Пример #1
0
	def model(self):
		"""
		The main model function, takes and returns tensors.
		Defined in modules.

		"""

		with tf.variable_scope('First_Model') as scope:
			self.harm, self.ap, self.f0, self.vuv = modules.nr_wavenet(self.input_placeholder)
Пример #2
0
    def model(self):
        """
        The main model function, takes and returns tensors.
        Defined in modules.

        """
        with tf.variable_scope('Model') as scope:
            self.output_logits = nr_wavenet(self.input_placeholder,
                                            self.f0_placeholder, self.is_train)
Пример #3
0
def synth_file(file_name,
               file_path=config.wav_dir,
               show_plots=True,
               save_file=True):
    if file_name.startswith('ikala'):
        file_name = file_name[6:]
        file_path = config.wav_dir
        utils.write_ori_ikala(os.path.join(file_path, file_name), file_name)
        mode = 0
    elif file_name.startswith('mir'):
        file_name = file_name[4:]
        file_path = config.wav_dir_mir
        utils.write_ori_ikala(os.path.join(file_path, file_name), file_name)
        mode = 0
    elif file_name.startswith('med'):
        file_name = file_name[4:]
        file_path = config.wav_dir_med
        utils.write_ori_med(os.path.join(file_path, file_name), file_name)
        mode = 2
    else:
        mode = 1
        file_path = './'

    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')

    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    max_voc = np.array(stat_file["voc_stft_maximus"])
    min_voc = np.array(stat_file["voc_stft_minimus"])
    max_back = np.array(stat_file["back_stft_maximus"])
    min_back = np.array(stat_file["back_stft_minimus"])
    max_mix = np.array(max_voc) + np.array(max_back)

    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(config.batch_size,
                                                  config.max_phr_len,
                                                  config.input_features),
                                           name='input_placeholder')

        with tf.variable_scope('First_Model') as scope:
            harm, ap, f0, vuv = modules.nr_wavenet(input_placeholder)

            # harmy = harm_1+harm

        if config.use_gan:
            with tf.variable_scope('Generator') as scope:
                gen_op = modules.GAN_generator(harm)
        # with tf.variable_scope('Discriminator') as scope:
        #     D_real = modules.GAN_discriminator(target_placeholder[:,:,:60],input_placeholder)
        #     scope.reuse_variables()
        #     D_fake = modules.GAN_discriminator(gen_op,input_placeholder)

        saver = tf.train.Saver(max_to_keep=config.max_models_to_keep)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(config.log_dir_m1)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)

        mix_stft = utils.file_to_stft(os.path.join(file_path, file_name),
                                      mode=mode)

        targs = utils.input_to_feats(os.path.join(file_path, file_name),
                                     mode=mode)

        import pdb
        pdb.set_trace()

        # f0_sac = utils.file_to_sac(os.path.join(file_path,file_name))
        # f0_sac = (f0_sac-min_feat[-2])/(max_feat[-2]-min_feat[-2])

        in_batches, nchunks_in = utils.generate_overlapadd(mix_stft)
        in_batches = in_batches / max_mix
        # in_batches = utils.normalize(in_batches, 'mix_stft', mode=config.norm_mode_in)
        val_outer = []

        first_pred = []

        cleaner = []

        gan_op = []

        for in_batch in in_batches:
            val_harm, val_ap, val_f0, val_vuv = sess.run(
                [harm, ap, f0, vuv], feed_dict={input_placeholder: in_batch})
            if config.use_gan:
                val_op = sess.run(gen_op,
                                  feed_dict={input_placeholder: in_batch})

                gan_op.append(val_op)

            # first_pred.append(harm1)
            # cleaner.append(val_harm)
            val_harm = val_harm
            val_outs = np.concatenate((val_harm, val_ap, val_f0, val_vuv),
                                      axis=-1)
            val_outer.append(val_outs)

        val_outer = np.array(val_outer)
        val_outer = utils.overlapadd(val_outer, nchunks_in)
        val_outer[:, -1] = np.round(val_outer[:, -1])
        val_outer = val_outer[:targs.shape[0], :]
        val_outer = np.clip(val_outer, 0.0, 1.0)

        import pdb
        pdb.set_trace()

        #Test purposes only
        # first_pred = np.array(first_pred)
        # first_pred = utils.overlapadd(first_pred, nchunks_in)

