Пример #1
0
def da_rnn(train_data: TrainData, n_targs: int, encoder_hidden_size=64, decoder_hidden_size=64,
           T=10, learning_rate=0.01, batch_size=128):

    train_cfg = TrainConfig(T, int(train_data.feats.shape[0] * 0.7), batch_size, nn.MSELoss())
    logger.info(f"Training size: {train_cfg.train_size:d}.")

    enc_kwargs = {"input_size": train_data.feats.shape[1], "hidden_size": encoder_hidden_size, "T": T}
    encoder = Encoder(**enc_kwargs).to(device)
    with open(os.path.join("data", "enc_kwargs.json"), "w") as fi:
        json.dump(enc_kwargs, fi, indent=4)

    dec_kwargs = {"encoder_hidden_size": encoder_hidden_size,
                  "decoder_hidden_size": decoder_hidden_size, "T": T, "out_feats": n_targs}
    decoder = Decoder(**dec_kwargs).to(device)
    with open(os.path.join("data", "dec_kwargs.json"), "w") as fi:
        json.dump(dec_kwargs, fi, indent=4)

    encoder_optimizer = optim.Adam(
        params=[p for p in encoder.parameters() if p.requires_grad],
        lr=learning_rate)
    decoder_optimizer = optim.Adam(
        params=[p for p in decoder.parameters() if p.requires_grad],
        lr=learning_rate)
    da_rnn_net = DaRnnNet(encoder, decoder, encoder_optimizer, decoder_optimizer)

    return train_cfg, da_rnn_net
Пример #2
0
    def __init__(self, obs, nums, glimpse_size=(20, 20),
                 inpt_encoder_hidden=[256]*2,
                 glimpse_encoder_hidden=[256]*2,
                 glimpse_decoder_hidden=[252]*2,
                 transform_estimator_hidden=[256]*2,
                 steps_pred_hidden=[50]*1,
                 baseline_hidden=[256, 128]*1,
                 transform_var_bias=-2.,
                 step_bias=0.,
                 *args, **kwargs):

        self.baseline = BaselineMLP(baseline_hidden)

        def _make_transform_estimator(x):
            est = StochasticTransformParam(transform_estimator_hidden, x, scale_bias=transform_var_bias)
            return est

        super(AIRonMNIST, self).__init__(
            *args,
            obs=obs,
            nums=nums,
            glimpse_size=glimpse_size,
            n_appearance=50,
            transition=snt.LSTM(256),
            input_encoder=(lambda: Encoder(inpt_encoder_hidden)),
            glimpse_encoder=(lambda: Encoder(glimpse_encoder_hidden)),
            glimpse_decoder=(lambda x: Decoder(glimpse_decoder_hidden, x)),
            transform_estimator=_make_transform_estimator,
            steps_predictor=(lambda: StepsPredictor(steps_pred_hidden, step_bias)),
            output_std=.3,
            **kwargs
        )
Пример #3
0
    def __init__(self, config ):
        super(DHMM, self).__init__()
        self.input_dim = config['input_dim']
        self.z_dim = config['z_dim']
        self.emission_dim = config['emission_dim']
        self.trans_dim = config['trans_dim']
        self.rnn_dim = config['rnn_dim']
        self.clip_norm = config['clip_norm']
        
        self.emitter = nn.Sequential( #Parameterizes the bernoulli observation likelihood `p(x_t|z_t)`
            nn.Linear(self.z_dim, self.emission_dim),
            nn.ReLU(),
            nn.Linear(self.emission_dim, self.emission_dim),
            nn.ReLU(),
            nn.Linear(self.emission_dim, self.input_dim),
            nn.Sigmoid()
        )
        self.trans = GatedTransition(self.z_dim, self.trans_dim)
        self.postnet = PostNet(self.z_dim, self.rnn_dim)
        self.rnn = Encoder(None, self.input_dim, self.rnn_dim, False, 1)
                   #nn.RNN(input_size=self.input_dim, hidden_size=self.rnn_dim, nonlinearity='relu', \
                   #batch_first=True, bidirectional=False, num_layers=1)                   

