dataFrame.to_csv(nameFileExport2, index=False)

        #generamos el proceso estadisitico
        summaryObject = summaryScanProcess.summaryProcessClusteringScan(nameFileExport, pathResponse, ['Accuracy', 'Recall', 'Precision', 'F1'])
        summaryObject.createHistogram()
        summaryObject.createRankingFile()

        finishTime = time.time() - start_time
        termino = datetime.datetime.now()

        dictionary = {}
        dictionary.update({"inicio": str(inicio)})
        dictionary.update({"termino": str(termino)})
        dictionary.update({"ejecucion": finishTime})
        dictionary.update({"iteracionesCorrectas": iteracionesCorrectas})
        dictionary.update({"iteracionesIncorrectas": iteracionesIncorrectas})
        dictionary.update({"performanceSelected": args.performance})

        #agrego la informacion de los mejores modelos para cada medida de desempeno
        processModels = processParamsDict.processParams(pathResponse, ['Accuracy', 'Recall', 'Precision', 'F1'])
        processModels.getBestModels()
        dictionary.update({"modelSelecetd":processModels.listModels})

        nameFileExport = "%ssummaryProcess.json" % (pathResponse)
        with open(nameFileExport, 'w') as fp:
            json.dump(dictionary, fp)
    else:
        print "Data set input not exist, please check the input for name file data set"
else:
    print "Path result not exist, please check input for path result"
Пример #2
0
            summaryObject.createRankingFile()

            finishTime = time.time() - start_time
            termino = datetime.datetime.now()

            dictionary = {}
            dictionary.update({"inicio": str(inicio)})
            dictionary.update({"termino": str(termino)})
            dictionary.update({"ejecucion": finishTime})
            dictionary.update({"iteracionesCorrectas": iteracionesCorrectas})
            dictionary.update(
                {"iteracionesIncorrectas": iteracionesIncorrectas})

            dictionary.update({"performanceSelected": args.performance})

            #agrego la informacion de los mejores modelos para cada medida de desempeno
            processModels = processParamsDict.processParams(
                pathResponse, ['R_Score', 'Pearson', 'Spearman', 'Kendalltau'])
            processModels.getBestModels()
            dictionary.update({"modelSelecetd": processModels.listModels})

            nameFileExport = "%ssummaryProcess.json" % (pathResponse)
            with open(nameFileExport, 'w') as fp:
                json.dump(dictionary, fp)
        except:
            print "Error during exec algorithm"
    else:
        print "Data set input not exist, please check the input for name file data set"
else:
    print "Path result not exist, please check input for path result"