def mathematics_sparseinversecovariance_modular(data,lc): from modshogun import SparseInverseCovariance from numpy import dot sic = SparseInverseCovariance() S = dot(data,data.T) Si = sic.estimate(S,lc) return Si
def mathematics_sparseinversecovariance_modular(data, lc): from modshogun import SparseInverseCovariance from numpy import dot sic = SparseInverseCovariance() S = dot(data, data.T) Si = sic.estimate(S, lc) return Si
def mathematics_sparseinversecovariance_modular (data,lc): try: from modshogun import SparseInverseCovariance except ImportError: print("SparseInverseCovariance not available") exit(0) from numpy import dot sic = SparseInverseCovariance() S = dot(data,data.T) Si = sic.estimate(S,lc) return Si
def inverse_covariance (data,lc): from modshogun import SparseInverseCovariance from numpy import dot sic = SparseInverseCovariance() #by default cov() expects each row to represent a variable, with observations in the columns cov = np.cov(data.T) max_cov = cov.max() min_cov = cov.min() #comupute inverse conariance matrix Si = sic.estimate(cov,lc) return Si
def inverse_covariance(data, lc): from modshogun import SparseInverseCovariance from numpy import dot sic = SparseInverseCovariance() #by default cov() expects each row to represent a variable, with observations in the columns cov = np.cov(data.T) max_cov = cov.max() min_cov = cov.min() #compute inverse conariance matrix Si = sic.estimate(cov, lc) return Si