        # define a (trainable) parameters z_0 and z_q_0 that help define the probability distributions p(z_1) and q(z_1)
        # (since for t = 1 there are no previous latents to condition on)
        self.z_0 = nn.Parameter(torch.zeros(self.z_dim))
        self.z_q_0 = nn.Parameter(torch.zeros(self.z_dim))
        self.h_0 = nn.Parameter(torch.zeros(1, 1, self.rnn_dim))    
        
        self.optimizer = Adam(self.parameters(), lr=config['lr'], betas= (config['beta1'], config['beta2']))
Пример #4
0
    def __init__(self, config, vocab_size):
        super(DeepAPI, self).__init__()
        self.vocab_size = vocab_size
        self.maxlen = config['maxlen']
        self.clip = config['clip']
        self.temp = config['temp']

        self.desc_embedder = nn.Embedding(vocab_size,
                                          config['emb_size'],
                                          padding_idx=PAD_ID)
        self.api_embedder = nn.Embedding(vocab_size,
                                         config['emb_size'],
                                         padding_idx=PAD_ID)
        # utter encoder: encode response to vector
        self.encoder = Encoder(self.desc_embedder, config['emb_size'],
                               config['n_hidden'], True, config['n_layers'],
                               config['noise_radius'])
        self.decoder = Decoder(self.api_embedder, config['emb_size'],
                               config['n_hidden'] * 2, vocab_size,
                               config['use_attention'], 1,
                               config['dropout'])  # utter decoder: P(x|c,z)
        self.optimizer = optim.Adadelta(list(self.encoder.parameters()) +
                                        list(self.decoder.parameters()),
                                        lr=config['lr_ae'],
                                        rho=0.95)
        self.criterion_ce = nn.CrossEntropyLoss()
Пример #5
0
    def __init__(self, opt):

        super(TextCNN, self).__init__()
        self.opt = opt
        self.embedder = Embedder(emb_method=self.opt.emb_method,
                                 glove_param=self.opt.glove_param,
                                 elmo_param=self.opt.elmo_param,
                                 use_gpu=self.opt.use_gpu)

        if self.opt.enc_method == 'cnn':
            self.encoder = Encoder(enc_method=self.opt.enc_method,
                                   filters_num=self.opt.filters_num,
                                   filters=self.opt.filters,
                                   f_dim=self.embedder.word_dim)
            feature_dim = len(self.opt.filters) * self.opt.filters_num
        else:
            self.encoder = Encoder(enc_method=self.opt.enc_method,
                                   input_size=self.embedder.word_dim,
                                   hidden_size=self.opt.hidden_size,
                                   bidirectional=self.opt.bidirectional)
            self.Q = nn.Parameter(torch.randn(self.opt.q_num, self.opt.q_dim))
            self.attenter = Attenter(att_method=self.opt.att_method,
                                     f_dim=2 * self.opt.hidden_size,
                                     q_dim=self.opt.q_dim,
                                     q_num=self.opt.q_num)
            feature_dim = self.opt.q_num * self.opt.hidden_size * (
                int(self.opt.bidirectional) + 1)

        self.linear = nn.Linear(feature_dim, self.opt.num_labels)
        self.dropout = nn.Dropout(self.opt.dropout)
Пример #6
0
class RNN(object):
    def __init__(self, input_size, output_size):
        super(RNN, self).__init__()

        self.encoder = Encoder(input_size)
        self.decoder = Decoder(output_size)

        self.loss = nn.CrossEntropyLoss()
        self.encoder_optimizer = optim.Adam(self.encoder.parameters())
        self.decoder_optimizer = optim.Adam(self.decoder.parameters())

        sos, eos = torch.LongTensor(1, 1).zero_(), torch.LongTensor(1,
                                                                    1).zero_()
        sos[0, 0], eos[0, 0] = 0, 1

        self.sos, self.eos = sos, eos

    def train(self, input, target):
        self.encoder_optimizer.zero_grad()
        self.decoder_optimizer.zero_grad()
        hidden_state = self.encoder.first_hidden()

        # Encoder
        for ivec in input:
            _, hidden_state = self.encoder.forward(Variable(ivec),
                                                   hidden_state)

        # Decoder
        target.insert(0, self.sos)
        target.append(self.eos)
        total_loss = 0
        for i in range(len(target) - 1):
            _, softmax, hidden_state = self.decoder.forward(
                target[i], hidden_state)
            total_loss += self.loss(softmax, Variable(target[i + 1][0]))

        total_loss.backward()

        self.decoder_optimizer.step()
        self.encoder_optimizer.step()

        return total_loss

    def eval(self, input):
        hidden_state = self.encoder.first_hidden()

        # Encoder
        for ivec in input:
            _, hidden_state = self.encoder.forward(ivec, hidden_state)

        outputs = []
        output = self.sos
        # Decoder
        while output is not self.eos:
            output, _, hidden_state = self.decoder.forward(
                output, hidden_state)
            outputs += output

        return outputs
Пример #7
0
def da_rnn(train_data,
           n_targs: int,
           encoder_hidden_size=64,
           decoder_hidden_size=64,
           T=10,
           learning_rate=0.01,
           batch_size=128):

    train_cfg = TrainConfig(T, int(train_data.feats.shape[0] * 0.7),
                            batch_size, nn.MSELoss())
    logging.info(f"Training size: {train_cfg.train_size:d}.")

