Пример #1
0
    def __init__(self):
        super(CPLMINet_WSGNRes50, self).__init__()
        self.upsample_add = upsample_add
        self.upsample = cus_sample
        self.dummy_tensor = torch.ones(1,
                                       dtype=torch.float32,
                                       requires_grad=True)

        self.div_2, self.div_4, self.div_8, self.div_16, self.div_32 = Backbone_ResNet50_in3(
        )

        self.upsample_add = upsample_add
        self.upsample = cus_sample

        self.trans = LightAIM(iC_list=(64, 256, 512, 1024, 2048),
                              oC_list=(64, 64, 64, 64, 64))

        self.sim32 = SIM(64, 32)
        self.sim16 = SIM(64, 32)
        self.sim8 = SIM(64, 32)
        self.sim4 = SIM(64, 32)
        self.sim2 = SIM(64, 32)

        self.upconv32 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv16 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv8 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv4 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv2 = BasicConv2d(64, 32, kernel_size=3, stride=1, padding=1)
        self.upconv1 = BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)

        self.classifier = nn.Conv2d(32, 1, 1)
Пример #2
0
    def __init__(self):
        super(CPLightMINet_VGG16, self).__init__()
        self.upsample_add = upsample_add
        self.upsample = cus_sample
        self.dummy_tensor = torch.ones(1,
                                       dtype=torch.float32,
                                       requires_grad=True)

        (
            self.encoder1,
            self.encoder2,
            self.encoder4,
            self.encoder8,
            self.encoder16,
        ) = Backbone_VGG16_in3()

        self.trans = LightAIM((64, 128, 256, 512, 512), (32, 64, 64, 64, 64))

        self.sim16 = SIM(64, 32)
        self.sim8 = SIM(64, 32)
        self.sim4 = SIM(64, 32)
        self.sim2 = SIM(64, 32)
        self.sim1 = SIM(32, 16)

        self.upconv16 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv8 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv4 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv2 = BasicConv2d(64, 32, kernel_size=3, stride=1, padding=1)
        self.upconv1 = BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)

        self.classifier = nn.Conv2d(32, 1, 1)
Пример #3
0
    def __init__(self):
        super(cp_res50, self).__init__()
        self.upsample_add = upsample_add
        self.upsample = cus_sample
        self.dummy_tensor = torch.ones(1,
                                       dtype=torch.float32,
                                       requires_grad=True)

        self.div_2, self.div_4, self.div_8, self.div_16, self.div_32 = Backbone_ResNet50_in3(
        )

        self.upsample_add = upsample_add
        self.upsample = cus_sample

        self.trans32 = nn.Conv2d(2048, 64, 1, 1)
        self.trans16 = nn.Conv2d(1024, 64, 1, 1)
        self.trans8 = nn.Conv2d(512, 64, 1, 1)
        self.trans4 = nn.Conv2d(256, 64, 1, 1)
        self.trans2 = nn.Conv2d(64, 64, 1, 1)

        self.sim32 = SIM(64, 32)
        self.sim16 = SIM(64, 32)
        self.sim8 = SIM(64, 32)
        self.sim4 = SIM(64, 32)
        self.sim2 = SIM(64, 32)

        self.upconv32 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv16 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv8 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv4 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv2 = BasicConv2d(64, 32, kernel_size=3, stride=1, padding=1)
        self.upconv1 = BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)

        self.classifier = nn.Conv2d(32, 1, 1)
Пример #4
0
    def __init__(self):
        super(LightMINet_VGG16, self).__init__()
        self.upsample_add = upsample_add
        self.upsample = cus_sample

        (
            self.encoder1,
            self.encoder2,
            self.encoder4,
            self.encoder8,
            self.encoder16,
        ) = Backbone_VGG16_in3()

        self.trans = LightAIM((64, 128, 256, 512, 512), (32, 64, 64, 64, 64))

        self.sim16 = SIM(64, 32)
        self.sim8 = SIM(64, 32)
        self.sim4 = SIM(64, 32)
        self.sim2 = SIM(64, 32)
        self.sim1 = SIM(32, 16)

        self.upconv16 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv8 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv4 = BasicConv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.upconv2 = BasicConv2d(64, 32, kernel_size=3, stride=1, padding=1)
        self.upconv1 = BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)

        self.classifier = nn.Conv2d(32, 1, 1)