Пример #1
0
def validate_subcarrier_location(alpha, M, K, overlap, oversampling_factor):
    goofy_ordering = False
    taps = gfdm_filter_taps('rrc', alpha, M, K, oversampling_factor)
    A0 = gfdm_modulation_matrix(taps,
                                M,
                                K,
                                oversampling_factor,
                                group_by_subcarrier=goofy_ordering)

    n = np.arange(M * K * oversampling_factor, dtype=np.complex)
    for k in range(K):
        f = np.exp(1j * 2 * np.pi * (float(k) / (K * oversampling_factor)) * n)
        F = abs(np.fft.fft(f))
        fm = 1. * np.argmax(F) / M

        data = get_zero_f_data(k, K, M)

        x0 = gfdm_gr_modulator(
            data, 'rrc', alpha, M, K, overlap,
            compat_mode=goofy_ordering) * (2. / K)
        f0 = 1. * np.argmax(abs(np.fft.fft(x0))) / M

        xA = A0.dot(
            get_data_matrix(
                data, K,
                group_by_subcarrier=goofy_ordering).flatten()) * (1. / K)
        fA = 1. * np.argmax(abs(np.fft.fft(xA))) / M
        if not fm == fA == f0:
            raise RuntimeError(
                'ERROR: subcarriers are not located at the same bins!')
Пример #2
0
def compare_subcarrier_location(alpha, M, K, overlap, oversampling_factor):
    import matplotlib.pyplot as plt
    import matplotlib.cm as cm
    goofy_ordering = False
    taps = gfdm_filter_taps('rrc', alpha, M, K, oversampling_factor)
    A0 = gfdm_modulation_matrix(taps, M, K, oversampling_factor, group_by_subcarrier=goofy_ordering)
    n = np.arange(M * K * oversampling_factor, dtype=np.complex)
    colors = iter(cm.rainbow(np.linspace(0, 1, K)))

    for k in range(K):
        color = next(colors)
        f = np.exp(1j * 2 * np.pi * (float(k) / (K * oversampling_factor)) * n)
        F = abs(np.fft.fft(f))
        fm = np.argmax(F) / M
        plt.plot(F, '-.', label=k, color=color)

        data = get_zero_f_data(k, K, M)

        x0 = gfdm_gr_modulator(data, 'rrc', alpha, M, K, overlap, compat_mode=goofy_ordering) * (2. / K)
        f0 = 1. * np.argmax(abs(np.fft.fft(x0))) / M
        plt.plot(abs(np.fft.fft(x0)), label='FFT' + str(k), color=color)

        xA = A0.dot(get_data_matrix(data, K, group_by_subcarrier=goofy_ordering).flatten()) * (1. / K)
        fA = np.argmax(abs(np.fft.fft(xA))) / M
        plt.plot(abs(np.fft.fft(xA)), '-', label='matrix' + str(k), color=color)
        print fm, fA, f0
    plt.legend()
    plt.show()
Пример #3
0
def implementation_validation():
    M = 33
    K = 32
    alpha = .5
    overlap = 2
    H = get_frequency_domain_filter('rrc', alpha, M, K, overlap)
    taps = gfdm_filter_taps('rrc', alpha, M, K, 1)
    A = gfdm_modulation_matrix(taps, M, K)

    tests = 100
    max_rel_error = 0.0
    for t in range(tests):
        d = get_random_samples(M * K)
        xmat = A.dot(d) / np.sqrt(len(d))
        D = get_data_matrix(d, K, group_by_subcarrier=True)
        xfft = gfdm_modulate_block(D, H, M, K, overlap, False) / np.sqrt(
            len(d))
        rel_err = np.linalg.norm(xmat - xfft) / np.linalg.norm(xmat)
        if rel_err > max_rel_error:
            max_rel_error = rel_err
        if rel_err > 1e-3:
            raise RuntimeError(
                'Relative error between FFT and Matrix implementation is above 1e-3!'
            )
    print 'maximum relative error is:', max_rel_error
Пример #4
0
def main():
    '''
    This is a comparison for 3 different demodulation approaches.
    matched filter matrix being the 'benchmark'
    The other two should converge towards the matrix approach for overlap -> subcarriers
    Actually, there's a bug in the 'GR' approach, thus it only works for overlap==2
    '''
    timeslots = 25
    subcarriers = 16
    overlap = 2
    time_taps = gfdm_filter_taps('rrc', .5, timeslots, subcarriers, 1)
    freq_taps = gfdm_freq_taps(time_taps)
    sparse_freq_taps = gfdm_freq_taps_sparse(freq_taps, timeslots, overlap)
    A = gfdm_modulation_matrix(time_taps, timeslots, subcarriers, 1, True)
    Ainv = np.linalg.inv(A)
    Amf = np.conjugate(A).T

