Пример #1
0
def main(functionals, func, category='Aminoindan', bins=600, reg_m=10**2):

    #####################
    #### SETUP START ####
    #####################

    ############################################ Directory with KF files

    kf_dir = r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals"

    #####################
    ####  SETUP END  ####
    #####################

    func_best = {
        comp_funcs.wasserstein_distance: min,
        comp_funcs.wasserstein_distance_unbalanced: min,
        comp_funcs.l2: min,
        comp_funcs.diagonality: max,
        comp_funcs.bhattacharyya: min,
        comp_funcs.correlation: min,
        comp_funcs.chi_square: min,
        comp_funcs.kl_divergence: min
    }

    #get kffiles
    kff = [f for f in os.listdir(kf_dir)]
    kff = list(
        filter(lambda x: functionals[0] in x or functionals[1] in x, kff))

    kff_of_cat = [kf_dir + '\\' + f for f in kff if f.startswith(category)]

    #get the spectra
    ir1 = [
        ir.get_spectrum_from_kf(f, width=50, n=bins) for f in kff_of_cat
        if functionals[0] in f
    ]
    ir2 = [
        ir.get_spectrum_from_kf(f, width=50, n=bins) for f in kff_of_cat
        if functionals[1] in f
    ]

    d = func(ir1, ir2, reg_m=reg_m)
    return d.astype(float)
Пример #2
0

kff_list = [kf_dir + '\\' + f for f in kff if f.startswith(category)]

# kff_list = [
# 	r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\ISO34_E8_DFTB3_DFTB.rkf",
# 	r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\ISO34_E7_LDA_DFT.t21",
# 	]

kff_list = [
	r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\ISO34_E12_DFTB3_DFTB.rkf",
	r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\ISO34_E22_LDA_DFT.t21",
	]

#get the spectra
ir1 = [ir.get_spectrum_from_kf(f,width=50,n=bins) for f in kff_list if functionals[0] in f]
ir2 = [ir.get_spectrum_from_kf(f,width=50,n=bins) for f in kff_list if functionals[1] in f]

peaksa = [ir.get_freqs_intens(f) for f in kff_list if functionals[0] in f]
freqsa, intensa = [list(c) for c in zip(*peaksa)]
peaksa = [list(zip(freqsa[i], intensa[i])) for i in range(len(freqsa))]

peaksb = [ir.get_freqs_intens(f) for f in kff_list if functionals[1] in f]
freqsb, intensb = [list(c) for c in zip(*peaksb)]
peaksb = [list(zip(freqsb[i], intensb[i])) for i in range(len(freqsb))]



def setup():
	global animation_folder
	animation_folder = os.getcwd() + r'\animation\\'
Пример #3
0
# 		  r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI5_DFT.t21",
# 		  r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI6_DFT.t21"]

# kf_dftb = [r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI1_DFTB.rkf",
# 		   r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI2_DFTB.rkf",
# 		   r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI3_DFTB.rkf",
# 		   r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI4_DFTB.rkf",
# 		   r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI5_DFTB.rkf",
# 		   r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\conf_unopt\AI6_DFTB.rkf"]





#get the spectra
ir_dft = [ir.get_spectrum_from_kf(f,width=50) for f in kf_dft]
ir_dftb = [ir.get_spectrum_from_kf(f,width=50) for f in kf_dftb]

#normalize spectra
ir_dft = [i/np.sum(i) for i in ir_dft]
ir_dftb = [i/np.sum(i) for i in ir_dftb]


#wasserstein distances
Y, X = np.meshgrid(np.linspace(0,1,600), np.linspace(0,1,600))
C = abs(Y-X)**2


print('Case (Balanced Wasserstein)')
d = np.zeros((len(ir_dft), len(ir_dftb)))
for i, a in enumerate(ir_dft/np.sum(ir_dft)):
Пример #4
0
bottom_line = Border(bottom=Side(style='thin'))
right_line = Border(right=Side(style='thin'))
both_line = Border(right=Side(style='thin'), bottom=Side(style='thin'))
all_line = Border(top=Side(style='thick'), left=Side(style='thick'), right=Side(style='thick'), bottom=Side(style='thick'))

bold_huge = Font(bold=False, size=30)
bold_large = Font(bold=False, size=16)
bold_small = Font(bold=False, size=11)