        # cleaner = np.array(cleaner)
        # cleaner = utils.overlapadd(cleaner, nchunks_in)

        if config.use_gan:
            gan_op = np.array(gan_op)
            gan_op = utils.overlapadd(gan_op, nchunks_in)

        targs = (targs - min_feat) / (max_feat - min_feat)

        # first_pred = (first_pred-min_feat[:60])/(max_feat[:60]-min_feat[:60])
        # cleaner = (cleaner-min_feat[:60])/(max_feat[:60]-min_feat[:60])

        # ax1 = plt.subplot(311)
        # plt.imshow(targs[:,:60].T, origin='lower', aspect='auto')
        # # ax1.set_title("Harmonic Spectral Envelope", fontsize = 10)
        # ax2 = plt.subplot(312)
        # plt.imshow(targs[:,60:64].T, origin='lower', aspect='auto')
        # # ax2.set_title("Aperiodicity Envelope", fontsize = 10)
        # ax3 = plt.subplot(313)
        # plt.plot(targs[:,-2])
        # ax3.set_title("Fundamental Frequency Contour", fontsize = 10)
        if show_plots:

            # import pdb;pdb.set_trace()

            ins = val_outer[:, :60]
            outs = targs[:, :60]
            plt.figure(1)
            ax1 = plt.subplot(211)
            plt.imshow(ins.T, origin='lower', aspect='auto')
            ax1.set_title("Predicted Harm ", fontsize=10)
            ax2 = plt.subplot(212)
            plt.imshow(outs.T, origin='lower', aspect='auto')
            ax2.set_title("Ground Truth Harm ", fontsize=10)
            # ax1 = plt.subplot(413)
            # plt.imshow(first_pred.T, origin='lower', aspect='auto')
            # ax1.set_title("Initial Prediction ", fontsize = 10)
            # ax2 = plt.subplot(412)
            # plt.imshow(cleaner.T, origin='lower', aspect='auto')
            # ax2.set_title("Residual Added ", fontsize = 10)

            if config.use_gan:
                plt.figure(5)
                ax1 = plt.subplot(411)
                plt.imshow(ins.T, origin='lower', aspect='auto')
                ax1.set_title("Predicted Harm ", fontsize=10)
                ax2 = plt.subplot(414)
                plt.imshow(outs.T, origin='lower', aspect='auto')
                ax2.set_title("Ground Truth Harm ", fontsize=10)
                ax1 = plt.subplot(412)
                plt.imshow(gan_op.T, origin='lower', aspect='auto')
                ax1.set_title("GAN output ", fontsize=10)
                ax1 = plt.subplot(413)
                plt.imshow((gan_op[:ins.shape[0], :] + ins).T,
                           origin='lower',
                           aspect='auto')
                ax1.set_title("GAN output ", fontsize=10)

            plt.figure(2)
            ax1 = plt.subplot(211)
            plt.imshow(val_outer[:, 60:-2].T, origin='lower', aspect='auto')
            ax1.set_title("Predicted Aperiodic Part", fontsize=10)
            ax2 = plt.subplot(212)
            plt.imshow(targs[:, 60:-2].T, origin='lower', aspect='auto')
            ax2.set_title("Ground Truth Aperiodic Part", fontsize=10)

            plt.figure(3)

            f0_output = val_outer[:, -2] * (
                (max_feat[-2] - min_feat[-2]) + min_feat[-2])
            f0_output = f0_output * (1 - targs[:, -1])
            f0_output[f0_output == 0] = np.nan
            plt.plot(f0_output, label="Predicted Value")
            f0_gt = targs[:, -2] * (
                (max_feat[-2] - min_feat[-2]) + min_feat[-2])
            f0_gt = f0_gt * (1 - targs[:, -1])
            f0_gt[f0_gt == 0] = np.nan
            plt.plot(f0_gt, label="Ground Truth")
            f0_difference = np.nan_to_num(abs(f0_gt - f0_output))
            f0_greater = np.where(f0_difference > config.f0_threshold)
            diff_per = f0_greater[0].shape[0] / len(f0_output)
            plt.suptitle("Percentage correct = " +
                         '{:.3%}'.format(1 - diff_per))
            # import pdb;pdb.set_trace()