    tx_syms = get_random_qpsk(timeslots * subcarriers)
    rx_syms = A.dot(tx_syms)

    mf_matrix_rx = Amf.dot(rx_syms)
    inv_matrix_rx = Ainv.dot(rx_syms)
    gr_res = gfdm_demodulate_block(rx_syms, sparse_freq_taps, subcarriers,
                                   timeslots, overlap)
    fft_res = gfdm_demodulate_fft_loop(rx_syms, timeslots, subcarriers,
                                       overlap, sparse_freq_taps)

    mf_matrix_rx *= np.sqrt(
        calculate_average_signal_energy(fft_res) /
        calculate_average_signal_energy(mf_matrix_rx))
    inv_matrix_rx *= np.sqrt(
        calculate_average_signal_energy(fft_res) /
        calculate_average_signal_energy(inv_matrix_rx))
    gr_res *= np.sqrt(
        calculate_average_signal_energy(fft_res) /
        calculate_average_signal_energy(gr_res))

    print 'compare demodulation accuracy for different approaches'
    for e in range(11):
        em = 10**(-1. * e)
        matrixvsloop = np.all(np.abs(fft_res - mf_matrix_rx) < em)
        grvsmatrix = np.all(np.abs(gr_res - mf_matrix_rx) < em)
        grvsloop = np.all(np.abs(gr_res - fft_res) < em)
        print 'error margin {:.1e}\tMFmatriXvsGR: {}\tMFmatriXvsLoop: {}\tGRvsLoop: {}'.format(
            em, grvsmatrix, matrixvsloop, grvsloop)
Пример #5
0
def preamble_auto_corr_test():
    K = 32
    pn_seq = get_random_qpsk(K)
    pn_symbols = np.tile(pn_seq, 2)
    D = get_data_matrix(pn_symbols, K, True)
    # print np.shape(D)
    print 'subcarriers bear same symbols:', np.all(D[0] == D[1])

    pl, p = generate_sync_symbol(pn_seq, 'rrc', .5, K, 2, K, K / 2)
    # print np.shape(p)
    acc = auto_correlate_halfs(p)
    print acc, np.angle(acc)

    taps = gfdm_filter_taps('rrc', .5, 2, K, 1)
    A = gfdm_modulation_matrix(taps, 2, K)
    x = A.dot(pn_symbols)
    # print np.shape(x)
    acc = auto_correlate_halfs(x)
    print acc, np.angle(acc)
Пример #6
0
def preamble_auto_corr_test():
    K = 32
    pn_seq = get_random_qpsk(K)
    pn_symbols = np.tile(pn_seq, 2)
    D = get_data_matrix(pn_symbols, K, True)
    # print np.shape(D)
    print 'subcarriers bear same symbols:', np.all(D[0] == D[1])

    pl, p = generate_sync_symbol(pn_seq, 'rrc', .5, K, 2, K, K / 2)
    # print np.shape(p)
    acc = auto_correlate_halfs(p)
    print acc, np.angle(acc)

    taps = gfdm_filter_taps('rrc', .5, 2, K, 1)
    A = gfdm_modulation_matrix(taps, 2, K)
    x = A.dot(pn_symbols)
    # print np.shape(x)
    acc = auto_correlate_halfs(x)
    print acc, np.angle(acc)
Пример #7
0
def validate_subcarrier_location(alpha, M, K, overlap, oversampling_factor):
    goofy_ordering = False
    taps = gfdm_filter_taps('rrc', alpha, M, K, oversampling_factor)
    A0 = gfdm_modulation_matrix(taps, M, K, oversampling_factor, group_by_subcarrier=goofy_ordering)