#write each category to a new sheet
for cat in categories:

	#generate the spectra
	ir_dft = [ir.get_spectrum_from_kf(f,width=50) for f in kff_by_cat[cat] if f.endswith('.t21')]
	ir_dftb = [ir.get_spectrum_from_kf(f,width=50) for f in kff_by_cat[cat] if f.endswith('.rkf')]


	#setup new sheet
	ws = wb.create_sheet(cat)
	wb.active = ws
	ws['A1'] = cat
	ws['A1'].font = bold_huge

	data_col_offset = 5 #distance from the left side of the sheet where to write data

	n = len(ir_dft)

	#iterate over comparison functions
	for i, func in enumerate(funcs):
Пример #5
0
right_line = Border(right=Side(style='thin'))
both_line = Border(right=Side(style='thin'), bottom=Side(style='thin'))
all_line = Border(top=Side(style='thick'),
                  left=Side(style='thick'),
                  right=Side(style='thick'),
                  bottom=Side(style='thick'))

bold_huge = Font(bold=False, size=30)
bold_large = Font(bold=False, size=16)
bold_small = Font(bold=False, size=11)

for i_cat, s_name, cat in zip(range(len(categories)), sheet_names, categories):

    #get the spectra
    ir_dft = [
        ir.get_spectrum_from_kf(f, width=50) for f in kff_by_cat[cat]
        if f.endswith('.t21')
    ]
    ir_dftb = [
        ir.get_spectrum_from_kf(f, width=50) for f in kff_by_cat[cat]
        if f.endswith('.rkf')
    ]

    # print(np.sum(ir_dft), np.sum(ir_dftb))

    #setup sheet
    ws = wb.create_sheet(s_name)
    wb.active = ws
    ws['A1'] = s_name
    ws['A1'].font = bold_huge
Пример #6
0
import modules.plot as plot
import modules.barycenter as bc
import modules.ir as ir
import os

# kf_path = r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\[21-05](13-05-2020)\\"
# kfs = [kf_path + d for d in os.listdir(kf_path)]

kfs = [
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_1_DFT.t21",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_1_DFTB.rkf",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_2_DFT.t21",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_2_DFTB.rkf",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_3_DFT.t21",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_3_DFTB.rkf",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_4_DFT.t21",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_4_DFTB.rkf",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_5_DFT.t21",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_5_DFTB.rkf",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_6_DFT.t21",
    r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\second_set\Aminoindan_CONF_6_DFTB.rkf",
]

for kf in kfs:
    spec = ir.get_spectrum_from_kf(kf, xlim=(0, 4000), n=1000)
    plot.plot_hist(spec,
                   title=kf.split('\\')[-1][:-4],
                   axislabels=('Wavenumber ($cm^{-1}$)', 'Intensity'),
                   xlim=(0, 4000),
                   invert_xaxis=True)
Пример #7
0
#choose two histograms a and b:

# a = hist.gaussian(400, 0.7, 0.1, 0)
# a = hist.gaussian(400, 0.7, 0.1, 0) + 0.1 * hist.gaussian(400, 0.5,0.03)
# a = hist.gaussian(400, 0.2, 0.06) + hist.gaussian(400, 0.5, 0.06)*2 + hist.gaussian(400, 0.8, 0.06)
# a = hist.slater(400, 0.5, 30, 0)
# a = hist.from_func(400, lambda x: 1-x**2)
# a = hist.from_func(400, func)
# a = hist.from_func(400, lambda x: 1-x,0)
# a = hist.from_func(400, lambda x: np.cos(x*6*3.14)+1)
# a = hist.from_func(400, lambda x: x)
# a = hist.dirac_delta(400, 0.5)
# a = hist.from_func(400, lambda x: ((x-0.5)*10)**4) + 3*hist.gaussian(400, 0.7, 0.1)
# r = jobs.DFTJob('l-alanine', job_name='l-alanine_DFT').run(); a = ir.get_spectrum(r, xlim=(0,2000), n=400)
a = ir.get_spectrum_from_kf(
    r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\Aminoindan_CONF_4_LDA_DFT.t21",
    xlim=(0, 4000),
    n=400)