            # import pdb;pdb.set_trace()
            # uu = f0_sac[:,0]*(1-f0_sac[:,1])
            # uu[uu == 0] = np.nan
            # plt.plot(uu, label="Sac f0")
            plt.legend()
            plt.figure(4)
            ax1 = plt.subplot(211)
            plt.plot(val_outer[:, -1])
            ax1.set_title("Predicted Voiced/Unvoiced", fontsize=10)
            ax2 = plt.subplot(212)
            plt.plot(targs[:, -1])
            ax2.set_title("Ground Truth Voiced/Unvoiced", fontsize=10)
            plt.show()
        if save_file:

            val_outer = np.ascontiguousarray(val_outer *
                                             (max_feat - min_feat) + min_feat)
            targs = np.ascontiguousarray(targs * (max_feat - min_feat) +
                                         min_feat)

            # import pdb;pdb.set_trace()

            # val_outer = np.ascontiguousarray(utils.denormalize(val_outer,'feats', mode=config.norm_mode_out))
            try:
                utils.feats_to_audio(val_outer,
                                     file_name[:-4] + '_synth_pred_f0')
                print("File saved to %s" % config.val_dir + file_name[:-4] +
                      '_synth_pred_f0.wav')
            except:
                print("Couldn't synthesize with predicted f0")
            try:
                val_outer[:, -2:] = targs[:, -2:]
                utils.feats_to_audio(val_outer,
                                     file_name[:-4] + '_synth_ori_f0')
                print("File saved to %s" % config.val_dir + file_name[:-4] +
                      '_synth_ori_f0.wav')
            except:
                print("Couldn't synthesize with original f0")
Пример #4
0
def train(_):
    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')
    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(config.batch_size,
                                                  config.max_phr_len,
                                                  config.input_features),
                                           name='input_placeholder')
        tf.summary.histogram('inputs', input_placeholder)
        target_placeholder = tf.placeholder(tf.float32,
                                            shape=(config.batch_size,
                                                   config.max_phr_len,
                                                   config.output_features),
                                            name='target_placeholder')
        tf.summary.histogram('targets', target_placeholder)

        with tf.variable_scope('First_Model') as scope:
            harm, ap, f0, vuv = modules.nr_wavenet(input_placeholder)

            # tf.summary.histogram('initial_output', op)

            tf.summary.histogram('harm', harm)

            tf.summary.histogram('ap', ap)

            tf.summary.histogram('f0', f0)

            tf.summary.histogram('vuv', vuv)

        if config.use_gan:

            with tf.variable_scope('Generator') as scope:
                gen_op = modules.GAN_generator(harm)
            with tf.variable_scope('Discriminator') as scope:
                D_real = modules.GAN_discriminator(
                    target_placeholder[:, :, :60], input_placeholder)
                scope.reuse_variables()
                D_fake = modules.GAN_discriminator(gen_op + harmy,
                                                   input_placeholder)

            # Comment out these lines to train without GAN

            D_loss_real = -tf.reduce_mean(tf.log(D_real + 1e-12))
            D_loss_fake = -tf.reduce_mean(tf.log(1. - (D_fake + 1e-12)))

            D_loss = D_loss_real + D_loss_fake

            D_summary_real = tf.summary.scalar('Discriminator_Loss_Real',
                                               D_loss_real)
            D_summary_fake = tf.summary.scalar('Discriminator_Loss_Fake',
                                               D_loss_fake)

            G_loss_GAN = -tf.reduce_mean(tf.log(D_fake + 1e-12))
            G_loss_diff = tf.reduce_sum(
                tf.abs(gen_op + harmy - target_placeholder[:, :, :60]) *
                (1 - target_placeholder[:, :, -1:])) * 0.5
            G_loss = G_loss_GAN + G_loss_diff

            G_summary_GAN = tf.summary.scalar('Generator_Loss_GAN', G_loss_GAN)
            G_summary_diff = tf.summary.scalar('Generator_Loss_diff',
                                               G_loss_diff)

            vars = tf.trainable_variables()

            # import pdb;pdb.set_trace()

            d_params = [
                v for v in vars if v.name.startswith('Discriminator/D')
            ]
            g_params = [v for v in vars if v.name.startswith('Generator/G')]

