Пример #1
0
def main(argv):
    trainer = Trainer()
    trainer.run()
Пример #2
0
lr = 0.001
momentum = 0.9
batch_size = 5
start_epoch = 1
end_epoch = 1
data_root = ''

# Preprocessing
transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
datasets = dset.ImageFolder('../images/', transform=transforms)
train_loader = torch.utils.data.DataLoader(datasets,
                                           batch_size=batch_size,
                                           shuffle=True)

# Model Setting
model = models.vgg19(pretrained=True)
model.fc = nn.Linear(1000, num_classes)
if args.use_cuda:
    model = model.cuda()

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
trainer = Trainer(optimizer, criterion, model, 10, train_loader, args.use_cuda)
trained_model = trainer.run()

torch.save(trained_model.state_dict(), '../weights/vgg_weight.pth')