def __init__(self, obj_func_module): super().__init__() self.parameter_ = None self.obj_func_module_ = obj_func_module self.object_function_accept_ = module_loader.load_module_func(obj_func_module, 'accept') self.object_function_better_ = module_loader.load_module_func(obj_func_module, 'better_results') self.best_results_ = None self.learn_data_ = None
def __init__(self, stock_data_provider, capital_base, parameters): self.stock_data_provider_ = stock_data_provider self.load_data_ = module_loader.load_module_func(stock_data_provider, 'load_stock_data') self.capital_base_ = capital_base self.parameters_ = parameters
def algo_running_worker(args, parameter): strategy_module = module_loader.load_module_from_file(args.strategy) stock_data_provider = module_loader.load_module_from_file(args.stock_data_provider) create_strategy = module_loader.load_module_func(strategy_module, 'create_strategy') strategy = create_strategy(args) learn_context = None if args.load_optimized_parameter or args.use_default_parameter: learn_context = LearnContext() learn_context.add_feature(RsiFeature()) learn_context.add_feature(MacdFeature()) strategy.learn_context = learn_context runner = algo_runner.AlgoRunner(stock_data_provider, args.capital_base, args) symbols = args.stock_ids start_date = args.optimize_range[0] end_date = args.optimize_range[1] def tmp_analyze_func(context=None, results=None): pass strategy.current_parameter = parameter logging.info('running strategy:%s', strategy) try: perf_data = runner.run(strategy, symbols, start_date=start_date, end_date=end_date, analyze_func=tmp_analyze_func) return (parameter, perf_data, learn_context.get_learning_data() if learn_context is not None else None) except: logging.exception('running strategy:%s failed', strategy) return (parameter, None, None)
def __init__( self, stock_ids, start_date=None, end_date=None, do_normalize_data=False, column='close', stock_data_provider_name='stock_data_provider.cn_a.vip_dataset', **kwargs): self.stock_data_provider_ = module_loader.load_module_from_file( stock_data_provider_name) self.load_data_ = module_loader.load_module_func( self.stock_data_provider_, 'load_stock_data') self.all_loaded_data_ = self.load_data_(stock_ids, do_normalize_data) self.stock_ids_ = stock_ids self.start_date_ = start_date self.end_date_ = end_date self.do_normalize_data_ = do_normalize_data self.data_ = data = filter_dataframe( create_dataframe(self.all_loaded_data_, column), self.start_date_, self.end_date_) if len(data.columns) > 1: raise ValueError('must be single stock, but get:%s' % stock_ids) values = data[data.columns[0]].values params = { "prominence": (.618, None), "threshold": None, "distance": 5, } params.update(kwargs) self.peak_index_, _ = find_peaks(values, **params) self.trough_index_, _ = find_peaks(-values, **params)
import matplotlib.pyplot as plt from scipy.signal import find_peaks, medfilt, wiener, hilbert import talib try: from . import module_loader except: import module_loader sys.dont_write_bytecode = True stock_data_provider = module_loader.load_module_from_file( 'stock_data_provider.cn_a.vip_dataset') load_data = module_loader.load_module_func(stock_data_provider, 'load_stock_data') data = load_data('600369') data2 = load_data('600732') print(data.data_frame.head()) def __create_pd_panel(all_data, name='close'): trading_data = {} for data in all_data: trading_data[data.stock_id] = data.data_frame[name] panel = pd.DataFrame(data=trading_data) return panel
def wfa_runner_main(): args = parse_arguments() if args.debug is None: args.debug = 0 if args.debug > 0: logging.getLogger('').setLevel(logging.DEBUG) else: logging.getLogger('').setLevel(logging.INFO) logging.debug('debug level:{}'.format(args.debug)) logging.debug('stock_ids:{}'.format(args.stock_ids)) logging.debug('data_range:{}'.format(args.data_range)) logging.debug('optimize_range:{}'.format(args.optimize_range)) logging.debug('wfa_size:{}'.format(args.wfa_size)) logging.debug('wfa range:{}'.format([args.optimize_range[1], args.optimize_range[1] + args.wfa_size])) logging.debug('strategy:{}'.format(args.strategy)) logging.debug('object_function:{}'.format(args.object_function)) logging.debug('data_provider:{}'.format(args.stock_data_provider)) validate_args(args) if args.load_optimized_parameter or args.use_default_parameter: args.no_pool = True strategy_module = module_loader.load_module_from_file(args.strategy) object_function_module = module_loader.load_module_from_file(args.object_function) stock_data_provider = module_loader.load_module_from_file(args.stock_data_provider) create_strategy = module_loader.load_module_func(strategy_module, 'create_strategy') strategy = create_strategy(args) analyzer = Analyzer(object_function_module) runner = algo_runner.AlgoRunner(stock_data_provider, args.capital_base, args) runner.ensure_stock_data(args.stock_ids) pool = mp.Pool(mp.cpu_count()) parameter_set = strategy.parameter_set() if args.load_optimized_parameter: value = __load_optimized_parameter(args.stock_ids, strategy) if value is None: value = strategy.get_default_parameter() if value is None: logging.error('unable find optmized parameter') return parameter_set = list([value]) if args.use_default_parameter: value = strategy.get_default_parameter() if value is None: logging.error('unable find default parameter') return parameter_set = list([value]) if args.no_pool: for parameter in parameter_set: analyzer.analyze([algo_running_worker(args, parameter)]) else: pool.starmap_async(algo_running_worker, list((args, parameter) for parameter in parameter_set), callback=analyzer.analyze, error_callback=lambda x:logging.error('starmap async failed:%s', x)) pool.close() pool.join() if analyzer.best_results_ is None: logging.error('non parameter of strategy:[%s] is suitable for the stock:%s', strategy, args.stock_ids) return _, perf_stats = analyzer.best_results_ logging.info('Best results:%s', perf_stats) strategy.current_parameter = analyzer.parameter_ logging.info('optimized strategy:%s', strategy) if not args.load_optimized_parameter: __save_optimized_parameter(args.stock_ids, strategy, perf_stats) if analyzer.learn_data_ is not None: logging.info('learn data:%s', analyzer.learn_data_) if args.learn_data_file: with open(args.learn_data_file, 'a+') as f: analyzer.learn_data_.to_csv(f) if args.skip_wfa: return # do wfa analyze wfa_begin = args.optimize_range[1] wfa_end = wfa_begin + args.wfa_size while True: logging.info('running wfa on out of sample data:%s=>%s', wfa_begin, wfa_end) try: runner.run(strategy, args.stock_ids, start_date=wfa_begin, end_date=wfa_end, analyze_func=None) except: logging.exception('failed running wfa on out of sample data:%s=>%s', wfa_begin, wfa_end) wfa_begin = wfa_end wfa_end = wfa_begin + args.wfa_size if wfa_begin >= args.data_range[1]: break if wfa_end > args.data_range[1]: wfa_end = args.data_range[1] logging.info('next wfa:%s=>%s', wfa_begin, wfa_end)