fin.close() # Print t raw, t/tBH #raw_t= master_sink.old_t[-master_sink.tnorm().size:].copy() print "%s" % args.str_beta print "mdotTime, tnorm()" for raw_t,norm in zip(master_sink.mdotTime,master_sink.tnorm()): print raw_t,norm print 'exiting early' sys.exit() #tend print 'model: %s, last t/tBH= %.5f' % (args.str_beta,master_sink.tnorm()[-1]) if False: # print machrms at end t_end= min(20.,master_sink.tnorm()[-1]) i_end= index_before_tBH(master_sink,t_end,units_tBH=True) mach_end= master_sink.f_rms_mach(master_sink.mdotTime[i_end]) print 'model= %s, tsteady/tBH= %.2f, tend/tBH= %.2f, rms Mach end= %.2f' % \ (args.str_beta, steady_state_begins(args.str_beta,True),t_end,mach_end) #corr mdots end_t,end_mach= t_rms_mach_near_end(args.str_beta) master_sink.rm_mdot_systematics(end_t,end_mach) #final PDF final_pdf= dict(arr={},bins={},pdf={},cdf={}) #PDF USING, 64 pdf, over last 2tBH low,hi= low_hi_mdot_all_models() final_pdf['arr'][args.str_beta],final_pdf['bins'][args.str_beta],final_pdf['pdf'][args.str_beta],final_pdf['cdf'][args.str_beta]= pdf_for_model_64_x_N(master_sink,args.str_beta, low,hi,nsinks=64,corr=True,last_2tBH=True,dt=2.) #make plots just_median(master_sink,args) median_and_when_equil_begins(master_sink,args) steady_pdf_cdf(master_sink,args) all_rates(master_sink,args,corr=True)
for str_beta in args.str_beta: tsteady = steady_state_begins(str_beta, True) print "STEADY STATE: model=%s, t/tBH=%.2f, t/tABH=%.2f" % (str_beta, tsteady, tBH_to_tBHA(tsteady, str_beta)) sinks = {} for fn, str_beta in zip(args.sinks, args.str_beta): fin = open(fn, "r") sinks[str_beta] = load(fin) fin.close() # corr mdots end_t, end_mach = stats.t_rms_mach_near_end(str_beta) sinks[str_beta].rm_mdot_systematics(end_t, end_mach) # deterine min and max mdot of all models low, hi = 100, 1.0e-10 for key in sinks.keys(): istart = stats.index_before_tBH(sinks[key], steady_state_begins(key, True)) iend = stats.index_before_tBH(sinks[key], 20.0) # print 'istart= ',istart,'iend= ',iend # print 'sinks[key].mdot.shae[istart:iend].shape= ',sinks[key].mdot[istart:iend].shape # print 'sinks[key].mdot[istart:iend].shape= ',sinks[key].mdot[istart:iend].shape gt_zero = sinks[key].mdot[:, istart:iend] > 0 # mdot < 0 when dt plummeted, huge vertical spike in mdot vs. t... new_low, new_hi = sinks[key].mdot[:, istart:iend][gt_zero].min(), sinks[key].mdot[:, istart:iend][gt_zero].max() print "model= %s: low,new_low,hi,new_hi= " % (key,), low, new_low, hi, new_hi low, hi = min(low, new_low), max(hi, new_hi) print "----lowest and highest mdots for all models are: lo=", low, ", hi=", hi, " ----" nsinks = 64 # for nsinks in [8,16,32,64]: # first, store pdfs,cdfs b/c kaylans_pdf_one_model calls plot functions and messing up plot if make inside loop final_pdf = dict(arr={}, bins={}, pdf={}, cdf={}) # PDF USING, 64 pdf, over last 2tBH for mod in sinks.keys(): # PDF for each model final_pdf["arr"][mod], final_pdf["bins"][mod], final_pdf["pdf"][mod], final_pdf["cdf"][