def __init__(self, output_dim, batch_size=None, input_dim=None, act='linear', batch_norm=False, batch_norm_params={ 'momentum': 0.9, 'epsilon': 1e-5, 'training': False, 'name': 'bn' }, keep_prob=tf.constant(1.0), weights_init=tf.truncated_normal_initializer(stddev=0.01), bias_init=tf.constant_initializer(0.0), name="linear"): self.name = name Module.__init__(self) self.input_dim = input_dim self.output_dim = output_dim self.batch_size = batch_size self.act = act self.batch_norm = batch_norm self.batch_norm_params = batch_norm_params self.keep_prob = keep_prob self.weights_init = weights_init self.bias_init = bias_init
def __init__(self, dim, nNeurons, name=None, outputFullMap=False): if outputFullMap: outdim = nNeurons**2 else: outdim = 2 Module.__init__(self, dim, outdim, name) # switch modes self.outputFullMap = outputFullMap # create neurons self.neurons = random.random((nNeurons, nNeurons, dim)) self.difference = zeros(self.neurons.shape) self.winner = zeros(2) self.nInput = dim self.nNeurons = nNeurons self.neighbours = nNeurons self.learningrate = 0.01 self.neighbourdecay = 0.9999 # distance matrix distx, disty = mgrid[0:self.nNeurons, 0:self.nNeurons] self.distmatrix = zeros((self.nNeurons, self.nNeurons, 2)) self.distmatrix[:, :, 0] = distx self.distmatrix[:, :, 1] = disty
def get(self): TAG = "Meters:" module = Module() start_time = time.time() database = Database() module = Module() current_user = get_jwt_identity() print(TAG, "current_user="******"username="******"sub"]) username = current_user['sub'] cmd = """SELECT machineID, machineName, department FROM Machines WHERE username='******' """ % (username) res = database.getData(cmd) # command = "show measurements" # res = module.getData(command)[0]["values"] # print(TAG, "res=", res) # meters = [] # for meter in res: # tmp_meter = {} # # print(TAG, meter[0]) # tmp_meter["id"] = meter[0] # meters.append(tmp_meter) elapsed_time = (time.time() - start_time) * 1000 print(TAG, "times=", elapsed_time, "ms") return res
def LoadEntered(self): name = self.e.get() self.loadPopup.destroy() tempDict = {} with open("./Patches/patches.json",'r') as json_file: patchDictionary = json.load(json_file) print "ALL MODULES" print self.AllModules while len(self.AllModules) != 0: m = self.AllModules.pop() print "DELETING" + str(m.name) m.delete() patch = patchDictionary[name] self.PureData.reset() #Load all modules for n, module in patch['modules'].iteritems(): newM = Module(self.canvas, module['Name'], module['x'] * scalar , module['y'] * scalar, self, self.osc) newM.setValues(module['Values']) tempDict[n] = newM self.AllModules.append(newM) #Load all connections for cable in patch['cables'].values(): print cable inputModule = tempDict[cable[0]] inputJack = inputModule.InputJacks[cable[1]] outputModule = tempDict[cable[2]] outputJack = outputModule.OutputJacks[cable[3]] inputModule.connectCable(inputJack, outputJack)
def __init__(self, output_depth, phase_train, is_fullyConnected=False, batch_size=None, input_dim=None, input_depth=None, name="batchNorm", param_dir=None): self.name = name #self.input_tensor = input_tensor Module.__init__(self) #comment (it's done in fwd pass) self.batch_size = batch_size self.input_dim = input_dim self.input_depth = input_depth #path to stored weights and biases self.param_dir = param_dir self.beta = tf.Variable(tf.constant(0.0, shape=[output_depth]), name='beta', trainable=True) self.gamma = tf.Variable(tf.constant(1.0, shape=[output_depth]), name='gamma', trainable=True) self.ema = tf.train.ExponentialMovingAverage(decay=0.5) self.phase_train = phase_train self.is_fullyConnected = is_fullyConnected
def __init__(self, filtersize=(5, 5, 3, 32), stride=(2, 2)): ''' Constructor for a Convolution layer. Parameters ---------- filtersize : 4-tuple with values (h,w,d,n), where h = filter heigth w = filter width d = filter depth n = number of filters = number of outputs stride : 2-tuple (h,w), where h = step size for filter application in vertical direction w = step size in horizontal direction ''' Module.__init__(self) self.fh, self.fw, self.fd, self.n = filtersize self.stride = stride self.W = np.random.normal(0, 1. / (self.fh * self.fw * self.fd)**.5, filtersize) self.B = np.zeros([self.n])
def __init__(self, probability=0.5, scaled=False): assert probability < 1 and probability > 0, 'probability must be (0,1)' Module.__init__(self) self.prob = probability self.train = True self.scaled = scaled self.noise = torch.Tensor()