    enc_params = pd.DataFrame([{
        'input_size': train_data.feats.shape[1],
        'hidden_size': encoder_hidden_size,
        'T': T
    }])
    enc_params.to_csv(os.path.join('results', save_name, 'enc_params.csv'))

    encoder = Encoder(input_size=enc_params['input_size'][0].item(),
                      hidden_size=enc_params['hidden_size'][0].item(),
                      T=enc_params['T'][0].item()).cuda()

    dec_params = pd.DataFrame([{
        'encoder_hidden_size': encoder_hidden_size,
        'decoder_hidden_size': decoder_hidden_size,
        'T': T,
        'out_feats': n_targs
    }])
    dec_params.to_csv(os.path.join('results', save_name, 'dec_params.csv'))

    decoder = Decoder(
        encoder_hidden_size=dec_params['encoder_hidden_size'][0].item(),
        decoder_hidden_size=dec_params['decoder_hidden_size'][0].item(),
        T=dec_params['T'][0].item(),
        out_feats=dec_params['out_feats'][0].item()).cuda()

    encoder_optimizer = optim.Adam(
        params=[p for p in encoder.parameters() if p.requires_grad],
        lr=learning_rate,
        weight_decay=args.wdecay)

    decoder_optimizer = optim.Adam(
        params=[p for p in decoder.parameters() if p.requires_grad],
        lr=learning_rate,
        weight_decay=args.wdecay)

    encoder_scheduler = optim.lr_scheduler.CosineAnnealingLR(
        encoder_optimizer, train_data.feats.shape[0], eta_min=args.min_lr)
    decoder_scheduler = optim.lr_scheduler.CosineAnnealingLR(
        decoder_optimizer, train_data.feats.shape[0], eta_min=args.min_lr)

    model = DaRnnNet(encoder, decoder, encoder_optimizer, decoder_optimizer,
                     encoder_scheduler, decoder_scheduler)

    return train_cfg, model
Пример #8
0
    def __init__(self, input_size, output_size, resume=False):
        super(RNN, self).__init__()

        self.encoder = Encoder(input_size)
        self.decoder = Decoder(output_size)

        self.loss = nn.CrossEntropyLoss()
        self.encoder_optimizer = optim.Adam(self.encoder.parameters())
        self.decoder_optimizer = optim.Adam(self.decoder.parameters())

        if resume:
            self.encoder.load_state_dict(torch.load("models/encoder.ckpt"))
            self.decoder.load_state_dict(torch.load("models/decoder.ckpt"))
Пример #9
0
def da_rnn(train_data,
           n_targs: int,
           encoder_hidden_size=64,
           decoder_hidden_size=64,
           T=10,
           learning_rate=0.01,
           batch_size=128):

    train_cfg = TrainConfig(T, int(train_data.feats.shape[0] * 0.7),
                            batch_size, nn.MSELoss())
    logging.info(f"Training size: {train_cfg.train_size:d}.")

    enc_kwargs = {
        "input_size": train_data.feats.shape[1],
        "hidden_size": encoder_hidden_size,
        "T": T
    }
    encoder = Encoder(**enc_kwargs).cuda()
    with open(os.path.join("data", "enc_kwargs.json"), "w") as fi:
        json.dump(enc_kwargs, fi, indent=4)

    dec_kwargs = {
        "encoder_hidden_size": encoder_hidden_size,
        "decoder_hidden_size": decoder_hidden_size,
        "T": T,
        "out_feats": n_targs
    }
    decoder = Decoder(**dec_kwargs).cuda()
    with open(os.path.join("data", "dec_kwargs.json"), "w") as fi:
        json.dump(dec_kwargs, fi, indent=4)

    encoder_optimizer = optim.Adam(
        params=[p for p in encoder.parameters() if p.requires_grad],
        lr=learning_rate,
        weight_decay=args.wdecay)

    decoder_optimizer = optim.Adam(
        params=[p for p in decoder.parameters() if p.requires_grad],
        lr=learning_rate,
        weight_decay=args.wdecay)

    encoder_scheduler = optim.lr_scheduler.CosineAnnealingLR(
        encoder_optimizer, args.epochs, eta_min=args.min_lr)
    decoder_scheduler = optim.lr_scheduler.CosineAnnealingLR(
        decoder_optimizer, args.epochs, eta_min=args.min_lr)

    da_rnn_net = DaRnnNet(encoder, decoder, encoder_optimizer,
                          decoder_optimizer, encoder_scheduler,
                          decoder_scheduler)

    return train_cfg, da_rnn_net
Пример #10
0
    def __init__(self, X_dim, Y_dim, encoder_hidden_size=64, decoder_hidden_size=64,
                 linear_dropout=0, T=10, learning_rate=1e-5, batch_size=128, decay_rate=0.95):
        self.T = T
        self.decay_rate = decay_rate
        self.batch_size = batch_size
        self.X_dim = X_dim
        self.Y_dim = Y_dim

