Пример #1
0
def _get_sequence(mol: Molecule, sel):
    sel_mask = mol.atomselect(sel)
    protein_mask = mol.atomselect("protein")
    nucleic_mask = mol.atomselect("nucleic")
    if any(protein_mask & sel_mask) and any(nucleic_mask & sel_mask):
        raise RuntimeError(
            "Your selection contains both protein and nucleic residues. You need to clarify which selection to align."
        )
    molseg = "protein" if any(protein_mask) else "nucleic"
    seqmol, seqidx = mol.sequence(noseg=True, return_idx=True, sel=sel, _logger=False)
    seqidx = seqidx[molseg]
    seqmol = seqmol[molseg]
    segment_type = molseg
    return seqmol, seqidx, segment_type
Пример #2
0
    def test_tmscore(self):
        from moleculekit.molecule import Molecule

        expectedTMscore = np.array([0.21418524, 0.2367377, 0.23433833, 0.21362964, 0.20935164,
                                    0.20279461, 0.27012895, 0.22675238, 0.21230793, 0.2372011])
        expectedRMSD = np.array([3.70322128, 3.43637027, 3.188193, 3.84455877, 3.53053882,
                                 3.46781854, 2.93777629, 2.97978692, 2.70792428, 2.63051318])

        mol = Molecule(os.path.join(home(dataDir='tmscore'), 'filtered.pdb'))
        mol.read(os.path.join(home(dataDir='tmscore'), 'traj.xtc'))
        ref = Molecule(os.path.join(home(dataDir='tmscore'), 'ntl9_2hbb.pdb'))
        tmscore, rmsd = molTMscore(mol, ref, mol.atomselect('protein'), ref.atomselect('protein'))

        self.assertTrue(np.allclose(tmscore, expectedTMscore))
        self.assertTrue(np.allclose(rmsd, expectedRMSD))
Пример #3
0
def _filtSim(i, sims, outFolder, filterSel):
    name = _simName(sims[i].trajectory[0])
    directory = path.join(outFolder, name)
    if not path.exists(directory):
        makedirs(directory)

    logger.debug("Processing trajectory " + name)

    fmolfile = [
        path.join(outFolder, "filtered.psf"),
        path.join(outFolder, "filtered.pdb"),
    ]
    (traj, outtraj) = _renameSims(sims[i].trajectory, name, outFolder)
    if not traj:
        ftrajectory = _autoDetectTrajectories(path.join(outFolder, name))
        numframes = _getNumFrames(sims[i], ftrajectory)
        return Sim(
            simid=sims[i].simid,
            parent=sims[i],
            input=None,
            trajectory=ftrajectory,
            molfile=fmolfile,
            numframes=numframes,
        )

    try:
        from moleculekit.molecule import Molecule

        mol = Molecule(sims[i].molfile)
    except Exception as e:
        logger.warning("Error! Skipping simulation " + name +
                       " due to error: " + str(e))
        return

    sel = mol.atomselect(filterSel)

    for j in range(0, len(traj)):
        try:
            mol.read(traj[j])
        except IOError as e:
            logger.warning("{}, skipping trajectory".format(e))
            break

        mol.write(outtraj[j], sel)

    ftrajectory = _autoDetectTrajectories(path.join(outFolder, name))
    numframes = _getNumFrames(sims[i], ftrajectory)
    return Sim(
        simid=sims[i].simid,
        parent=sims[i],
        input=None,
        trajectory=ftrajectory,
        molfile=fmolfile,
        numframes=numframes,
    )
Пример #4
0
    def write(self, inputdir, outputdir):
        """ Writes the production protocol and files into a folder.

        Parameters
        ----------
        inputdir : str
            Path to a directory containing the files produced by a equilibration process.
        outputdir : str
            Directory where to write the production setup files.
        """
        from moleculekit.molecule import Molecule