            # import pdb;pdb.set_trace()

            # d_optimizer_grad = tf.train.GradientDescentOptimizer(learning_rate=config.gan_lr).minimize(D_loss, var_list=d_params)
            # g_optimizer = tf.train.GradientDescentOptimizer(learning_rate=config.gan_lr).minimize(G_loss, var_list=g_params)

            d_optimizer = tf.train.GradientDescentOptimizer(
                learning_rate=config.gan_lr).minimize(D_loss,
                                                      var_list=d_params)
            # g_optimizer_diff = tf.train.AdamOptimizer(learning_rate=config.gan_lr).minimize(G_loss_diff, var_list=g_params)
            g_optimizer = tf.train.AdamOptimizer(
                learning_rate=config.gan_lr).minimize(G_loss,
                                                      var_list=g_params)

        # initial_loss = tf.reduce_sum(tf.abs(op - target_placeholder[:,:,:60])*np.linspace(1.0,0.7,60)*(1-target_placeholder[:,:,-1:]))

        harm_loss = tf.reduce_sum(
            tf.abs(harm - target_placeholder[:, :, :60]) *
            np.linspace(1.0, 0.7, 60) * (1 - target_placeholder[:, :, -1:]))

        ap_loss = tf.reduce_sum(
            tf.abs(ap - target_placeholder[:, :, 60:-2]) *
            (1 - target_placeholder[:, :, -1:]))

        f0_loss = tf.reduce_sum(
            tf.abs(f0 - target_placeholder[:, :, -2:-1]) *
            (1 - target_placeholder[:, :, -1:]))

        # vuv_loss = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=, logits=vuv))

        vuv_loss = tf.reduce_mean(
            tf.reduce_sum(binary_cross(target_placeholder[:, :, -1:], vuv)))

        loss = harm_loss + ap_loss + vuv_loss + f0_loss * config.f0_weight

        # initial_summary = tf.summary.scalar('initial_loss', initial_loss)

        harm_summary = tf.summary.scalar('harm_loss', harm_loss)

        ap_summary = tf.summary.scalar('ap_loss', ap_loss)

        f0_summary = tf.summary.scalar('f0_loss', f0_loss)

        vuv_summary = tf.summary.scalar('vuv_loss', vuv_loss)

        loss_summary = tf.summary.scalar('total_loss', loss)

        global_step = tf.Variable(0, name='global_step', trainable=False)

        optimizer = tf.train.AdamOptimizer(learning_rate=config.init_lr)

        # optimizer_f0 = tf.train.AdamOptimizer(learning_rate = config.init_lr)

        train_function = optimizer.minimize(loss, global_step=global_step)

        # train_f0 = optimizer.minimize(f0_loss, global_step= global_step)

        # train_harm = optimizer.minimize(harm_loss, global_step= global_step)

        # train_ap = optimizer.minimize(ap_loss, global_step= global_step)

        # train_f0 = optimizer.minimize(f0_loss, global_step= global_step)

        # train_vuv = optimizer.minimize(vuv_loss, global_step= global_step)

        summary = tf.summary.merge_all()

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        saver = tf.train.Saver(max_to_keep=config.max_models_to_keep)
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(config.log_dir_m1)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            saver.restore(sess, ckpt.model_checkpoint_path)

        train_summary_writer = tf.summary.FileWriter(
            config.log_dir_m1 + 'train/', sess.graph)
        val_summary_writer = tf.summary.FileWriter(config.log_dir_m1 + 'val/',
                                                   sess.graph)

        start_epoch = int(
            sess.run(tf.train.get_global_step()) /
            (config.batches_per_epoch_train))

        print("Start from: %d" % start_epoch)
        f0_accs = []
        for epoch in xrange(start_epoch, config.num_epochs):
            val_f0_accs = []

            data_generator = data_gen()
            start_time = time.time()

            epoch_loss_harm = 0
            epoch_loss_ap = 0
            epoch_loss_f0 = 0
            epoch_loss_vuv = 0
            epoch_total_loss = 0
            # epoch_initial_loss = 0

            epoch_loss_harm_val = 0
            epoch_loss_ap_val = 0
            epoch_loss_f0_val = 0
            epoch_loss_vuv_val = 0
            epoch_total_loss_val = 0
            # epoch_initial_loss_val = 0

            if config.use_gan:
                epoch_loss_generator_GAN = 0
                epoch_loss_generator_diff = 0
                epoch_loss_discriminator_real = 0
                epoch_loss_discriminator_fake = 0

                val_epoch_loss_generator_GAN = 0
                val_epoch_loss_generator_diff = 0
                val_epoch_loss_discriminator_real = 0
                val_epoch_loss_discriminator_fake = 0

            batch_num = 0
            batch_num_val = 0
            val_generator = data_gen(mode='val')