def __init__(self, output_depth, batch_size=None, input_dim=None, input_depth=None, kernel_size=5, stride_size=2, act='linear', keep_prob=1.0, pad='SAME', name="conv2d"): self.name = name #self.input_tensor = input_tensor Module.__init__(self) self.batch_size = batch_size self.input_dim = input_dim self.input_depth = input_depth self.output_depth = output_depth self.kernel_size = kernel_size self.stride_size = stride_size self.act = act self.keep_prob = keep_prob self.pad = pad
def __init__(self, dim, peepholes = False, name = None): """ :arg dim: number of cells :key peepholes: enable peephole connections (from state to gates)? """ self.setArgs(dim = dim, peepholes = peepholes) # Internal buffers, created dynamically: self.bufferlist = [ ('ingate', dim), ('outgate', dim), ('forgetgate', dim), ('ingatex', dim), ('outgatex', dim), ('forgetgatex', dim), ('state', dim), ('ingateError', dim), ('outgateError', dim), ('forgetgateError', dim), ('stateError', dim), ] Module.__init__(self, 4*dim, dim, name) if self.peepholes: ParameterContainer.__init__(self, dim*3) self._setParameters(self.params) self._setDerivatives(self.derivs)
def __init__(self, dim, peepholes=False, name=None): """ :arg dim: number of cells :key peepholes: enable peephole connections (from state to gates)? """ self.setArgs(dim=dim, peepholes=peepholes) # Internal buffers, created dynamically: self.bufferlist = [ ('ingate', dim), ('outgate', dim), ('forgetgate', dim), ('ingatex', dim), ('outgatex', dim), ('forgetgatex', dim), ('state', dim), ('ingateError', dim), ('outgateError', dim), ('forgetgateError', dim), ('stateError', dim), ] Module.__init__(self, 4 * dim, dim, name) if self.peepholes: ParameterContainer.__init__(self, dim * 3) self._setParameters(self.params) self._setDerivatives(self.derivs)
def __init__(self,args): Module.__init__(self,args) self.log_request = args.log_request self.log_response = args.log_response self.log = args.log self.data = args.data self.headers = args.headers
def configure(self, config): Module.configure(self, config) if not self.version: self.version = m.ReadModuleName() # Import appropriate the ADAM module (or package). module = 'mpx.ion.adam.adam' + self.version command = compile('import ' + module, 'mpx.ion.adam.unknown.configure()', 'exec') eval(command) # Get the module's factory and instanciate the "real" class. command = module + '.factory' adam_factory = eval(command, globals(), locals()) self.instance = adam_factory() # Scary stuff. Detach this ion from our parent, configure the real # instance (thus attaching it to the parent) and then morph this # instance to behave like the real instance (in case anyone has a # handle to this instance). try: self.parent._del_child(self.name) self.instance.configure(config) attributes = vars(self.instance.__class__) attributes.update(vars(self.instance)) for attrribute in attributes: setattr(self, attrribute, getattr(self.instance, attrribute)) except: msglog.exception() # The scary stuff failed, reattach to the parent. try: self.parent._del_child(self.instance.name) except: pass self.parent._add_child(self)
def insertData(self, query_cmd): TAG = "Database:" start_time = time.time() # self.__init__() # establish mysql connection module = Module() # print(TAG, self.config) # print(TAG, "Loading data from mysql server") mydb = mysql.connector.connect(**self.config) # print(TAG, "Database is ready") mycursor = mydb.cursor() # print(TAG, "Cursor is ready") # execute the sql command try: # print(TAG, "trying to execute command") mycursor.execute(query_cmd) except Exception as err: # on error execute print(TAG, "error on execute command") print(TAG, err) mydb.close() return module.serveErrMsg() mydb.commit() mydb.close() # calculate elapset time elapsed_time = (time.time() - start_time) * 1000 print(TAG, "times=", elapsed_time, "ms") return { 'type': True, 'message': "success", 'error_message': None, 'result': "Meter created", 'elapsed_time_ms': elapsed_time }, 200
def dropEvent(self, e): # Establecer el widget en una nueva posición # aqui tengo que separar entre modulos nuevos y ya existentes. # la cadena que transmito es "posx,posy" si es mover uno existe # posx y posy es la posicion relativa al modulo del cursor # los ya existentes, muevo el modulo que paso con el drag a # la posicion del click menos el punto (posx,posy) # los modulos nuevos, hago una copia de ese tipo de modulo # de una base que no se este mostrando, y lo muestro # y no solo eso, sino que ademas mantengo # la numeracion de cada tipo de modulos para generar siguientes # obtiene la posicion relativa de los datos mime (mimeData) if e.mimeData().hasText(): x, y = map(int, e.mimeData().text().split(',')) e.source().move(e.pos()-QtCore.QPoint(x, y)) e.setDropAction(QtCore.Qt.MoveAction) for l in e.source().lines: l.repaint() else: name=self.newName(e.source().name) m = Module(name, e.source().code, self) m.move(e.pos()-QtCore.QPoint(100,50)) m.show() self.addModule(m) if m.type == Module.Input: self.update_composite() e.setDropAction(QtCore.Qt.CopyAction) e.accept()