        # Do version consistency check
        if (self._version == 2 and not isinstance(self.acemd, Acemd2)) and \
                (self._version == 3 and not isinstance(self.acemd, Acemd)):
            raise RuntimeError(
                'Acemd object version ({}) inconsistent with protocol version at instantiation '
                '({})'.format(type(self.acemd), self._version))

        self._findFiles(inputdir)
        self._amberFixes()

        if self._version == 2:
            self.acemd.temperature = str(self.temperature)
            self.acemd.langevintemp = str(self.temperature)
        elif self._version == 3:
            self.acemd.temperature = self.temperature
            self.acemd.thermostattemp = self.temperature

        from htmd.units import convert
        numsteps = convert(self.timeunits,
                           'timesteps',
                           self.runtime,
                           timestep=self.acemd.timestep)
        if self._version == 3:
            self.acemd.run = str(numsteps)

        pdbfile = os.path.join(inputdir, self.acemd.coordinates)
        inmol = Molecule(pdbfile)

        if np.any(inmol.atomselect('lipids')) and not self.useconstantratio:
            logger.warning(
                'Lipids detected in input structure. We highly recommend setting useconstantratio=True '
                'for membrane simulations.')

        if self._version == 2:
            if self.restraints:
                raise RuntimeWarning(
                    'restraints are only available on {}(_version=3)'.format(
                        self.__class__.__name__))
            if self.fb_k > 0:  # use TCL only for flatbottom
                self.acemd.tclforces = 'on'
                if isinstance(self.acemd.TCL, tuple):
                    tcl = list(self.acemd.TCL)
                    tcl[0] = tcl[0].format(
                        NUMSTEPS=numsteps,
                        TEMPERATURE=self.temperature,
                        KCONST=self.fb_k,
                        REFINDEX=' '.join(
                            map(str, inmol.get('index', self.fb_reference))),
                        SELINDEX=' '.join(
                            map(str, inmol.get('index', self.fb_selection))),
                        BOX=' '.join(map(str, self.fb_box)))
                    self.acemd.TCL = tcl[0] + tcl[1]
                else:
                    logger.warning(
                        '{} default TCL was already formatted.'.format(
                            self.__class__.__name__))
            else:
                self.acemd.TCL = 'set numsteps {NUMSTEPS}\n'.format(
                    NUMSTEPS=numsteps)
            if self.useconstraints:
                # Turn on constraints
                self.acemd.constraints = 'on'
                self.acemd.constraintscaling = '1.0'
            else:
                if len(self.constraints) != 0:
                    logger.warning(
                        'You have setup constraints to {} but constraints are turned off. '
                        'If you want to use constraints, define '
                        'useconstraints=True'.format(self.constraints))
        elif self._version == 3:
            if self.restraints is not None:
                logger.info(
                    'Using user-provided restraints and ignoring constraints and fb_potential'
                )
                self.acemd.restraints = self.restraints
            else:
                restraints = list()
                if self.fb_k > 0:
                    logger.warning(
                        'Converting fb_potential to restraints. This is a convenience '
                        'functional conversion. We recommend start using restraints with '
                        '{}(_version=3)'.format(self.__class__.__name__))
                    restraints += self._fb_potential2restraints(inputdir)
                if self.useconstraints:
                    logger.warning(
                        'Converting constraints to restraints. This is a convenience '
                        'functional conversion. We recommend start using restraints with '
                        '{}(_version=3)'.format(self.__class__.__name__))
                    restraints += self._constraints2restraints()
                else:
                    if len(self.constraints) != 0:
                        logger.warning(
                            'You have setup constraints to {} but constraints are turned off. '
                            'If you want to use constraints, define '
                            'useconstraints=True'.format(self.constraints))
                if len(restraints) != 0:
                    self.acemd.restraints = restraints

        if self.useconstantratio:
            self.acemd.useconstantratio = 'on'

        if self.adaptive:
            self.acemd.binvelocities = None

        self.acemd.setup(inputdir, outputdir, overwrite=True)

        if self._version == 2:
            # Adding constraints by writing them to the consref file
            if self.useconstraints:
                inconsreffile = os.path.join(inputdir, self.acemd.consref)
                consrefmol = Molecule(inconsreffile)
                consrefmol.set('occupancy', 0)
                consrefmol.set('beta', 0)
                if len(self.constraints) == 0:
                    raise RuntimeError(
                        'You have set the production to use constraints (useconstraints=True), but have '
                        'not defined any constraints (constraints={}).')
                else:
                    for sel in self.constraints:
                        consrefmol.set('beta', self.constraints[sel], sel)
                outconsreffile = os.path.join(outputdir, self.acemd.consref)
                consrefmol.write(outconsreffile)
Пример #5
0
    def write(self, inputdir, outputdir):
        """ Writes the production protocol and files into a folder.