        self.encoder = Encoder(X_dim, encoder_hidden_size, T, linear_dropout).to(device)
        self.decoder = Decoder(encoder_hidden_size, decoder_hidden_size, T, linear_dropout, Y_dim).to(device)

        self.encoder_optim = torch.optim.Adam(params=self.encoder.parameters(), lr=learning_rate)
        self.decoder_optim = torch.optim.Adam(params=self.decoder.parameters(), lr=learning_rate)
        self.loss_func = torch.nn.MSELoss()
Пример #11
0
    def __init__(self, input_size, output_size):
        super(RNN, self).__init__()

        self.encoder = Encoder(input_size)
        self.decoder = Decoder(output_size)

        self.loss = nn.CrossEntropyLoss()
        self.encoder_optimizer = optim.Adam(self.encoder.parameters())
        self.decoder_optimizer = optim.Adam(self.decoder.parameters())

        sos, eos = torch.LongTensor(1, 1).zero_(), torch.LongTensor(1, 1).zero_()
        sos[0, 0], eos[0, 0] = 0, 1

        self.sos, self.eos = sos, eos
Пример #12
0
    def __init__(self, args):
        super(SSM, self).__init__()

        self.s_dim = s_dim = args.s_dim
        self.a_dim = a_dim = args.a_dim
        self.o_dim = o_dim = args.o_dim
        self.h_dim = h_dim = args.h_dim
        self.device = args.device
        self.args = args

        self.encoder = torch.nn.DataParallel(
            Encoder(o_dim, h_dim).to(self.device[0]), self.device)
        self.decoder = torch.nn.DataParallel(
            Decoder(s_dim, o_dim).to(self.device[0]), self.device)
        self.prior = torch.nn.DataParallel(
            Prior(s_dim, a_dim).to(self.device[0]), self.device)
        self.posterior = torch.nn.DataParallel(
            Posterior(self.prior, s_dim, a_dim, h_dim).to(self.device[0]),
            self.device)

        self.distributions = nn.ModuleList(
            [self.prior, self.posterior, self.encoder, self.decoder])
        init_weights(self.distributions)

        # for s_aux_loss
        self.prior01 = Normal(torch.tensor(0.), scale=torch.tensor(1.))

        self.g_optimizer = optim.Adam(self.distributions.parameters())
    def __init__(self, config):
        super(Transformer_EncoderDecoder, self).__init__()
        c = copy.deepcopy
        self.attn = MultiHeadedAttention(config['head'], config['emb_dim'])
        self.ff = PositionwiseFeedForward(config['emb_dim'], config['d_ff'],
                                          config['drop_out'])
        self.position = PositionalEncoding(config['emb_dim'],
                                           config['drop_out'])
        self.encoder = Encoder(
            EncoderLayer(config['emb_dim'], c(self.attn), c(self.ff),
                         config['drop_out']), config['N_layers'])
        self.decoder = Decoder(
            DecoderLayer(config['emb_dim'], c(self.attn), c(self.attn),
                         c(self.ff), config['drop_out']), config['N_layers'])
        self.src_embed = nn.Sequential(
            Embeddings(config['emb_dim'], config['vocab_size']),
            c(self.position))
        self.tgt_embed = nn.Sequential(
            Embeddings(config['emb_dim'], config['vocab_size']),
            c(self.position))
        self.generator = Generator(config['emb_dim'], config['vocab_size'])
        self.fc_out = nn.Linear(config['emb_dim'], config['vocab_size'])