def __init__(self, output_dim, batch_size=None, input_dim=None, act='linear', keep_prob=tf.constant(1.0), weights_init=tf.truncated_normal_initializer(stddev=0.05), bias_init=tf.constant_initializer(0.05), name="linear", param_dir=None, use_dropout=False, init_DH=False): self.name = name #Se crea un objeto Module de module.py, el que lleva el conteo de las capas presentes #y un preset a las variables usadas por LRP en cada capa Module.__init__(self) self.input_dim = input_dim self.output_dim = output_dim self.batch_size = batch_size self.act = act self.keep_prob = keep_prob self.use_dropout = use_dropout self.weights_init = weights_init self.bias_init = bias_init #path to stored weights and biases self.param_dir = param_dir self.init_DH = init_DH
def __init__(self, output_depth, input_depth=None, batch_size=None, input_dim=None, kernel_size=5, stride_size=2, act='linear', keep_prob=1.0, pad='SAME', weights_init=tf.truncated_normal_initializer(stddev=0.01), bias_init=tf.constant_initializer(0.0), name="deconv2d"): self.name = name Module.__init__(self) self.input_depth = input_depth self.input_dim = input_dim #self.check_input_shape() self.batch_size = batch_size self.output_depth = output_depth self.kernel_size = kernel_size self.stride_size = stride_size self.keep_prob = keep_prob self.act = act self.pad = pad self.weights_init = weights_init self.bias_init = bias_init
def write_london(template, scf, molecule): printable = '' wave_function = scf.contains(template.wave_function.name) if wave_function: scf_submodule = wave_function.submodules.get(template.scf.name) if scf_submodule: atomst = scf_submodule.properties.pop(template.atomst.name) for module in scf.modules: if module.name != template.visual.name: printable += module.__str__() nmr = SubModule('*NMR') nmr.add_property(template, '.LONDON') nmr.add_property(template, '.DOEPRN') nmr.add_property(template, '.INTFLG', ['1 1 0'])#calculating just large-large large-small newModule = Module('**PROPERTIES') newModule.add_property(template, '.' + molecule.magnetic_field) newModule.submodules.update({'*NMR':nmr}) printable += newModule.__str__() printable += '*END OF\n' if atomst: scf_submodule.properties.update({atomst.name:atomst}) return printable
def __init__(self, dim, nNeurons, name=None, outputFullMap=False): if outputFullMap: outdim = nNeurons ** 2 else: outdim = 2 Module.__init__(self, dim, outdim, name) # switch modes self.outputFullMap = outputFullMap # create neurons self.neurons = random.random((nNeurons, nNeurons, dim)) self.difference = zeros(self.neurons.shape) self.winner = zeros(2) self.nInput = dim self.nNeurons = nNeurons self.neighbours = nNeurons self.learningrate = 0.01 self.neighbourdecay = 0.9999 # distance matrix distx, disty = mgrid[0:self.nNeurons, 0:self.nNeurons] self.distmatrix = zeros((self.nNeurons, self.nNeurons, 2)) self.distmatrix[:, :, 0] = distx self.distmatrix[:, :, 1] = disty
def write_london(template, scf, molecule): printable = '' wave_function = scf.contains(template.wave_function.name) if wave_function: scf_submodule = wave_function.submodules.get(template.scf.name) if scf_submodule: atomst = scf_submodule.properties.pop(template.atomst.name) for module in scf.modules: if module.name != template.visual.name: printable += module.__str__() nmr = SubModule('*NMR') nmr.add_property(template, '.LONDON') nmr.add_property(template, '.DOEPRN') nmr.add_property(template, '.INTFLG', ['1 1 0']) #calculating just large-large large-small newModule = Module('**PROPERTIES') newModule.add_property(template, '.' + molecule.magnetic_field) newModule.submodules.update({'*NMR': nmr}) printable += newModule.__str__() printable += '*END OF\n' if atomst: scf_submodule.properties.update({atomst.name: atomst}) return printable
def __init__(self, library_path, assembly_path, enable_debug=False): self.is_windows = "win" in sys.platform print(library_path) self.module = Module(library_path) state = State(self) self.rpc = RPC(state) # Prepare delegates self.on_message = on_message_delegate(RPC.on_message) self.on_exit = on_exit_delegate(Bridge.on_exit) self._imp_common() self._imp_proxy() pluginDir = os.path.dirname( os.path.abspath( sys.modules['__main__'].__file__ ) ) # Initialize AppDomain and call initialize from the plugin self.plugin_handle = self.module.clrInit( assembly_path, pluginDir, self.on_message, self.on_exit, enable_debug )
def __init__(self, input_size, output_size): Module.__init__(self) self.weight = Tensor(output_size, input_size) self.bias = Tensor(output_size) self.grad_weight = Tensor(output_size, input_size) self.grad_bias = Tensor(output_size) self.reset()