        Parameters
        ----------
        inputdir : str
            Path to a directory containing the files produced by a equilibration process.
        outputdir : str
            Directory where to write the production setup files.
        """
        self._findFiles(inputdir)
        self._amberFixes()

        from htmd.units import convert
        numsteps = convert(self.timeunits,
                           'timesteps',
                           self.runtime,
                           timestep=self.acemd.timestep)

        pdbfile = os.path.join(inputdir, self.acemd.coordinates)
        inmol = Molecule(pdbfile)

        if np.any(inmol.atomselect('lipids')) and not self.useconstantratio:
            logger.warning(
                'Lipids detected in input structure. We highly recommend setting useconstantratio=True '
                'for membrane simulations.')

        if self.fb_k > 0:  # use TCL only for flatbottom
            self.acemd.tclforces = 'on'
            tcl = list(self.acemd.TCL)
            tcl[0] = tcl[0].format(
                NUMSTEPS=numsteps,
                TEMPERATURE=self.temperature,
                KCONST=self.fb_k,
                REFINDEX=' '.join(
                    map(str, inmol.get('index', self.fb_reference))),
                SELINDEX=' '.join(
                    map(str, inmol.get('index', self.fb_selection))),
                BOX=' '.join(map(str, self.fb_box)))
            self.acemd.TCL = tcl[0] + tcl[1]
        else:
            self.acemd.TCL = 'set numsteps {NUMSTEPS}\n' \
                             'set temperature {TEMPERATURE}\n'.format(NUMSTEPS=numsteps, TEMPERATURE=self.temperature)

        if self.useconstraints:
            # Turn on constraints
            self.acemd.constraints = 'on'
            self.acemd.constraintscaling = '1.0'
        else:
            if len(self.constraints) != 0:
                logger.warning(
                    'You have setup constraints to {} but constraints are turned off. '
                    'If you want to use constraints, define useconstraints=True'
                    .format(self.constraints))

        if self.useconstantratio:
            self.acemd.useconstantratio = 'on'

        if self.adaptive:
            self.acemd.binvelocities = None

        self.acemd.setup(inputdir, outputdir, overwrite=True)

        # Adding constraints by writing them to the consref file
        if self.useconstraints:
            inconsreffile = os.path.join(inputdir, self.acemd.consref)
            consrefmol = Molecule(inconsreffile)
            consrefmol.set('occupancy', 0)
            consrefmol.set('beta', 0)
            if len(self.constraints) == 0:
                raise RuntimeError(
                    'You have set the production to use constraints (useconstraints=True), but have not '
                    'defined any constraints (constraints={}).')
            else:
                for sel in self.constraints:
                    consrefmol.set('beta', self.constraints[sel], sel)
            outconsreffile = os.path.join(outputdir, self.acemd.consref)
            consrefmol.write(outconsreffile)
Пример #6
0
class MutualInformation:
    def __init__(self, model, mol=None, fstep=0.1, skip=1):
        """ Class that calculates the mutual information of protein residues.

        Parameters
        ----------
        model : :class:`Model <htmd.model.Model>` object
            A Model object with a calculated MSM
        mol : :class:`Molecule <moleculekit.molecule.Molecule>` object
            A reference molecule from which to obtain structural information. By default model.data.simlist[0].molfile
            will be used.
        fstep : float
            The frame step of the simulations
        skip : int
            Frame skipping

        Examples
        --------
        >>> from htmd.mutualinformation import MutualInformation
        >>> from htmd.ui import *
        >>>
        >>> sims = simlist(glob('./filtered/*/'), './filtered/filtered.pdb')
        >>> mol = Molecule('./filtered/filtered.pdb')
        >>>
        >>> metr = Metric(sims)
        >>> metr.set(MetricDihedral())
        >>> datadih = metr.project()
        >>> datadih.fstep = 0.1
        >>> datadih.dropTraj()
        >>>
        >>> metr = Metric(datadih.simlist)
        >>> metr.set(MetricSelfDistance('protein and name CA', metric='contacts'))
        >>> dataco = metr.project()
        >>> dataco.fstep = 0.1
        >>> dataco.dropTraj()
        >>>
        >>> tica = TICA(datadih, 20, units='ns')
        >>> datatica = tica.project(3)
        >>> datatica.cluster(MiniBatchKMeans(n_clusters=1500))
        >>> model = Model(datatica)
        >>> model.markovModel(12, 4, units='ns')
        >>>
        >>> mu = MutualInformation(model)
        >>> mu.calculate()
        >>> mu.saveMI('./mi_matrix.npy')
        >>> mu.weightGraph(dataco, 0.005)
        >>> mu.save_graphml('./weightgraph.graphml')
        """
        self.model = model

