val_list[3] = ctypes.c_void_p(subg_vals.numpy().ctypes.data) self.lib.PrepareLoopyBP(self.batch_graph_handle, ctypes.cast(idx_list, ctypes.c_void_p), ctypes.cast(val_list, ctypes.c_void_p)) n2e_sp = torch.sparse.FloatTensor(n2e_idxes, n2e_vals, torch.Size([total_num_edges * 2, total_num_nodes])) e2e_sp = torch.sparse.FloatTensor(e2e_idxes, e2e_vals, torch.Size([total_num_edges * 2, total_num_edges * 2])) e2n_sp = torch.sparse.FloatTensor(e2n_idxes, e2n_vals, torch.Size([total_num_nodes, total_num_edges * 2])) subg_sp = torch.sparse.FloatTensor(subg_idxes, subg_vals, torch.Size([len(graph_list), total_num_nodes])) return n2e_sp, e2e_sp, e2n_sp, subg_sp dll_path = '%s/build/dll/libs2v.so' % os.path.dirname(os.path.realpath(__file__)) if os.path.exists(dll_path): S2VLIB = _s2v_lib(sys.argv) else: S2VLIB = None if __name__ == '__main__': sys.path.append('%s/../harvard_cep' % os.path.dirname(os.path.realpath(__file__))) from util import resampling_idxes, load_raw_data from mol_lib import MOLLIB, MolGraph raw_data_dict = load_raw_data() test_data = MOLLIB.LoadMolGraph('test', raw_data_dict['test']) batch_graph = test_data[0:10] S2VLIB.PrepareLoopyBP(batch_graph)
regressor = Regressor() if cmd_args.mode == 'gpu': regressor = regressor.cuda() if cmd_args.saved_model is not None and cmd_args.saved_model != '': if os.path.isfile(cmd_args.saved_model): print('loading model from %s' % cmd_args.saved_model) if cmd_args.mode == 'cpu': regressor.load_state_dict( torch.load(cmd_args.saved_model, map_location=lambda storage, loc: storage)) else: regressor.load_state_dict(torch.load(cmd_args.saved_model)) if cmd_args.phase == 'test': test_data = MOLLIB.LoadMolGraph('test', raw_data_dict['test']) test_loss = loop_dataset(test_data, regressor, list(range(len(test_data)))) print('\033[93maverage test loss: mae %.5f rmse %.5f\033[0m' % (test_loss[0], test_loss[1])) sys.exit() train_idxes = resampling_idxes(raw_data_dict) cooked_data_dict = {} for d in raw_data_dict: cooked_data_dict[d] = MOLLIB.LoadMolGraph(d, raw_data_dict[d]) optimizer = optim.Adam(regressor.parameters(), lr=cmd_args.learning_rate) iter_train = (len(train_idxes) + (cmd_args.batch_size - 1)) // cmd_args.batch_size