        self.model = EncoderDecoder(self.encoder, self.decoder, self.src_embed,
                                    self.tgt_embed, self.generator)
Пример #14
0
def darnn(train_data: TrainingData, 
           n_targets: int, 
           encoder_hidden_size: int, 
           decoder_hidden_size: int,
           T: int, 
           learning_rate=0.002, 
           batch_size=32):
    train_cfg = TrainingConfig(T, int(train_data.features.shape[0] * 0.7), batch_size, nn.MSELoss())
    print(f"Training size: {train_cfg.train_size:d}.")
    enc_kwargs = {"input_size": train_data.features.shape[1], "hidden_size": encoder_hidden_size, "T": T}
    encoder = Encoder(**enc_kwargs).to(device)
    dec_kwargs = {"encoder_hidden_size": encoder_hidden_size,"decoder_hidden_size": decoder_hidden_size, "T": T, "out_features": n_targets}
    decoder = Decoder(**dec_kwargs).to(device)
    encoder_optimizer = optim.Adam(params=[p for p in encoder.parameters() if p.requires_grad],lr=learning_rate)
    decoder_optimizer = optim.Adam(params=[p for p in decoder.parameters() if p.requires_grad],lr=learning_rate)
    da_rnn_net = Darnn_Net(encoder, decoder, encoder_optimizer, decoder_optimizer)
    return train_cfg, da_rnn_net
Пример #15
0
 def __init__(self, vocab, feats_size, kernel_size, rec_field, attn_size,
              hidden_size, mid_layer, dropout, which):
     super(TextNormalizer, self).__init__()
     self.vocab = vocab
     self.encoder = Encoder(len(vocab), feats_size, kernel_size, rec_field,
                            dropout, which)
     self.decoder = Decoder(len(vocab), feats_size, attn_size, hidden_size,
                            mid_layer, dropout)
     self.init_hidden = InitialWeights(hidden_size, mid_layer, 4)
Пример #16
0
    def __init__(self, config, api, pad_token=0):
        super(Seq2Seq, self).__init__()
        self.vocab = api.vocab
        self.vocab_size = len(self.vocab)
        self.rev_vocab = api.rev_vocab
        self.go_id = self.rev_vocab["<s>"]
        self.eos_id = self.rev_vocab["</s>"]
        self.maxlen = config.maxlen

        self.embedder = nn.Embedding(self.vocab_size, config.emb_size, padding_idx=pad_token)
        self.encoder = Encoder(self.embedder, config.emb_size, config.n_hidden,
                               True, config.n_layers, config.noise_radius)
        self.decoder = AttnDecoder(config=config, embedder=self.embedder, vocab_size=self.vocab_size)

        self.criterion = nn.NLLLoss(reduction='none')
        self.optimizer = optim.Adam(list(self.encoder.parameters())
                                   + list(self.decoder.parameters()),
                                   lr=config.lr_s2s)
        self.lr_scheduler_AE = optim.lr_scheduler.StepLR(self.optimizer, step_size=10, gamma=0.6)
Пример #17
0
def run_encoder(args: argparse.Namespace):
    env_map = {
        "clean_days": None,
        "copy_pattern": None,
        "copy_pattern_opt": None,
        "dry_run": None,
        "enable_cleaner": None,
        "hevc_pattern": None,
        "hevc_pattern_opt": None,
        "listen_address": "ENC_LISTEN_ADDRESS",
        "no_notifications": None,
        "out_path": "ENC_OUT",
        "print_every": None,
        "src_path": "ENC_SRC",
        "time_format": "TIME_FORMAT",
        "warn_at": None,
        "webhook_url": "WEBHOOK_URL",
    }
    kwargs = merge_env_args(env_map, args)
    inst = Encoder(LOOP, **kwargs)
    inst.run_app()
Пример #18
0
def TCHA(train_data: TrainData, n_targs: int, bidirec=False, num_layer=1, encoder_hidden_size=64, decoder_hidden_size=64,
         T=10, learning_rate=0.01, batch_size=128, interval=1, split=0.7, isMean=False):
    train_cfg = TrainConfig(T, int(train_data.feats.shape[0] * split), batch_size, nn.MSELoss(), interval, T, isMean)
    logger.info(f"Training size: {train_cfg.train_size:d}.")

    enc_args = {"input_size": train_data.feats.shape[1], "hidden_size": encoder_hidden_size, "T": T,
                  "bidirec": bidirec, "num_layer": num_layer}
    encoder = Encoder(**enc_args).to(device)

    dec_args = {"encoder_hidden_size": encoder_hidden_size, "decoder_hidden_size": decoder_hidden_size, "T": T,
                  "out_feats": n_targs, "bidirec": bidirec, "num_layer": num_layer}
    decoder = Decoder(**dec_args).to(device)

    encoder_optimizer = optim.Adam(
        params=[p for p in encoder.parameters() if p.requires_grad],
        lr=learning_rate)
    decoder_optimizer = optim.Adam(
        params=[p for p in decoder.parameters() if p.requires_grad],
        lr=learning_rate)
    tcha = TCHA_Net(encoder, decoder, encoder_optimizer, decoder_optimizer)

    return train_cfg, tcha
Пример #19
0
    def __init__(self,config):
        super(BiGAN,self).__init__()

        self._work_type = config.work_type
        self._epochs = config.epochs
        self._batch_size = config.batch_size

        self._encoder_lr = config.encoder_lr
        self._generator_lr = config.generator_lr
        self._discriminator_lr = config.discriminator_lr
        self._latent_dim = config.latent_dim
        self._weight_decay = config.weight_decay

        self._img_shape = (config.input_size,config.input_size)
        self._img_save_path = config.image_save_path
        self._model_save_path = config.model_save_path
        self._device = config.device

        if self._work_type == 'train':
            # Loss function
            self._adversarial_criterion = torch.nn.MSELoss()