        self.mol = mol
        if mol is None:
            self.mol = Molecule(self.model.data.simlist[0].molfile)

        self._computeChiDihedrals(fstep=fstep, skip=skip)

        self.bindihcat = self._histogram()  # Lasts two minutes
        self.resids = self.mol.get('resid', 'name CA')
        self.residmap = np.ones(self.mol.resid.max() + 1, dtype=int) * -1
        self.residmap[self.resids] = np.arange(len(self.resids))

        self.mi_matrix = None
        self.graph_array = None
        self.graph = None


    def calculate(self, njobs=1):
        """
        Parameters
        ----------
        njobs : int
            Number of parallel jobs to spawn for the calculation of MI
        """
        from htmd.config import _config
        from htmd.parallelprogress import ParallelExecutor
        numchi = self.chi.numDimensions
        statdist = self.model.msm.stationary_distribution
        stconcat = np.concatenate(self.model.data.St)
        microcat = self.model.micro_ofcluster[stconcat]

        aprun = ParallelExecutor(n_jobs=njobs)
        res = aprun(total=numchi, desc='Calculating MI')(delayed(self._parallelAll)(numchi, dih1, 4, self.model.micronum, self.bindihcat, microcat, statdist) for dih1 in range(numchi))
        MI_all = np.zeros((len(self.resids), len(self.resids)))
        for r in res:
            dihcounts = r[0]
            pairs = r[1]
            for dihc, p in zip(dihcounts, pairs):
                dih1, dih2 = p
                if dih1 == dih2:
                    continue
                resid1 = self.residmap[self.mol.resid[self.chi.description.atomIndexes[dih1][0]]]
                resid2 = self.residmap[self.mol.resid[self.chi.description.atomIndexes[dih2][0]]]
                MI_all[resid1][resid2] = self._calcMutualInfo(dihc)
        self.mi_matrix = self._cleanautocorrelations(MI_all)

    def _computeChiDihedrals(self, fstep=0.1, skip=1):
        chis = []
        protmol = self.mol.copy()
        protmol.filter('protein')
        caidx = self.mol.atomselect('protein and name CA')
        resids = self.mol.resid[caidx]
        resnames = self.mol.resname[caidx]
        for residue, resname in zip(resids, resnames):
            ch = Dihedral.chi1(protmol, residue)
            if ch is not None:
                chis.append(ch)

        metr = Metric(self.model.data.simlist, skip=skip)
        metr.set(MetricDihedral(chis, sincos=False))
        data = metr.project()
        data.fstep = fstep
        self.chi = data

    def _histogram(self):
        condata = np.concatenate(self.chi.dat)
        bins = np.array([-180, -150, -90, -30, 0, 30, 90, 150, 180])
        dic = {1: 3, 2: 0, 3: 1, 4: 0, 5: 0, 6: 2, 7: 0, 8: 3, 9:3}
        binneddih = np.zeros([condata.shape[0], condata.shape[1]])
        for dihedral in range(condata.shape[1]):
            binning = np.digitize(condata[:, dihedral], bins)
            binneddih[:, dihedral] = [dic[n] if n in dic.keys() else n for n in binning]
        return binneddih

    def _calcMutualInfo(self, contingency):
        # Ripped out of sklearn since it converts floats to integers without warning which breaks our use-case
        from math import log
        nzx, nzy = np.nonzero(contingency)
        nz_val = contingency[nzx, nzy]
        contingency_sum = contingency.sum()
        pi = np.ravel(contingency.sum(axis=1))
        pj = np.ravel(contingency.sum(axis=0))
        log_contingency_nm = np.log(nz_val)
        contingency_nm = nz_val / contingency_sum
        # Don't need to calculate the full outer product, just for non-zeroes
        outer = pi.take(nzx) * pj.take(nzy)
        log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum())
        mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) +
              contingency_nm * log_outer)
        return mi.sum()

    def _parallelAll(self, numdih, dih1, numbins, micronum, bindihcat, microcat, stat_dist):
        results = []
        resultpairs = []
        for dih2 in range(dih1, numdih):
            dihcounts = np.zeros((numbins, numbins, micronum))

