def structure_discrete_hmsvm_mosek (m_data_dict=data_dict): from modshogun import RealMatrixFeatures from modshogun import SequenceLabels, HMSVMModel, Sequence, TwoStateModel, SMT_TWO_STATE from modshogun import StructuredAccuracy try: from modshogun import PrimalMosekSOSVM except ImportError: print("Mosek not available") return labels_array = m_data_dict['label'][0] idxs = numpy.nonzero(labels_array == -1) labels_array[idxs] = 0 labels = SequenceLabels(labels_array, 250, 500, 2) features = RealMatrixFeatures(m_data_dict['signal'].astype(float), 250, 500) num_obs = 4 # given by the data file used model = HMSVMModel(features, labels, SMT_TWO_STATE, num_obs) sosvm = PrimalMosekSOSVM(model, labels) sosvm.train() #print(sosvm.get_w()) predicted = sosvm.apply() evaluator = StructuredAccuracy() acc = evaluator.evaluate(predicted, labels)
def structure_discrete_hmsvm_mosek (m_data_dict=data_dict): from modshogun import RealMatrixFeatures, SequenceLabels, HMSVMModel, Sequence, TwoStateModel from modshogun import StructuredAccuracy, SMT_TWO_STATE try: from modshogun import PrimalMosekSOSVM except ImportError: print("Mosek not available") return labels_array = m_data_dict['label'][0] idxs = numpy.nonzero(labels_array == -1) labels_array[idxs] = 0 labels = SequenceLabels(labels_array, 250, 500, 2) features = RealMatrixFeatures(m_data_dict['signal'].astype(float), 250, 500) num_obs = 4 # given by the data file used model = HMSVMModel(features, labels, SMT_TWO_STATE, num_obs) sosvm = PrimalMosekSOSVM(model, labels) sosvm.train() #print(sosvm.get_w()) predicted = sosvm.apply() evaluator = StructuredAccuracy() acc = evaluator.evaluate(predicted, labels)
def so_multiclass(fm_train_real=traindat, label_train_multiclass=label_traindat): try: from modshogun import RealFeatures from modshogun import MulticlassModel, MulticlassSOLabels, PrimalMosekSOSVM, RealNumber except ImportError: print("Mosek not available") return labels = MulticlassSOLabels(label_train_multiclass) features = RealFeatures(fm_train_real.T) model = MulticlassModel(features, labels) sosvm = PrimalMosekSOSVM(model, labels) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 print("Correct classification rate: %0.2f" % (100.0 * count / out.get_num_labels()))
def structure_plif_hmsvm_mosek (num_examples, example_length, num_features, num_noise_features): from modshogun import RealMatrixFeatures, TwoStateModel, StructuredAccuracy try: from modshogun import PrimalMosekSOSVM except ImportError: print("Mosek not available") return model = TwoStateModel.simulate_data(num_examples, example_length, num_features, num_noise_features) sosvm = PrimalMosekSOSVM(model, model.get_labels()) sosvm.train() #print(sosvm.get_w()) predicted = sosvm.apply(model.get_features()) evaluator = StructuredAccuracy() acc = evaluator.evaluate(predicted, model.get_labels())
def structure_plif_hmsvm_mosek(num_examples, example_length, num_features, num_noise_features): from modshogun import RealMatrixFeatures, TwoStateModel, StructuredAccuracy try: from modshogun import PrimalMosekSOSVM except ImportError: print("Mosek not available") return model = TwoStateModel.simulate_data(num_examples, example_length, num_features, num_noise_features) sosvm = PrimalMosekSOSVM(model, model.get_labels()) sosvm.train() #print(sosvm.get_w()) predicted = sosvm.apply(model.get_features()) evaluator = StructuredAccuracy() acc = evaluator.evaluate(predicted, model.get_labels())
def so_multiclass (fm_train_real=traindat,label_train_multiclass=label_traindat): try: from modshogun import RealFeatures from modshogun import MulticlassModel, MulticlassSOLabels, PrimalMosekSOSVM, RealNumber except ImportError: print("Mosek not available") return labels = MulticlassSOLabels(label_train_multiclass) features = RealFeatures(fm_train_real.T) model = MulticlassModel(features, labels) sosvm = PrimalMosekSOSVM(model, labels) sosvm.train() out = sosvm.apply() count = 0 for i in xrange(out.get_num_labels()): yi_pred = RealNumber.obtain_from_generic(out.get_label(i)) if yi_pred.value == label_train_multiclass[i]: count = count + 1 print("Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() ))