            # Initialize generator, encoder and discriminator
            self._G = Generator(self._latent_dim,self._img_shape).to(self._device)
            self._E = Encoder(self._latent_dim,self._img_shape).to(self._device)
            self._D = Discriminator(self._latent_dim,self._img_shape).to(self._device)

            self._G.apply(self.weights_init)
            self._E.apply(self.weights_init)
            self._D.apply(self.discriminator_weights_init)

            self._G_optimizer = torch.optim.Adam([{'params' : self._G.parameters()},{'params' : self._E.parameters()}],
                                                lr=self._generator_lr,betas=(0.5,0.999),weight_decay=self._weight_decay)
            self._D_optimizer = torch.optim.Adam(self._D.parameters(),lr=self._discriminator_lr,betas=(0.5,0.999))
            
            self._G_scheduler = lr_scheduler.ExponentialLR(self._G_optimizer, gamma= 0.99) 
            self._D_scheduler = lr_scheduler.ExponentialLR(self._D_optimizer, gamma= 0.99) 
Пример #20
0
 def __init__(self,
              text_length,
              emb_size,
              device=torch.device('cpu'),
              fb_dropout=0.5,
              predictor_dropout=0.3):
     # TODO docstring
     super(DFGN, self).__init__(
     )  # TODO pass the device to the Encoder and the Predictor as well?
     self.encoder = Encoder.Encoder(text_length=text_length)
     self.fusionblock = FusionBlock.FusionBlock(
         emb_size, device=device, dropout=fb_dropout)  # TODO sort out init
     self.predictor = Predictor.Predictor(
         text_length, emb_size,
         dropout=predictor_dropout)  # TODO sort out init
Пример #21
0
    def build_models(self):
        self.E = Encoder(self.c64, self.rb6)
        self.T_Hair = Transformer(self.hair_dim, self.c256, self.rb6)
        self.T_Gender = Transformer(self.attr_dim, self.c256, self.rb6)
        self.T_Smailing = Transformer(self.attr_dim, self.c256, self.rb6)
        self.R = Reconstructor(self.c256)
        self.D_Hair = Discriminator(self.hair_dim, self.c64)
        self.D_Gender = Discriminator(self.attr_dim, self.c64)
        self.D_Smailing = Discriminator(self.attr_dim, self.c64)

        self.e_optim = torch.optim.Adam(self.E.parameters(), self.e_lr, [self.beta1, self.beta2])
        self.th_optim = torch.optim.Adam(self.T_Hair.parameters(), self.t_lr, [self.beta1, self.beta2])
        self.tg_optim = torch.optim.Adam(self.T_Gender.parameters(), self.t_lr, [self.beta1, self.beta2])
        self.ts_optim = torch.optim.Adam(self.T_Smailing.parameters(), self.t_lr, [self.beta1, self.beta2])
        self.r_optim = torch.optim.Adam(self.R.parameters(), self.r_lr, [self.beta1, self.beta2])
        self.dh_optim = torch.optim.Adam(self.D_Hair.parameters(), self.d_lr, [self.beta1, self.beta2])
        self.dg_optim = torch.optim.Adam(self.D_Gender.parameters(), self.d_lr, [self.beta1, self.beta2])
        self.ds_optim = torch.optim.Adam(self.D_Smailing.parameters(), self.d_lr, [self.beta1, self.beta2])

        self.print_network(self.E, 'Encoder')
        self.print_network(self.T_Hair, 'Transformer for Hair Color')
        self.print_network(self.T_Gender, 'Transformer for Gender')
        self.print_network(self.T_Smailing, 'Transformer for Smailing')
        self.print_network(self.R, 'Reconstructor')
        self.print_network(self.D_Hair, 'D for Hair Color')
        self.print_network(self.D_Gender, 'D for Gender')
        self.print_network(self.D_Smailing, 'D for Smailing')

        self.E.to(self.device)
        self.T_Hair.to(self.device)
        self.T_Gender.to(self.device)
        self.T_Smailing.to(self.device)
        self.R.to(self.device)
        self.D_Gender.to(self.device)
        self.D_Smailing.to(self.device)
        self.D_Hair.to(self.device)
Пример #22
0
        def set_params(train_data, device, **da_rnn_kwargs):
            train_configs = TrainConfig(da_rnn_kwargs["time_step"],
                                        int(train_data.shape[0] * 0.95),
                                        da_rnn_kwargs["batch_size"],
                                        nn.MSELoss())