            # val_generator = get_batches(train_filename=config.h5py_file_val, batches_per_epoch=config.batches_per_epoch_val_m1)

            with tf.variable_scope('Training'):

                for voc, feat in data_generator:
                    voc = np.clip(
                        voc + np.random.rand(config.max_phr_len,
                                             config.input_features) *
                        np.clip(np.random.rand(1), 0.0,
                                config.noise_threshold), 0.0, 1.0)

                    _, step_loss_harm, step_loss_ap, step_loss_f0, step_loss_vuv, step_total_loss = sess.run(
                        [
                            train_function, harm_loss, ap_loss, f0_loss,
                            vuv_loss, loss
                        ],
                        feed_dict={
                            input_placeholder: voc,
                            target_placeholder: feat
                        })
                    # _, step_loss_f0 = sess.run([train_f0, f0_loss], feed_dict={input_placeholder: voc,target_placeholder: feat})

                    if config.use_gan:
                        _, step_dis_loss_real, step_dis_loss_fake = sess.run(
                            [d_optimizer, D_loss_real, D_loss_fake],
                            feed_dict={
                                input_placeholder: voc,
                                target_placeholder: feat
                            })
                        _, step_gen_loss_GAN, step_gen_loss_diff = sess.run(
                            [g_optimizer, G_loss_GAN, G_loss_diff],
                            feed_dict={
                                input_placeholder: voc,
                                target_placeholder: feat
                            })
                    # else :
                    #     _, step_dis_loss_real, step_dis_loss_fake = sess.run([d_optimizer_grad, D_loss_real,D_loss_fake], feed_dict={input_placeholder: voc,target_placeholder: feat})
                    #     _, step_gen_loss_diff = sess.run([g_optimizer_diff, G_loss_diff], feed_dict={input_placeholder: voc,target_placeholder: feat})
                    #     step_gen_loss_GAN = 0

                    # _, step_loss_harm = sess.run([train_harm, harm_loss], feed_dict={input_placeholder: voc,target_placeholder: feat})
                    # _, step_loss_ap = sess.run([train_ap, ap_loss], feed_dict={input_placeholder: voc,target_placeholder: feat})
                    # _, step_loss_f0 = sess.run([train_f0, f0_loss], feed_dict={input_placeholder: voc,target_placeholder: feat})
                    # _, step_loss_vuv = sess.run([train_vuv, vuv_loss], feed_dict={input_placeholder: voc,target_placeholder: feat})

                    # epoch_initial_loss+=step_initial_loss
                    epoch_loss_harm += step_loss_harm
                    epoch_loss_ap += step_loss_ap
                    epoch_loss_f0 += step_loss_f0
                    epoch_loss_vuv += step_loss_vuv
                    epoch_total_loss += step_total_loss

                    if config.use_gan:

                        epoch_loss_generator_GAN += step_gen_loss_GAN
                        epoch_loss_generator_diff += step_gen_loss_diff
                        epoch_loss_discriminator_real += step_dis_loss_real
                        epoch_loss_discriminator_fake += step_dis_loss_fake

                    utils.progress(batch_num,
                                   config.batches_per_epoch_train,
                                   suffix='training done')
                    batch_num += 1