# b = hist.gaussian(400, 0.3, 0.1, 0)
# b = hist.gaussian(400, 0.8, 0.05, 0) + hist.gaussian(400, 0.2, 0.05, 0)
# b = hist.gaussian(400, 0.5, 0.05, 0)
# b = hist.gaussian(400, 0.2, 0.06)*2 + hist.gaussian(400, 0.5, 0.06) + hist.gaussian(400, 0.8, 0.06)*2
# b = hist.from_func(400, lambda x: np.sin(x*10*3.14)+1)
# b = hist.from_func(400, func2)
# b = hist.from_func(400, lambda x: x,0)
# b = hist.from_func(400, lambda x: x**0)
# b = hist.slater(400, 0.8, 30, 0)
# b = hist.from_func(400, lambda x: np.cos(x*5*3.14)+1)
# r = jobs.DFTBJob('l-alanine', job_name='l-alanine_DFT').run(); b = ir.get_spectrum(r, xlim=(0,2000), n=400)
b = ir.get_spectrum_from_kf(
    r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\Aminoindan_CONF_4_DFTB3_freq_DFTB.rkf",
Пример #8
0
def main(functionals, save_name=None, sub_dir='', bins=600, reg_m=10**2):

			#####################
			#### SETUP START ####
			#####################


	############################################ Comparison functions

	funcs = [
			 # comp_funcs.wasserstein_distance, 
			 # comp_funcs.wasserstein_distance_unbalanced, 
			 comp_funcs.freq_int_wasserstein,
			 # comp_funcs.l2,
			 # comp_funcs.diagonality, 
			 # comp_funcs.bhattacharyya, 
			 # comp_funcs.correlation, 
			 # comp_funcs.chi_square, 
			 # comp_funcs.kl_divergence,
			 ]


	############################################ Colour map for data colouring


	colour_map = cmap.WhiteGreen()


	############################################ Directory with KF files


	kf_dir = r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals"

	# kf_dir = r"C:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\random_set"


	############################################ Categories to split the KF files into


	# categories = ['Aminoindan_CONF_', 'ISO34_E', 'ISO34_P', 'SCONF']
	# categories = ['Aminoindan_CONF_', 'ISO34_E', 'SCONF']
	# categories = ['Aminoindan_CONF_']
	categories = [''] 


	############################################ Sheet names


	sheet_names = categories


	############################################ Functionals to split the KF files into


	# functionals = ['OLYP_DFT', 'LDA_DFT', 'DFTB3_DFTB', 'DFTB3_freq_DFTB']
	# functionals = ['DFTB3_freq_DFTB', 'LDA_DFT']


	############################################ Path to save xl file to

	if save_name is None: 
		save_name = kf_dir.split('\\')[-1] + f'_comparisons_{functionals[0]}_{functionals[1]}'
	else:
		save_name = kf_dir.split('\\')[-1] + '_' + save_name

	# save_name = kf_dir.split('\\')[-1] + '_comparisons'


	#############################################





			#####################
			####  SETUP END  ####
			#####################


	assert len(categories) == len(sheet_names)



	func_best = {comp_funcs.wasserstein_distance: 				min, 
				 comp_funcs.wasserstein_distance_unbalanced: 	min, 
				 comp_funcs.freq_int_wasserstein:				min,
				 comp_funcs.l2:									min, 
				 comp_funcs.diagonality: 						max, 
				 comp_funcs.bhattacharyya: 						min, 
				 comp_funcs.correlation:						min, 
				 comp_funcs.chi_square: 						min, 
				 comp_funcs.kl_divergence: 						min}


	#get kffiles
	kff = [f for f in os.listdir(kf_dir)]
	kff = list(filter(lambda x: functionals[0] in x or functionals[1] in x, kff))

	#separate into categories
	kff_by_cat = {}
	for cat in categories:
		kff_by_cat[cat] = [kf_dir + '\\' + f for f in kff if f.startswith(cat)]

	names_by_cat = {}
	for cat in categories:
		names_by_cat[cat] = {functionals[0]:[], functionals[1]:[]}
		for f in kff:
			name = f
			if name.startswith(cat):
				name = name[len(cat):][:-4]
				if functionals[0] in name:
					names_by_cat[cat][functionals[0]].append(name)
				elif functionals[1] in name:
					names_by_cat[cat][functionals[1]].append(name)