            enc_kwargs = {
                "input_size": train_data.shape[1],
                "hidden_size": da_rnn_kwargs["en_hidden_size"],
                "time_step":
                int(da_rnn_kwargs["time_step"] / self.predict_size)
            }
            dec_kwargs = {
                "encoder_hidden_size": da_rnn_kwargs["en_hidden_size"],
                "decoder_hidden_size": da_rnn_kwargs["de_hidden_size"],
                "time_step":
                int(da_rnn_kwargs["time_step"] / self.predict_size),
                "out_feats": da_rnn_kwargs["target_cols"]
            }
            encoder = Encoder(**enc_kwargs).to(device)
            decoder = Decoder(**dec_kwargs).to(device)

            encoder_optimizer = optim.Adam(
                params=[p for p in encoder.parameters() if p.requires_grad],
                lr=da_rnn_kwargs["learning_rate"],
                betas=(0.9, 0.999),
                eps=1e-08)
            decoder_optimizer = optim.Adam(
                params=[p for p in decoder.parameters() if p.requires_grad],
                lr=da_rnn_kwargs["learning_rate"],
                betas=(0.9, 0.999),
                eps=1e-08)
            da_rnn_net = DaRnnNet(encoder, decoder, encoder_optimizer,
                                  decoder_optimizer)

            return train_configs, da_rnn_net
Пример #23
0
    def __init__(self, temp, latent_num, latent_dim):
        super(Model, self).__init__()
        if type(temp) != torch.Tensor:
            temp = torch.tensor(temp)
        self.__temp = temp
        self.latent_num = latent_num
        self.latent_dim = latent_dim
        self.encoder = Encoder(latent_num=latent_num, latent_dim=latent_dim)
        self.decoder = Decoder(latent_num=latent_num, latent_dim=latent_dim)
        if 'ExpTDModel' in  str(self.__class__):
            self.prior = ExpRelaxedCategorical(temp, probs=torch.ones(latent_dim).cuda())
        else:
            self.prior = dist.RelaxedOneHotCategorical(temp, probs=torch.ones(latent_dim).cuda())
        self.initialize()

        self.softmax = nn.Softmax(dim=-1)
Пример #24
0
    def __init__(self, opt):
        super(BERT_CNN_CRF, self).__init__()
        self.opt = opt
        self.bertForToken = BertForTokenClassification.from_pretrained(self.opt.bert_model_dir, num_labels=self.opt.tag_nums)
        # tag分类
        self.num_labels = self.opt.tag_nums
        self.crf = CRF(self.opt.tag_nums, batch_first=True)

        # 关系分类
        self.type_emb = nn.Embedding(3, self.opt.bert_hidden_size)
        self.rel_cnns = Encoder(enc_method='cnn', filters_num=self.opt.filter_num, filters=self.opt.filters, f_dim=self.opt.bert_hidden_size)
        self.classifier_rels = nn.Linear(len(self.opt.filters)*self.opt.filter_num, self.opt.rel_nums)

        self.id2tag = json.loads(open(opt.id2tag_dir, 'r').readline())
        self.type2types = json.loads(open(opt.type2types_dir, 'r').readline())

        self.init_weights()
Пример #25
0
    def __init__(self,
                 word2idx,
                 emb_size,
                 hidden_sizes,
                 dropout,
                 rnn_type="LSTM",
                 pretrained_embs=None,
                 fixed_embs=False,
                 tied=None):
        super(RNNLanguageModel, self).__init__()

        self.encoder = Encoder(word2idx, emb_size, pretrained_embs, fixed_embs)
        self.decoder = Decoder(len(word2idx), hidden_sizes[-1], tied,
                               self.encoder)

        self.rnn = StackedRNN(rnn_type, emb_size, hidden_sizes, dropout)
        self.drop = nn.Dropout(dropout)
    def __init__(self, hpm):
        self.hpm = hpm

        # parameters initializer objetcs
        self.rand_unif_init = tf.random_uniform_initializer(
            -self.hpm['rand_unif_init_mag'],
            self.hpm['rand_unif_init_mag'],
            seed=123)
        self.rand_norm_init = tf.truncated_normal_initializer(
            stddev=self.hpm['trunc_norm_init_std'])

        # encoder and attentional decoder objects
        self.encoder = Encoder(self.hpm, self.rand_unif_init,
                               self.rand_norm_init)
        self.decoder = Attention_decoder(self.hpm, self.rand_unif_init,
                                         self.rand_norm_init)

        # a global step counter for the training
        self.step = tf.train.get_or_create_global_step()
    def __init__(self,
                 input_dim_encoder: int,
                 hidden_dim_encoder: int,
                 output_dim_encoder: int,
                 dropout_p_encoder: float,
                 output_dim_h_decoder: int,
                 nb_classes: int,
                 dropout_p_decoder: float,
                 max_out_t_steps: int) \
            -> None:
        """Baseline method for audio captioning with Clotho dataset.