def __init__(self, library_path, assembly, enable_debug=False): self.is_windows = "win" in sys.platform self.module = Module(library_path) #print("Init State: %s" % extra_vars) #state = State(**extra_vars) state = State(self) self.rpc = RPC(state) # Prepare delegates self.on_message = on_message_delegate(RPC.on_message) self.on_exit = on_exit_delegate(Bridge._on_exit) self._imp_common() # Initialize MonoHost on Unix if not self.is_windows: self._imp_monohost() self.module.setMainMethodName(str(assembly.entry)) self.module.clrInit(assembly.path, self.on_message, self.on_exit) # Call initialize from the plugin self.module.Initialize(self.on_message, self.on_exit, enable_debug)
def GenerateBldMod(self): # ugly hack for create a module for the bld file bldMod = Module('bld_' + self.name, '** autogenerated **') bldMod.resolvedFiles.append(self.bldFile) bldMod.putInPkg = False self.buildSys.modules[bldMod.name] = bldMod if bldMod.name not in self.modules: self.modules.append(bldMod.name)
def __deploy(self, type_name, *constraints): inner_modules = self.__deploy_inners(*constraints) module = Module(self, inner_modules, *constraints) module.dump() #logging.info('Completed to dump the module "%s"', module.id) Template.__deployed_counter += 1 self.__print_deployment_status(module.id) return InnerModule(module)
class ModuleTestCase(TestCase): def setUp(self): print '-' * 200 print 'testing Module' self.module = Module(1) self.module.fill('dcg', 'DCG', 1) obj = self.module.get_object() print obj
def GenerateBldMod (self): # ugly hack for create a module for the bld file bldMod = Module('bld_' + self.name, '** autogenerated **') bldMod.resolvedFiles.append(self.bldFile) bldMod.putInPkg = False self.buildSys.modules[bldMod.name] = bldMod if bldMod.name not in self.modules: self.modules.append(bldMod.name)
class Bridge(object): def __init__(self, library_path, assembly, enable_debug=False): self.is_windows = "win" in sys.platform self.module = Module(library_path) #print("Init State: %s" % extra_vars) #state = State(**extra_vars) state = State(self) self.rpc = RPC(state) # Prepare delegates self.on_message = on_message_delegate(RPC.on_message) self.on_exit = on_exit_delegate(Bridge._on_exit) self._imp_common() # Initialize MonoHost on Unix if not self.is_windows: self._imp_monohost() self.module.setMainMethodName(str(assembly.entry)) self.module.clrInit(assembly.path, self.on_message, self.on_exit) # Call initialize from the plugin self.module.Initialize(self.on_message, self.on_exit, enable_debug) def run(self): g_closed.clear() self.module.PluginMain() # wait synchonously for C# to unblock us g_closed.wait() def _initialize(self): if not self.is_windows: self.module.clrInit() @staticmethod def _reaper(): g_closed.set() @staticmethod def _on_exit(): print("=> OnExit called") # Start a thread so C# can return from the exit call # while we unblock the RPC state rt = threading.Thread(target=Bridge._reaper) rt.start() pass def _imp_common(self): return self.module.import_methods(common_imports) def _imp_monohost(self): return self.module.import_methods(monohost_imports)
class Bridge(object): def __init__(self, library_path, assembly_path, enable_debug=False): self.is_windows = "win" in sys.platform print(library_path) self.module = Module(library_path) state = State(self) self.rpc = RPC(state) # Prepare delegates self.on_message = on_message_delegate(RPC.on_message) self.on_exit = on_exit_delegate(Bridge.on_exit) self._imp_common() self._imp_proxy() pluginDir = os.path.dirname( os.path.abspath( sys.modules['__main__'].__file__ ) ) # Initialize AppDomain and call initialize from the plugin self.plugin_handle = self.module.clrInit( assembly_path, pluginDir, self.on_message, self.on_exit, enable_debug ) def post_event(self, jsonString): self.module.PostEvent(self.plugin_handle, jsonString) def run(self): g_closed.clear() print("GOING TO CALL C# ENTRY") self.module.PluginMain(self.plugin_handle) print("RETURNED FROM C#") # wait for C# to unblock us g_closed.wait() ''' C# Calls this method when it's done and handles control back to Python ''' @staticmethod def on_exit(): print("=> OnExit called") g_closed.set() pass def _imp_common(self): return self.module.import_methods(common_imports) def _imp_proxy(self): return self.module.import_methods(proxy_imports)