                # epoch_initial_loss = epoch_initial_loss/(config.batches_per_epoch_train *config.batch_size*config.max_phr_len*60)
                epoch_loss_harm = epoch_loss_harm / (
                    config.batches_per_epoch_train * config.batch_size *
                    config.max_phr_len * 60)
                epoch_loss_ap = epoch_loss_ap / (
                    config.batches_per_epoch_train * config.batch_size *
                    config.max_phr_len * 4)
                epoch_loss_f0 = epoch_loss_f0 / (
                    config.batches_per_epoch_train * config.batch_size *
                    config.max_phr_len)
                epoch_loss_vuv = epoch_loss_vuv / (
                    config.batches_per_epoch_train * config.batch_size *
                    config.max_phr_len)
                epoch_total_loss = epoch_total_loss / (
                    config.batches_per_epoch_train * config.batch_size *
                    config.max_phr_len * 66)

                if config.use_gan:

                    epoch_loss_generator_GAN = epoch_loss_generator_GAN / (
                        config.batches_per_epoch_train * config.batch_size)
                    epoch_loss_generator_diff = epoch_loss_generator_diff / (
                        config.batches_per_epoch_train * config.batch_size *
                        config.max_phr_len * 60)
                    epoch_loss_discriminator_real = epoch_loss_discriminator_real / (
                        config.batches_per_epoch_train * config.batch_size)
                    epoch_loss_discriminator_fake = epoch_loss_discriminator_fake / (
                        config.batches_per_epoch_train * config.batch_size)

                summary_str = sess.run(summary,
                                       feed_dict={
                                           input_placeholder: voc,
                                           target_placeholder: feat
                                       })
                train_summary_writer.add_summary(summary_str, epoch)
                # summary_writer.add_summary(summary_str_val, epoch)
                train_summary_writer.flush()

            with tf.variable_scope('Validation'):

                for voc, feat in val_generator:

                    step_loss_harm_val = sess.run(harm_loss,
                                                  feed_dict={
                                                      input_placeholder: voc,
                                                      target_placeholder: feat
                                                  })
                    step_loss_ap_val = sess.run(ap_loss,
                                                feed_dict={
                                                    input_placeholder: voc,
                                                    target_placeholder: feat
                                                })
                    step_loss_f0_val = sess.run(f0_loss,
                                                feed_dict={
                                                    input_placeholder: voc,
                                                    target_placeholder: feat
                                                })
                    step_loss_vuv_val = sess.run(vuv_loss,
                                                 feed_dict={
                                                     input_placeholder: voc,
                                                     target_placeholder: feat
                                                 })
                    step_total_loss_val = sess.run(loss,
                                                   feed_dict={
                                                       input_placeholder: voc,
                                                       target_placeholder: feat
                                                   })

                    epoch_loss_harm_val += step_loss_harm_val
                    epoch_loss_ap_val += step_loss_ap_val
                    epoch_loss_f0_val += step_loss_f0_val
                    epoch_loss_vuv_val += step_loss_vuv_val
                    epoch_total_loss_val += step_total_loss_val

                    if config.use_gan:

                        val_epoch_loss_generator_GAN += step_gen_loss_GAN
                        val_epoch_loss_generator_diff += step_gen_loss_diff
                        val_epoch_loss_discriminator_real += step_dis_loss_real
                        val_epoch_loss_discriminator_fake += step_dis_loss_fake

                    utils.progress(batch_num_val,
                                   config.batches_per_epoch_val_m1,
                                   suffix='validiation done')
                    batch_num_val += 1

                # f0_accs.append(np.mean(val_f0_accs))

                # epoch_initial_loss_val = epoch_initial_loss_val/(config.batches_per_epoch_val_m1 *config.batch_size*config.max_phr_len*60)
                epoch_loss_harm_val = epoch_loss_harm_val / (
                    batch_num_val * config.batch_size * config.max_phr_len *
                    60)
                epoch_loss_ap_val = epoch_loss_ap_val / (
                    batch_num_val * config.batch_size * config.max_phr_len * 4)
                epoch_loss_f0_val = epoch_loss_f0_val / (
                    batch_num_val * config.batch_size * config.max_phr_len)
                epoch_loss_vuv_val = epoch_loss_vuv_val / (
                    batch_num_val * config.batch_size * config.max_phr_len)
                epoch_total_loss_val = epoch_total_loss_val / (
                    batch_num_val * config.batch_size * config.max_phr_len *
                    66)

                if config.use_gan:

                    val_epoch_loss_generator_GAN = val_epoch_loss_generator_GAN / (
                        config.batches_per_epoch_val_m1 * config.batch_size)
                    val_epoch_loss_generator_diff = val_epoch_loss_generator_diff / (
                        config.batches_per_epoch_val_m1 * config.batch_size *
                        config.max_phr_len * 60)
                    val_epoch_loss_discriminator_real = val_epoch_loss_discriminator_real / (
                        config.batches_per_epoch_val_m1 * config.batch_size)
                    val_epoch_loss_discriminator_fake = val_epoch_loss_discriminator_fake / (
                        config.batches_per_epoch_val_m1 * config.batch_size)