	#start writing
	out_file = f"excel_files/{sub_dir}/{save_name}_{bins}.xlsx"
	try:
		os.mkdir(f"excel_files/{sub_dir}")
	except:
		pass

	wb = xl.Workbook()
	ws0 = wb.active

	bottom_line = Border(bottom=Side(style='thin'))
	right_line = Border(right=Side(style='thin'))
	both_line = Border(right=Side(style='thin'), bottom=Side(style='thin'))
	all_line = Border(top=Side(style='thick'), left=Side(style='thick'), right=Side(style='thick'), bottom=Side(style='thick'))


	bold_huge = Font(bold=False, size=30)
	bold_large = Font(bold=False, size=16)
	bold_small = Font(bold=False, size=11)



	for i_cat, s_name, cat in zip(range(len(categories)), sheet_names, categories):

		#get the spectra
		ir1 = [ir.get_spectrum_from_kf(f,width=50,n=bins) for f in kff_by_cat[cat] if functionals[0] in f]
		ir2 = [ir.get_spectrum_from_kf(f,width=50,n=bins) for f in kff_by_cat[cat] if functionals[1] in f]

		peaksa = [ir.get_freqs_intens(f) for f in kff_by_cat[cat] if functionals[0] in f]
		freqsa, intensa = [list(c) for c in zip(*peaksa)]
		peaksa = [list(zip(freqsa[i], intensa[i])) for i in range(len(freqsa))]

		peaksb = [ir.get_freqs_intens(f) for f in kff_by_cat[cat] if functionals[1] in f]
		freqsb, intensb = [list(c) for c in zip(*peaksb)]
		peaksb = [list(zip(freqsb[i], intensb[i])) for i in range(len(freqsb))]


		#setup sheet
		ws = wb.create_sheet(s_name)
		wb.active = ws
		ws['A1'] = s_name
		ws['A1'].font = bold_huge

		data_col_offset = 5

		n = len(ir1)
		for i, func in enumerate(funcs):

			#setup new matching table
			fn = str(func).split()[1] #func name
			print(cat + '_' + fn)

			ws.cell(row=i*(n+3)+3, column=1).value = fn.upper()
			ws.cell(row=i*(n+3)+3, column=1).font = bold_large

			ws.cell(row=i*(n+3)+4, column=1).value = 'Best'
			ws.cell(row=i*(n+3)+4, column=1).border = bottom_line
			ws.cell(row=i*(n+3)+4, column=1).font = bold_small

			ws.cell(row=i*(n+3)+4, column=2).value = 'Error'
			ws.cell(row=i*(n+3)+4, column=2).border = bottom_line
			ws.cell(row=i*(n+3)+4, column=2).font = bold_small

			ws.cell(row=i*(n+3)+4, column=3).value = 'Error rel'
			ws.cell(row=i*(n+3)+4, column=3).border = bottom_line
			ws.cell(row=i*(n+3)+4, column=3).font = bold_small

			ws.cell(row=i*(n+3)+4, column=data_col_offset).value = rf'{functionals[0]}\{functionals[1]}'
			ws.cell(row=i*(n+3)+4, column=data_col_offset).border = both_line
			ws.cell(row=i*(n+3)+4, column=data_col_offset).font = bold_small

			# kwargs = {'reg_m': np.linspace(-1,2,7)[i_cat]}

			d = func(ir1, ir2, reg_m=reg_m, peaksa=peaksa, peaksb=peaksb)
			

			if func_best[func] is min:
				dnorm = (d-d.min())/(d.max()-d.min())
			if func_best[func] is max:
				dnorm = 1-(d-d.min())/(d.max()-d.min())

			c = colour_map.get_hex_colours(dnorm)

			for j, row in enumerate(d):
				try:
					ws.cell(row=i*(n+3)+5+j, column=data_col_offset).value = names_by_cat[cat][functionals[0]][j]
					ws.cell(row=i*(n+3)+5+j, column=data_col_offset).border = right_line

					ws.cell(row=i*(n+3)+5+j, column=1).value = func_best[func](row)
					ws.cell(row=i*(n+3)+5+j, column=2).value = row[j] - func_best[func](row)
					ws.cell(row=i*(n+3)+5+j, column=3).value = f'{(row[j] - func_best[func](row))/row[j] * 100:.2f}%'