def getData(self, query_cmd): TAG = "Database:" start_time = time.time() # self.__init__() # establish mysql connection module = Module() # print(TAG, self.config) # print(TAG, "Loading data from mysql server") mydb = mysql.connector.connect(**self.config) # print(TAG, "Database is ready") mycursor = mydb.cursor() # print(TAG, "Cursor is ready") # execute the sql command try: # print(TAG, "trying to execute command") mycursor.execute(query_cmd) except Exception as err: # on error execute print(TAG, "error on execute command") print(TAG, err) mydb.close() return module.serveErrMsg() # get raw result myresult = mycursor.fetchall() # get columns name column_name = mycursor.column_names # print(TAG, "myresult=", myresult) # print(TAG, "columns name=", column_name) # convert raw result to json format result = [] for row in myresult: tmp_res = {} for i in range(len(column_name)): if (isinstance(row[i], datetime.date)): # print(TAG, "date found") tmp_res[column_name[i]] = str(row[i]) elif (isinstance(row[i], bytes)): tmp_json = json.loads(row[i].decode()) tmp_res[column_name[i]] = tmp_json else: # print(TAG, "type=", type(row[i])) tmp_res[column_name[i]] = row[i] result.append(tmp_res) # close mysql connecttion mydb.close() # calculate elapset time elapsed_time = (time.time() - start_time) * 1000 print(TAG, "times=", elapsed_time, "ms") # reture result to the client return { 'type': True, 'message': "success", 'error_message': None, 'len': len(result), 'result': result, 'elapsed_time_ms': elapsed_time }, 200
def __init__(self, context): Module.__init__(self, context) self.monitor_is_on = True self.status_label = render.OutlinedTextImg(color="#8888ff", outlinesize=2, size=20) self.bluetooth_address = context.get_config("bluetooth") if len(self.bluetooth_address) == 0: self.bluetooth_address = None # -1=scan failed, 0=not scanned, 1=not found, 2=found self.bluetooth_status = 0
def __init__(self, **conf): # super(RPCModule, self).__init__() Module.__init__(self) self.lua_scripts = {} self.conf = conf self.alive = True self.topic = config.RPC_TOPIC self.db = None self.app = None
def __init__(self, pool_size=2, pool_stride=None, pad = 'SAME',name='avgpool'): self.name = name Module.__init__(self) self.pool_size = pool_size self.pool_kernel = [1]+[self.pool_size, self.pool_size]+[1] self.pool_stride = pool_stride if self.pool_stride is None: self.stride_size=self.pool_size self.pool_stride=[1, self.stride_size, self.stride_size, 1] self.pad = pad
def scan(self): for addr in range(0,0x100): try: m = Module() m.configure({'name':'adamXXXX', 'parent':self, 'line_handler':self, 'address':addr}) print '0x%02X' % addr, '(%3d)' % addr, m.ReadModuleName() except EIOError: print "." del m
def poission_model(): module = Module("poission process") module.addConstant(Constant('r', None)) # variable definition v = Variable('n', 0, None, int, False) # n: int init 0; module.addVariable(v) # command definition comm = Command('', lambda vs, cs: True, lambda vs, cs: vs['n'].setValue(vs['n'].getValue() + 1), module, module.getConstant("r"), CommandKind.NONE, None) module.addCommand(comm) # 增加label表示n>=4这个ap labels = dict() def nge4(vs, cs): return vs['n'] >= 4 labels['nge4'] = nge4 model = ModulesFile.ModulesFile(ModelType.CTMC, modules=[module], labels=labels) return model
def prepare_and_absolute_diff_all_archs(self, old_lib, new_lib): old_modules = Module.get_test_modules_by_name(old_lib) new_modules = Module.get_test_modules_by_name(new_lib) self.assertEqual(len(old_modules), len(new_modules)) for old_module, new_module in zip(old_modules, new_modules): self.assertEqual(old_module.arch, new_module.arch) old_ref_dump_path = self.get_or_create_ref_dump(old_module, False) new_ref_dump_path = self.get_or_create_ref_dump(new_module, True) self.assertEqual(read_output_content(old_ref_dump_path, AOSP_DIR), read_output_content(new_ref_dump_path, AOSP_DIR))
def __init__(self,modules): ''' Constructor Parameters ---------- modules : list, tuple, etc. enumerable. an enumerable collection of instances of class Module ''' Module.__init__(self) self.modules = modules
def list_bin(args): """ List the programs provided by the module. """ db = ModuleDb() for moduleid in args.module: name,version = splitid(moduleid) try: Module.list_bin(db.lookup(name),version) except ModuleError as e: e.warn()
def __init__(self, modules): ''' Constructor Parameters ---------- modules : list, tuple, etc. enumerable. an enumerable collection of instances of class Module ''' Module.__init__(self) self.modules = modules self.name = '_'.join([x.layerName for x in modules])
def prepare_and_absolute_diff_all_archs(self, old_lib, new_lib): old_modules = Module.get_test_modules_by_name(old_lib) new_modules = Module.get_test_modules_by_name(new_lib) self.assertEqual(len(old_modules), len(new_modules)) for old_module, new_module in zip(old_modules, new_modules): self.assertEqual(old_module.arch, new_module.arch) old_ref_dump_path = self.get_or_create_ref_dump(old_module, False) new_ref_dump_path = self.get_or_create_ref_dump(new_module, True) self.assertEqual( read_output_content(old_ref_dump_path, AOSP_DIR), read_output_content(new_ref_dump_path, AOSP_DIR))