                summary_str = sess.run(summary,
                                       feed_dict={
                                           input_placeholder: voc,
                                           target_placeholder: feat
                                       })
                val_summary_writer.add_summary(summary_str, epoch)
                # summary_writer.add_summary(summary_str_val, epoch)
                val_summary_writer.flush()

            duration = time.time() - start_time

            # np.save('./ikala_eval/accuracies', f0_accs)

            if (epoch + 1) % config.print_every == 0:
                print('epoch %d: Harm Training Loss = %.10f (%.3f sec)' %
                      (epoch + 1, epoch_loss_harm, duration))
                print('        : Ap Training Loss = %.10f ' % (epoch_loss_ap))
                print('        : F0 Training Loss = %.10f ' % (epoch_loss_f0))
                print('        : VUV Training Loss = %.10f ' %
                      (epoch_loss_vuv))
                # print('        : Initial Training Loss = %.10f ' % (epoch_initial_loss))

                if config.use_gan:

                    print('        : Gen GAN Training Loss = %.10f ' %
                          (epoch_loss_generator_GAN))
                    print('        : Gen diff Training Loss = %.10f ' %
                          (epoch_loss_generator_diff))
                    print(
                        '        : Discriminator Training Loss Real = %.10f ' %
                        (epoch_loss_discriminator_real))
                    print(
                        '        : Discriminator Training Loss Fake = %.10f ' %
                        (epoch_loss_discriminator_fake))

                print('        : Harm Validation Loss = %.10f ' %
                      (epoch_loss_harm_val))
                print('        : Ap Validation Loss = %.10f ' %
                      (epoch_loss_ap_val))
                print('        : F0 Validation Loss = %.10f ' %
                      (epoch_loss_f0_val))
                print('        : VUV Validation Loss = %.10f ' %
                      (epoch_loss_vuv_val))

                # if (epoch + 1) % config.save_every == 0 or (epoch + 1) == config.num_epochs:
                # print('        : Mean F0 IKala Accuracy  = %.10f ' % (np.mean(val_f0_accs)))

                # print('        : Mean F0 IKala Accuracy = '+'%{1:.{0}f}%'.format(np.mean(val_f0_accs)))
                # print('        : Initial Validation Loss = %.10f ' % (epoch_initial_loss_val))

                if config.use_gan:

                    print('        : Gen GAN Validation Loss = %.10f ' %
                          (val_epoch_loss_generator_GAN))
                    print('        : Gen diff Validation Loss = %.10f ' %
                          (val_epoch_loss_generator_diff))
                    print(
                        '        : Discriminator Validation Loss Real = %.10f '
                        % (val_epoch_loss_discriminator_real))
                    print(
                        '        : Discriminator Validation Loss Fake = %.10f '
                        % (val_epoch_loss_discriminator_fake))

            if (epoch + 1) % config.save_every == 0 or (
                    epoch + 1) == config.num_epochs:
                utils.list_to_file(
                    val_f0_accs,
                    './ikala_eval/accuracies_' + str(epoch + 1) + '.txt')
                checkpoint_file = os.path.join(config.log_dir_m1, 'model.ckpt')
                saver.save(sess, checkpoint_file, global_step=epoch)
Пример #5
0
def eval_file():
    file_path = config.wav_dir

    # log_dir = './log_ikala_notrain/'
    log_dir = config.log_dir

    mode = 0

    stat_file = h5py.File(config.stat_dir + 'stats.hdf5', mode='r')

    max_feat = np.array(stat_file["feats_maximus"])
    min_feat = np.array(stat_file["feats_minimus"])
    max_voc = np.array(stat_file["voc_stft_maximus"])
    min_voc = np.array(stat_file["voc_stft_minimus"])
    max_back = np.array(stat_file["back_stft_maximus"])
    min_back = np.array(stat_file["back_stft_minimus"])
    max_mix = np.array(max_voc) + np.array(max_back)

    with tf.Graph().as_default():

