
	print 'the Area under the curve is ',evaluator1.get_auROC()
	print 'the accuracy is ',evaluator2.get_accuracy()*100
	evaluator1.evaluate(predictions,labels_test)
	print 'the auc for test set is  ',evaluator1.get_auROC()