					for k, el in enumerate(row):
						ws.cell(row=i*(n+3)+4, column=data_col_offset+1+k).value = names_by_cat[cat][functionals[1]][k]
						ws.cell(row=i*(n+3)+4, column=data_col_offset+1+k).border = bottom_line

						ws.cell(row=i*(n+3)+5+j, column=data_col_offset+1+k).value = el
						ws.cell(row=i*(n+3)+5+j, column=data_col_offset+1+k).fill = PatternFill(start_color=c[j,k].decode("utf-8"), end_color=c[j,k].decode("utf-8"), fill_type = "solid")

						if el == func_best[func](row):
							ws.cell(row=i*(n+3)+5+j, column=data_col_offset+1+k).border = all_line
				except:
					raise

			wb.save(out_file)


	del wb['Sheet']
	wb.save(out_file)
Пример #9
0
def main(functionals,
         func,
         category='Aminoindan',
         bins=600,
         reg_m=10**2,
         **kwargs):

    #####################
    #### SETUP START ####
    #####################

    ############################################ Directory with KF files

    kf_dir = r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals"

    #####################
    ####  SETUP END  ####
    #####################

    func_best = {
        comp_funcs.wasserstein_distance: min,
        comp_funcs.wasserstein_distance_unbalanced: min,
        comp_funcs.freq_int_wasserstein: min,
        comp_funcs.l2: min,
        comp_funcs.diagonality: max,
        comp_funcs.bhattacharyya: min,
        comp_funcs.correlation: min,
        comp_funcs.chi_square: min,
        comp_funcs.kl_divergence: min
    }

    #get kffiles
    kff = [f for f in os.listdir(kf_dir)]
    kff = list(
        filter(lambda x: functionals[0] in x or functionals[1] in x, kff))

    kff_of_cat = [kf_dir + '\\' + f for f in kff if f.startswith(category)]

    #get the spectra
    ir1 = [
        ir.get_spectrum_from_kf(f, width=50, n=bins) for f in kff_of_cat
        if functionals[0] in f
    ]
    ir2 = [
        ir.get_spectrum_from_kf(f, width=50, n=bins) for f in kff_of_cat
        if functionals[1] in f
    ]

    peaksa = [
        ir.get_freqs_intens(f) for f in kff_of_cat if functionals[0] in f
    ]
    freqsa, intensa = [list(c) for c in zip(*peaksa)]
    peaksa = [list(zip(freqsa[i], intensa[i])) for i in range(len(freqsa))]

    peaksb = [
        ir.get_freqs_intens(f) for f in kff_of_cat if functionals[1] in f
    ]
    freqsb, intensb = [list(c) for c in zip(*peaksb)]
    peaksb = [list(zip(freqsb[i], intensb[i])) for i in range(len(freqsb))]

    print(peaksa)
    d = func(ir1, ir2, reg_m=reg_m, peaksa=peaksa, peaksb=peaksb, **kwargs)
    return d.astype(float)
Пример #10
0
plt.legend()
plt.show()

# plot.plot_hists(specs, ('mol1 - DFTB3', 'mol2 - LDA'), line=False, scatter=True)

sys.exit()

specs = tuple([s / np.sum(s) for s in specs])
res = sink.sinkhorn(*specs, converge_thresh=converge_thresh, max_iter=1000)
plot.plot_sink_results(res)
plot.plot_hists(specs, ('mol1 - DFTB3', 'mol2 - LDA'))

specs = [
    ir.get_spectrum_from_kf(
        r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\ISO34_E22_DFTB3_DFTB.rkf",
        xlim=(0, 4000),
        n=600),
    ir.get_spectrum_from_kf(
        r"D:\Users\Yuman\Desktop\Programmeren\bachelorproject\scripting\RUNS\#KFFiles\functionals\ISO34_E22_LDA_DFT.t21",
        xlim=(0, 4000),
        n=600),
]
specs = tuple([s / np.sum(s) for s in specs])
res = sink.sinkhorn(*specs, converge_thresh=converge_thresh, max_iter=1000)
plot.plot_sink_results(res)
plot.plot_hists(specs, ('mol1 - DFTB3', 'mol1 - LDA'))

sys.exit()

Y, X = np.meshgrid(np.linspace(0, 1, len(a)), np.linspace(0, 1, len(b)))
C = cost_fn(X, Y)