        input_placeholder = tf.placeholder(tf.float32,
                                           shape=(config.batch_size,
                                                  config.max_phr_len,
                                                  config.input_features),
                                           name='input_placeholder')

        with tf.variable_scope('First_Model') as scope:
            harm, ap, f0, vuv = modules.nr_wavenet(input_placeholder)

        saver = tf.train.Saver(max_to_keep=config.max_models_to_keep)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        sess = tf.Session()

        sess.run(init_op)

        ckpt = tf.train.get_checkpoint_state(log_dir)

        if ckpt and ckpt.model_checkpoint_path:
            print("Using the model in %s" % ckpt.model_checkpoint_path)
            # saver.restore(sess, ckpt.model_checkpoint_path)
            saver.restore(sess, './log/model.ckpt-59')

        # import pdb;pdb.set_trace()

        files = [
            x for x in os.listdir(config.wav_dir)
            if x.endswith('.wav') and not x.startswith('.')
        ]
        diffs = []
        count = 0
        for file_name in files:

            count += 1

            mix_stft = utils.file_to_stft(os.path.join(file_path, file_name),
                                          mode=mode)

            targs = utils.input_to_feats(os.path.join(file_path, file_name),
                                         mode=mode)

            # f0_sac = utils.file_to_sac(os.path.join(file_path,file_name))
            # f0_sac = (f0_sac-min_feat[-2])/(max_feat[-2]-min_feat[-2])

            in_batches, nchunks_in = utils.generate_overlapadd(mix_stft)
            in_batches = in_batches / max_mix
            # in_batches = utils.normalize(in_batches, 'mix_stft', mode=config.norm_mode_in)
            val_outer = []

            first_pred = []

            cleaner = []

            gan_op = []

            for in_batch in in_batches:
                val_harm, val_ap, val_f0, val_vuv = sess.run(
                    [harm, ap, f0, vuv],
                    feed_dict={input_placeholder: in_batch})
                if config.use_gan:
                    val_op = sess.run(gen_op,
                                      feed_dict={input_placeholder: in_batch})

                    gan_op.append(val_op)

                # first_pred.append(harm1)
                # cleaner.append(val_harm)
                val_harm = val_harm
                val_outs = np.concatenate((val_harm, val_ap, val_f0, val_vuv),
                                          axis=-1)
                val_outer.append(val_outs)

            val_outer = np.array(val_outer)
            val_outer = utils.overlapadd(val_outer, nchunks_in)
            val_outer[:, -1] = np.round(val_outer[:, -1])
            val_outer = val_outer[:targs.shape[0], :]
            val_outer = np.clip(val_outer, 0.0, 1.0)

            #Test purposes only
            # first_pred = np.array(first_pred)
            # first_pred = utils.overlapadd(first_pred, nchunks_in)

            # cleaner = np.array(cleaner)
            # cleaner = utils.overlapadd(cleaner, nchunks_in)

            f0_output = val_outer[:, -2] * (
                (max_feat[-2] - min_feat[-2]) + min_feat[-2])
            f0_output = f0_output * (1 - targs[:, -1])
            f0_output = utils.new_base_to_hertz(f0_output)
            f0_gt = targs[:, -2]
            f0_gt = f0_gt * (1 - targs[:, -1])
            f0_gt = utils.new_base_to_hertz(f0_gt)
            f0_outputs = []
            gt_outputs = []
            for i, f0_o in enumerate(f0_output):
                f0_outputs.append(
                    str(i * 0.00580498866 * 10000000) + ' ' + str(f0_o))

            for i, f0_o in enumerate(f0_gt):
                gt_outputs.append(
                    str(i * 0.00580498866 * 10000000) + ' ' + str(f0_o))

            utils.list_to_file(
                f0_outputs, './ikala_eval/net_out/' + file_name[:-4] + '.pv')
            utils.list_to_file(gt_outputs,
                               './ikala_eval/sac_gt/' + file_name[:-4] + '.pv')
            #     f0_difference = np.nan_to_num(abs(f0_gt-f0_output))
            #     f0_greater = np.where(f0_difference>config.f0_threshold)

            #     diff_per = f0_greater[0].shape[0]/len(f0_output)
            #     diffs.append(str(1-diff_per))
            utils.progress(count, len(files))