            # Find pairs of dihedrals (keys) and which absolute frames they occur in (vals)
            df = pd.DataFrame({'a': list(zip(bindihcat[:, dih1], bindihcat[:, dih2]))})
            gg = df.groupby(by=df.a).groups

            for pair in gg:
                microsofpairs = microcat[gg[pair]]  # Get the microstates of all frames having given dihedral pair
                microsofpairs = np.delete(microsofpairs, np.where(microsofpairs == -1)[0])  # Delete dropped clusters
                counts = np.bincount(microsofpairs)  # Count number of frames with that pair for each microstate (0, max_micro_seen)
                dihcounts[int(pair[0]), int(pair[1]), :len(counts)] += counts  # Add the counts
            dihcounts /= dihcounts.sum(axis=0).sum(axis=0)  # Normalize all slices by total counts in each microstate
            dihcounts *= stat_dist  # Multiply by stationary distribution of each state
            dihcounts = np.sum(dihcounts, axis=2)  # Calculate the weighted sum over all states
            results.append(dihcounts)
            resultpairs.append((dih1, dih2))

        return results, resultpairs

    def _cleanautocorrelations(self, mi):
        # TODO: vectorize this
        # np.diag(np.ones(3), k=-1).astype(bool) | np.diag(np.ones(3), k=1).astype(bool) | np.diag(np.ones(4)).astype(bool)
        for i in range(mi.shape[0]):
            for j in range(mi.shape[1]):
                if abs(i - j) < 2:
                    mi[i][j] = 0
        return mi

    def saveMI(self, path):
        np.save(path, self.mi_matrix)

    def loadMI(self, path):
        self.mi_matrix = np.load(path)

    def weightGraph(self, datacontacts, mi_threshold, time_treshold=0.6):
        if len(self.mol.get('resid', 'name CA')) != len(self.resids):
            raise Exception('The length of the protein doesn\'t match the Mutual Information data')
        contactcat = np.concatenate(datacontacts.dat)
        contacts_matrix = np.zeros([len(self.resids), len(self.resids)])
        for i in range(contactcat.shape[1]):
            counter = np.count_nonzero(contactcat[:, i])
            resid1 = self.residmap[self.mol.resid[datacontacts.description.atomIndexes[i][0]]]
            resid2 = self.residmap[self.mol.resid[datacontacts.description.atomIndexes[i][1]]]
            contacts_matrix[resid1][resid2] = counter

        self.graph_array = np.zeros([contacts_matrix.shape[0], contacts_matrix.shape[0]])
        mask = (self.mi_matrix > mi_threshold) & (contacts_matrix > (time_treshold * contactcat.shape[0]))
        self.graph_array[mask] = self.mi_matrix[mask]

        intermed = []
        for source in range(self.graph_array.shape[0]):
            for target in range(source, self.graph_array.shape[1]):
                if self.graph_array[source, target] != 0 and target > source:
                    intermed.append(
                        [int(self.resids[source]), int(self.resids[target]), float(self.graph_array[source, target])])
        import pandas as pd
        import networkx as nx
        from sklearn.cluster.spectral import SpectralClustering

        pd = pd.DataFrame(intermed, columns=['source', 'target', 'weight'])
        pd[['source', 'target']] = pd[['source', 'target']].astype(type('int', (int,), {}))
        pd['weight'] = pd['weight'].astype(type('float', (float,), {}))
        G = nx.from_pandas_edgelist(pd, 'source', 'target', 'weight')
        ## setSegment
        segids = self.mol.get('segid', 'name CA')
        seg_res_dict = {key: value for (key, value) in zip(self.resids, segids) if
                        np.any(pd.loc[(pd['source'] == key)].index) or np.any(pd.loc[(pd['target'] == key)].index)}
        nx.set_node_attributes(G,  seg_res_dict, 'Segment')
        ## set
        if not nx.is_connected(G):
            G = max(nx.connected_component_subgraphs(G), key=len)
        flow_cent = nx.current_flow_betweenness_centrality(G, weight='weight')
        nx.set_node_attributes(G, flow_cent, 'flowcent')
        Spectre = SpectralClustering(n_clusters=10, affinity='precomputed')
        model = Spectre.fit_predict(self.graph_array)
        model = model.astype(type('float', (float,), {}))
        spectral_dict = {key: value for (key, value) in zip(self.resids, model) if key in G.nodes()}
        nx.set_node_attributes(G, spectral_dict, 'spectral')
        self.graph = G