def __init__(self, output_dim, batch_size=None, input_dim = None, act = 'linear', keep_prob=tf.constant(1.0), weights_init= tf.truncated_normal_initializer(stddev=0.01), bias_init= tf.constant_initializer(0.0), name="linear"): self.name = name Module.__init__(self) self.input_dim = input_dim self.output_dim = output_dim self.batch_size = batch_size self.act = act self.keep_prob = keep_prob self.weights_init = weights_init self.bias_init = bias_init
def __init__(self): self.root = Tk() self.module1 = Module() self.module1.FillData() self.NumHiddenLayer = StringVar() self.ListNumNeurons = StringVar() self.learning = StringVar() self.epoc = StringVar() self.bais = StringVar() self.listN = [] self.sigmoid = StringVar() self.Hyper = StringVar()
def __init__(self, context): Module.__init__(self, context) self.img = None self._next_index = 0 self.img_rect = None self._files = [] slideshow_dir = context.get_config("slideshow_dir") for filename in os.listdir(slideshow_dir): full_path = os.path.join(slideshow_dir, filename) if os.path.isfile(full_path): self._files.append(full_path) random.shuffle(self._files)
def __init__(self, config, channel, x, y): """ Constructor. :param config: the set of configs loaded by the simulator :param channel: the channel to which frames are sent :param x: x position :param y: y position """ Module.__init__(self) #Number of slots in the contention window self.window_slots_count = config.get_param(Node.WINDOW_SIZE) #Duration in seconds of the channel listening period self.listening_duration = config.get_param(Node.LISTENING_TIME) #Duration in seconds of each slot self.slot_duration = self.listening_duration # load configuration parameters self.datarate = config.get_param(Node.DATARATE) self.queue_size = config.get_param(Node.QUEUE) self.interarrival = Distribution(config.get_param(Node.INTERARRIVAL)) self.size = Distribution(config.get_param(Node.SIZE)) self.proc_time = Distribution(config.get_param(Node.PROC_TIME)) self.maxsize = config.get_param(Node.MAXSIZE) # queue of packets to be sent self.queue = [] # current state self.state = None self.switch_state(Node.IDLE) # save position self.x = x self.y = y # save channel self.channel = channel #Number of packets being received self.packets_in_air = 0 #Number of window slots we still have to wait before transmitting self.slot_countdown = 0 #First packet in the current sequence of receiving packets self.rx_sequence_first_packet = None #Hook to events in the queue for future manipulation self.end_listenting_event_hook = None self.end_slot_event_hook = None
def __init__ = (self, input_plane, output_plane, kw, kh, dw=1, dh=1, padding=0): Module.__init__(self) self.input_plane = input_plane self.output_plane = output_plane self.dw = dw self.dh = dh self.kw = kw self.kh = kh self.padding = padding self.weight = Tensor(output_plane, input_plane, kh, kw) self.bias = Tensor(output_plane) self.grad_weight = Tensor(output_plane, input_plane, kh, kw) self.grad_bias = Tensor(output_plane) self.reset()
def run(self): if self.config.task == 1: self.g_theta_layers = [2048, 2048] self.f_phi_layers = [2048, 2048] elif self.config.task == 2: self.g_theta_layers = [1024, 1024] self.f_phi_layers = [1024, 1024] elif self.config.task == 3: self.g_theta_layers = [1024, 1024, 1024] self.f_phi_layers = [1024] * 3 elif self.config.task == 4: self.g_theta_layers = [1024, 1024] self.f_phi_layers = [1024, 1024] elif self.config.task == 5: self.g_theta_layers = [4096, 4096] self.f_phi_layers = [4096, 4096] else: log.error("Task index error") self.g_theta_layers.append( 1) # attention should be ended with layer sized 1 md = Module(self.config, self.g_theta_layers, self.f_phi_layers) if self.embedding == 'sum': embedded_c = md.contextSum(self.context, with_embed_matrix=True) embedded_q = md.questionSum(self.question, with_embed_matrix=True) elif self.embedding == 'concat': embedded_c = md.contextConcat(self.context, with_embed_matrix=True) embedded_q = md.questionConcat(self.question, with_embed_matrix=True) m, alphas = md.hop_1(embedded_c, embedded_q, phase=self.is_training, activation=tf.nn.tanh) input_ = md.concat_with_q(m[-1], embedded_q) pred = md.f_phi(input_, activation=tf.nn.relu, reuse=False, with_embed_matrix=True, is_concat=True, use_match=self.use_match, phase=self.is_training) correct, accuracy, loss, sim_score, p, a = md.get_corr_acc_loss( pred, self.answer, self.answer_match, self.answer_idx, with_embed_matrix=True, is_concat=True, use_match=self.use_match, is_cosine_sim=True) return pred, correct, accuracy, loss, sim_score, p, a
