Пример #1
0
import numpy as np
import matplotlib.pyplot as plt
import module
# This simple tutorial aims to train you on the TCA. More functions will be implemented in the future.

main_path = ""

# Read files
h, tot_file = module.bashload(main_path)
# Calculate delx,y
h, tot_vector = module.bashvector(h)
# Calculate overlay
h, tot_vec_overlay = module.bashoverlay(h)
# Plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(h.tot_vec_overlay['ecc03_delx'], h.tot_vec_overlay['ecc03_dely'], '+')
plt.show()
Пример #2
0
import matplotlib.colors as colors
from matplotlib.colors import Normalize
import json
import os
import matplotlib.colors as mcolors
from matplotlib.transforms import Affine2D
import matplotlib.patches as patches
from mpl_toolkits.mplot3d import Axes3D

main_path = "/media/zezhou/Seagate Expansion Drive/McGillResearch/2019Manuscript_Analysis/Analysis/datafterlinearshift/tplasmid/"
cleanmode = 1  # 1-cleaned data. The roi.json and tot_file_clean.json files have been saved in ./data folder.
# 0-raw data. Experimental data before shift to zero.
# Read files
handle1, tot_file = module.bashload(main_path)
handle1, tot_vector = module.bashvector(handle1)
handle1, tot_vec_overlay = module.bashoverlay(handle1)

# Data clean
if cleanmode == 0:
    handle1, roi = module.bashroi(handle1)  # ROI selection
    handle1, tot_file_clean = module.bashclean(
        handle1)  # Delete points ouside ROI and attach mask to handle1.
    handle1, tot_file_shift = module.allshift(
        handle1)  # Shift data to zero according to YOYO-3 channel
elif cleanmode == 1:
    os.chdir(main_path + '/data')
    tot_file_clean = json.load(
        open('tot_file_clean.json'))  # data is saved in list format
    for filename in tot_file_clean:
        tot_file_clean[filename] = np.array(
            tot_file_clean[filename])  # Changing format to array