        :param input_dim_encoder: Input dimensionality of the encoder.
        :type input_dim_encoder: int
        :param hidden_dim_encoder: Hidden dimensionality of the encoder.
        :type hidden_dim_encoder: int
        :param output_dim_encoder: Output dimensionality of the encoder.
        :type output_dim_encoder: int
        :param dropout_p_encoder: Encoder RNN dropout.
        :type dropout_p_encoder: float
        :param output_dim_h_decoder: Hidden output dimensionality of the decoder.
        :type output_dim_h_decoder: int
        :param nb_classes: Amount of output classes.
        :type nb_classes: int
        :param dropout_p_decoder: Decoder RNN dropout.
        :type dropout_p_decoder: float
        :param max_out_t_steps: Maximum output time-steps of the decoder.
        :type max_out_t_steps: int
        """
        super().__init__()

        self.max_out_t_steps: int = max_out_t_steps

        self.encoder: Module = Encoder(input_dim=input_dim_encoder,
                                       hidden_dim=hidden_dim_encoder,
                                       output_dim=output_dim_encoder,
                                       dropout_p=dropout_p_encoder)

        self.decoder: Module = Decoder(input_dim=output_dim_encoder * 2,
                                       output_dim=output_dim_h_decoder,
                                       nb_classes=nb_classes,
                                       dropout_p=dropout_p_decoder)
Пример #28
0
    def __init__(self, args):
        super(S3RecModel, self).__init__()
        self.item_embeddings = nn.Embedding(args.item_size,
                                            args.hidden_size,
                                            padding_idx=0)
        self.attribute_embeddings = nn.Embedding(args.attribute_size,
                                                 args.hidden_size,
                                                 padding_idx=0)
        self.position_embeddings = nn.Embedding(args.max_seq_length,
                                                args.hidden_size)
        self.item_encoder = Encoder(args)
        self.LayerNorm = LayerNorm(args.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(args.hidden_dropout_prob)
        self.args = args

        # add unique dense layer for 4 losses respectively
        self.aap_norm = nn.Linear(args.hidden_size, args.hidden_size)
        self.mip_norm = nn.Linear(args.hidden_size, args.hidden_size)
        self.map_norm = nn.Linear(args.hidden_size, args.hidden_size)
        self.sp_norm = nn.Linear(args.hidden_size, args.hidden_size)
        self.criterion = nn.BCELoss(reduction='none')
        self.apply(self.init_weights)
Пример #29
0
    def __init__(self,
                 word2idx,
                 emb_size,
                 hidden_sizes,
                 dropout,
                 rnn_type="LSTM",
                 pretrained_embs=None,
                 fixed_embs=False,
                 tied=None):
        super(BidirectionalLanguageModel, self).__init__()
        self.drop = nn.Dropout(dropout)

        self.encoder = Encoder(word2idx, emb_size, pretrained_embs, fixed_embs)
        self.decoder = Decoder(len(word2idx), hidden_sizes[-1], tied,
                               self.encoder)

        self.forward_lstm = StackedRNN(rnn_type, emb_size, hidden_sizes,
                                       dropout)
        self.backward_lstm = StackedRNN(rnn_type, emb_size, hidden_sizes,
                                        dropout)

        self.rnn_type = rnn_type
        self.hidden_sizes = hidden_sizes
        self.nlayers = len(hidden_sizes)
Пример #30
0
    def __init__(self, embed_dim=300, hidden_dim=256, inner_dim=2048,
                 n_head=2, N_en=6, N_de=6, dropout=0.1,
                 vocab_size=5000, sos_idx=2, eos_idx=3, pad_idx=0, unk_idx=1,
                 max_src_len=100, max_tgt_len=20, args=False):
        
        super(Transformer, self).__init__()

        #===Test the GPU availability
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        #--Token indexes & Properties
        self.sos, self.eos, self.pad, self.unk = sos_idx, eos_idx, pad_idx, unk_idx
        self.max_src_len = max_src_len
        self.max_tgt_len = max_tgt_len
        self.scale = embed_dim ** 0.5

        #===Base model(attn, enc, dec, ff)
        max_len = max(max_src_len, max_tgt_len)
        attn_enc_layer = ATTNLayer(
            embed_dim, n_head, hidden_dim, inner_dim, dropout, max_len, False)
        attn_dec_layer = ATTNLayer(
            embed_dim, n_head, hidden_dim, inner_dim, dropout, max_len, True)


        #===Main Archetecture(enc, dec)
        self.encoder = Encoder(attn_enc_layer, N_en, True)
        self.decoder = Decoder(attn_dec_layer, N_de, True)
        
        #===Embedding setting(src, tgt)
        self.embed = nn.Embedding(vocab_size, embed_dim)

        #===Fianl FC(logit2vocab)
        self.final = nn.Linear(embed_dim, vocab_size)

        #===Loss
        self.NLL = nn.NLLLoss(reduction='sum')