def update_module_data(self, module_data): """ Updates module data :param module_data: Module data to update. It contains the module id, request origin address and parsed module data :return: (iot_error) a status indicating if the module data was updated or not """ assert isinstance(module_data, dict) # status code status = iot_error.FAILED # get module name module_name = module_data.get("id") # module instance module = Module(name=module_name) # get module type module_type = module.get_module_type() # check if module is registered if self.check_module_registration( module).code == iot_error.SUCCESS.code: # check module support if self.check_module_support( module).code == iot_error.SUCCESS.code: # check for ilm module if module_type == "ilm": status = ilm_data_update.update(module_data) # check for acm module elif module_type == "acm": status = acm_data_update.update(module_data) # check for fpm module elif module_type == "fpm": status = fpm_data_update.update(module_data) # unsupported module else: status = iot_error.UNSUPPORTED_MODULE # module is not registered before else: status = iot_error.UNREGISTERED_MODULE return status
def __init__(self, context): Module.__init__(self, context) self._gradient = render.Gradient(context.width, self.GRADIENT_SIZE, pygame.Color(0, 0, 0, 0), pygame.Color(0, 0, 0, 255)) self.zip_code = context.get_config("zip_code") if len(self.zip_code) == 0: self.zip_code = self._get_geoip() self.api_key = context.get_config("api_key") self.temp_label = render.OutlinedTextImg(color="#ffffff", outlinesize=2, size=60) self.weather_label = render.OutlinedTextImg(color="#ffffff", outlinesize=2, size=60) self.updated_label = render.TextImg(color="#ffffff", size=20) self.sun_label = render.TextImg(color="#ffffff", size=20) self.temp_f = "" self._updated_time = None self._had_error = False
def load(args): """ Load modules, unloading any versions that are already loaded. aliases: add switch swap """ env = ModuleEnv() db = ModuleDb() for moduleid in args.module: name,version = splitid(moduleid) try: Module.load(db.lookup(name),env,version) except ModuleError as e: e.warn() env.dump()
def unload(args): """ Unload modules, if the specified version is already loaded. aliases: rm remove """ env = ModuleEnv() db = ModuleDb() for moduleid in args.module: name,version = splitid(moduleid) try: Module.unload(db.lookup(name),env,strict=True) except ModuleError as e: e.warn() env.dump()
def __init__(self, frame): Module.__init__(self, frame, 'submod0') self.label = QtWidgets.QLabel() #self.label.setGeometry(10,10,100,200) grid = QtWidgets.QGridLayout() self.setLayout(grid) grid.addWidget(self.label, 0, 0, 1, 1) reader = QtGui.QImageReader("Mod2Line.png") image = reader.read() qpixmap = QtGui.QPixmap() qpixmap.convertFromImage(image) self.label.setPixmap(qpixmap) self.changeStateComplete()
def show(args): """ Show the environment changes that will be made when loading the module. aliases: display """ env = ModuleEnv() db = ModuleDb() for moduleid in args.module: name,version = splitid(moduleid) try: Module.show(db.lookup(name),env,version) except ModuleError as e: e.warn() env.dump(sys.stderr)
def getModule(self): allModules = loadConf() allAlarms = loadAlarm() sortedModule = self.sortCfg(allModules) sortedAlarms = self.sortCfg(allAlarms) for moduleName in sorted(sortedModule.keys()): devices = sortedModule[moduleName] alarms = sortedAlarms[moduleName] module = Module(self, moduleName, devices) module.setAlarms(alarms) self.globalLayout.addWidget(module) self.moduleDict[moduleName] = module self.tabCsv[moduleName] = []
def __init__(self, frame): Module.__init__(self, frame, 'submod4') self.init = 1 self.background = QtWidgets.QLabel() #self.label.setGeometry(10,10,100,200) grid = QtWidgets.QGridLayout() self.setLayout(grid) grid.addWidget(self.background, 0, 0, 100, 100) reader = QtGui.QImageReader("pie.png") image = reader.read() qpixmap = QtGui.QPixmap() qpixmap.convertFromImage(image) self.label.setPixmap(qpixmap)
def prepare_and_run_abi_diff_all_archs(self, old_lib, new_lib, expected_return_code, flags=[], create_old=False, create_new=True): old_modules = Module.get_test_modules_by_name(old_lib) new_modules = Module.get_test_modules_by_name(new_lib) self.assertEqual(len(old_modules), len(new_modules)) for old_module, new_module in zip(old_modules, new_modules): self.assertEqual(old_module.arch, new_module.arch) old_ref_dump_path = self.get_or_create_ref_dump(old_module, create_old) new_ref_dump_path = self.get_or_create_ref_dump(new_module, create_new) self.prepare_and_run_abi_diff( old_ref_dump_path, new_ref_dump_path, new_module.arch, expected_return_code, flags)