    n = np.arange(M * K * oversampling_factor, dtype=np.complex)
    for k in range(K):
        f = np.exp(1j * 2 * np.pi * (float(k) / (K * oversampling_factor)) * n)
        F = abs(np.fft.fft(f))
        fm = 1. * np.argmax(F) / M

        data = get_zero_f_data(k, K, M)

        x0 = gfdm_gr_modulator(data, 'rrc', alpha, M, K, overlap, compat_mode=goofy_ordering) * (2. / K)
        f0 = 1. * np.argmax(abs(np.fft.fft(x0))) / M

        xA = A0.dot(get_data_matrix(data, K, group_by_subcarrier=goofy_ordering).flatten()) * (1. / K)
        fA = 1. * np.argmax(abs(np.fft.fft(xA))) / M
        if not fm == fA == f0:
            raise RuntimeError('ERROR: subcarriers are not located at the same bins!')
Пример #8
0
def implementation_validation():
    M = 33
    K = 32
    alpha = .5
    overlap = 2
    H = get_frequency_domain_filter('rrc', alpha, M, K, overlap)
    taps = gfdm_filter_taps('rrc', alpha, M, K, 1)
    A = gfdm_modulation_matrix(taps, M, K)

    tests = 100
    max_rel_error = 0.0
    for t in range(tests):
        d = get_random_samples(M * K)
        xmat = A.dot(d) / np.sqrt(len(d))
        D = get_data_matrix(d, K, group_by_subcarrier=True)
        xfft = gfdm_modulate_block(D, H, M, K, overlap, False) / np.sqrt(len(d))
        rel_err = np.linalg.norm(xmat - xfft) / np.linalg.norm(xmat)
        if rel_err > max_rel_error:
            max_rel_error = rel_err
        if rel_err > 1e-3:
            raise RuntimeError('Relative error between FFT and Matrix implementation is above 1e-3!')
    print 'maximum relative error is:', max_rel_error
Пример #9
0
def main():
    '''
    This is a comparison for 3 different demodulation approaches.
    matched filter matrix being the 'benchmark'
    The other two should converge towards the matrix approach for overlap -> subcarriers
    Actually, there's a bug in the 'GR' approach, thus it only works for overlap==2
    '''
    timeslots = 25
    subcarriers = 16
    overlap = 2
    time_taps = gfdm_filter_taps('rrc', .5, timeslots, subcarriers, 1)
    freq_taps = gfdm_freq_taps(time_taps)
    sparse_freq_taps = gfdm_freq_taps_sparse(freq_taps, timeslots, overlap)
    A = gfdm_modulation_matrix(time_taps, timeslots, subcarriers, 1, True)
    Ainv = np.linalg.inv(A)
    Amf = np.conjugate(A).T

    tx_syms = get_random_qpsk(timeslots * subcarriers)
    rx_syms = A.dot(tx_syms)

    mf_matrix_rx = Amf.dot(rx_syms)
    inv_matrix_rx = Ainv.dot(rx_syms)
    gr_res = gfdm_demodulate_block(rx_syms, sparse_freq_taps, subcarriers, timeslots, overlap)
    fft_res = gfdm_demodulate_fft_loop(rx_syms, timeslots, subcarriers, overlap, sparse_freq_taps)

    mf_matrix_rx *= np.sqrt(calculate_average_signal_energy(fft_res) / calculate_average_signal_energy(mf_matrix_rx))
    inv_matrix_rx *= np.sqrt(calculate_average_signal_energy(fft_res) / calculate_average_signal_energy(inv_matrix_rx))
    gr_res *= np.sqrt(calculate_average_signal_energy(fft_res) / calculate_average_signal_energy(gr_res))

    print 'compare demodulation accuracy for different approaches'
    for e in range(11):
        em = 10 ** (-1. * e)
        matrixvsloop = np.all(np.abs(fft_res - mf_matrix_rx) < em)
        grvsmatrix = np.all(np.abs(gr_res - mf_matrix_rx) < em)
        grvsloop = np.all(np.abs(gr_res - fft_res) < em)
        print 'error margin {:.1e}\tMFmatriXvsGR: {}\tMFmatriXvsLoop: {}\tGRvsLoop: {}'.format(em, grvsmatrix, matrixvsloop, grvsloop)