def main(): patt = re.compile( '^.*\\.(?:' + '|'.join('(?:' + re.escape(ext) + ')' for ext in FILE_EXTENSIONS) + ')$') input_dir_prefix_len = len(INPUT_DIR) + 1 for base, dirnames, filenames in os.walk(INPUT_DIR): for filename in filenames: if not patt.match(filename): print('ignore:', filename) continue input_path = os.path.join(base, filename) input_rel_path = input_path[input_dir_prefix_len:] output_path = os.path.join(EXPECTED_DIR, input_rel_path) print('generating', output_path, '...') output_content = run_header_abi_dumper(input_path) os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, 'w') as f: f.write(output_content) modules = Module.get_test_modules() for module in modules: print('Created abi dump at', make_and_copy_reference_dumps(module)) return 0
def __init__(self,args): Module.__init__(self,args) if args.bytes: self.corrupt = corrupt_bytes else: self.corrupt = corrupt_bits self.number = args.number self.percentage = args.percentage self.corrupt_request = args.both or args.request self.corrupt_response = args.both or args.response # To be reproductible if not args.seed is None: random.seed(args.seed)
def __init__(self, frame): Module.__init__(self, frame, 'submod3') self.stage = 0 self.init = 1 self.posState2 = 0 self.posState1 = 0 self.selectedButton = 1 self.background = QtWidgets.QLabel() self.background1 = QtWidgets.QLabel() self.button1 = QtWidgets.QPushButton() self.button2 = QtWidgets.QPushButton() self.button3 = QtWidgets.QPushButton() self.displayNum = QtWidgets.QLabel() self.select1 = QtWidgets.QLabel() self.select2 = QtWidgets.QLabel() self.select3 = QtWidgets.QLabel() self.stageLabel = QtWidgets.QLabel() grid = QtWidgets.QGridLayout() self.setLayout(grid) ''' self.background = QtWidgets.QLabel() ''' grid.addWidget(self.background, 0, 0, 0, 1) grid.addWidget(self.background1, 0, 0, 1, 0) grid.addWidget(self.button3, 2, 3) grid.addWidget(self.button2, 2, 2) grid.addWidget(self.button1, 2, 1) grid.addWidget(self.select3, 3, 3) grid.addWidget(self.select2, 3, 2) grid.addWidget(self.select1, 3, 1) grid.addWidget(self.displayNum, 1, 1, 1, 2) grid.addWidget(self.stageLabel, 1, 3, 1, 1) reader = QtGui.QImageReader("Mod3Line1.png") image = reader.read() qpixmap = QtGui.QPixmap() qpixmap.convertFromImage(image) self.background.setPixmap(qpixmap) reader = QtGui.QImageReader("Mod3Line2.png") image = reader.read() qpixmap = QtGui.QPixmap() qpixmap.convertFromImage(image) self.background1.setPixmap(qpixmap)
def new_module(self, parent, url, source, fetchto, process_manifest=True): """Add new module to the pool. This is the only way to add new modules to the pool. Thanks to it the pool can easily control its content """ from module import Module self._deps_solved = False if source != fetch.LOCAL: clean_url, branch, revision = path_mod.url_parse(url) else: clean_url, branch, revision = url, None, None if url in [m.raw_url for m in self ]: # check if module is not already in the pool # same_url_mod = [m for m in self if m.raw_url == url][0] # if branch != same_url_mod.branch: # logging.error("Requested the same module, but different branches." # "URL: %s\n" % clean_url + # "branches: %s and %s\n" % (branch, same_url_mod.branch)) # sys.exit("\nExiting") # if revision != same_url_mod.revision: # logging.error("Requested the same module, but different revisions." # "URL: %s\n" % clean_url + # "revisions: %s (from %s)\n and \n%s (from %s)\n" % (revision, # parent.path, # same_url_mod.revision, # same_url_mod.parent.path)) # sys.exit("\nExiting") return [m for m in self if m.raw_url == url][0] else: if self.global_fetch: # if there is global fetch parameter (HDLMAKE_COREDIR env variable) fetchto = self.global_fetch # screw module's particular fetchto new_module = Module( parent=parent, url=url, source=source, fetchto=fetchto, pool=self) self._add(new_module) if not self.top_module: global_mod.top_module = new_module self.top_module = new_module new_module.parse_manifest() if process_manifest is True: new_module.process_manifest() return new_module
def new_module(self, parent, url, source, fetchto): from module import Module if url in [m.url for m in self]: return [m for m in self if m.url == url][0] else: if self.global_fetch: # if there is global fetch parameter (HDLMAKE_COREDIR env variable) fetchto = self.global_fetch # screw module's particular fetchto elif global_mod.top_module: fetchto = global_mod.top_module.fetchto new_module = Module(parent=parent, url=url, source=source, fetchto=fetchto, pool=self) self._add(new_module) if not self.top_module: global_mod.top_module = new_module self.top_module = new_module new_module.parse_manifest() return new_module