    def save_graphml(self, path):
        import networkx as nx
        nx.write_graphml(self.graph, path)
Пример #7
0
def build(mol,
          ff=None,
          topo=None,
          param=None,
          prefix='structure',
          outdir='./build',
          caps=None,
          ionize=True,
          saltconc=0,
          saltanion=None,
          saltcation=None,
          disulfide=None,
          teleap=None,
          teleapimports=None,
          execute=True,
          atomtypes=None,
          offlibraries=None,
          gbsa=False,
          igb=2):
    """ Builds a system for AMBER

    Uses tleap to build a system for AMBER. Additionally it allows the user to ionize and add disulfide bridges.

    Parameters
    ----------
    mol : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The Molecule object containing the system
    ff : list of str
        A list of leaprc forcefield files.
        Use :func:`amber.listFiles <htmd.builder.amber.listFiles>` to get a list of available forcefield files.
        Default: :func:`amber.defaultFf <htmd.builder.amber.defaultFf>`
    topo : list of str
        A list of topology `prepi/prep/in` files.
        Use :func:`amber.listFiles <htmd.builder.amber.listFiles>` to get a list of available topology files.
        Default: :func:`amber.defaultTopo <htmd.builder.amber.defaultTopo>`
    param : list of str
        A list of parameter `frcmod` files.
        Use :func:`amber.listFiles <htmd.builder.amber.listFiles>` to get a list of available parameter files.
        Default: :func:`amber.defaultParam <htmd.builder.amber.defaultParam>`
    prefix : str
        The prefix for the generated pdb and psf files
    outdir : str
        The path to the output directory
        Default: './build'
    caps : dict
        A dictionary with keys segids and values lists of strings describing the caps for a particular protein segment.
        e.g. caps['P'] = ['ACE', 'NME'] or caps['P'] = ['none', 'none']. Default: will apply ACE and NME caps to every
        protein segment.
    ionize : bool
        Enable or disable ionization
    saltconc : float
        Salt concentration to add to the system after neutralization.
    saltanion : {'Cl-'}
        The anion type. Please use only AMBER ion atom names.
    saltcation : {'Na+', 'K+', 'Cs+'}
        The cation type. Please use only AMBER ion atom names.
    disulfide : list of pairs of atomselection strings
        If None it will guess disulfide bonds. Otherwise provide a list pairs of atomselection strings for each pair of
        residues forming the disulfide bridge.
    teleap : str
        Path to teLeap executable used to build the system for AMBER
    teleapimports : list
        A list of paths to pass to teLeap '-I' flag, i.e. directories to be searched
        Default: determined from :func:`amber.defaultAmberHome <htmd.builder.amber.defaultAmberHome>` and
        :func:`amber.htmdAmberHome <htmd.builder.amber.htmdAmberHome>`
    execute : bool
        Disable building. Will only write out the input script needed by tleap. Does not include ionization.
    atomtypes : list of triplets
        Custom atom types defined by the user as ('type', 'element', 'hybrid') triplets
        e.g. (('C1', 'C', 'sp2'), ('CI', 'C', 'sp3')). Check `addAtomTypes` in AmberTools docs.
    offlibraries : str or list
        A path or a list of paths to OFF library files. Check `loadOFF` in AmberTools docs.
    gbsa : bool
        Modify radii for GBSA implicit water model
    igb : int
        GB model. Select: 1 for mbondi, 2 and 5 for mbondi2, 7 for bondi and 8 for mbondi3.
        Check section 4. The Generalized Born/Surface Area Model of the AMBER manual.

    Returns
    -------
    molbuilt : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The built system in a Molecule object

    Example
    -------
    >>> from htmd.ui import *  # doctest: +SKIP
    >>> mol = Molecule("3PTB")
    >>> molbuilt = amber.build(mol, outdir='/tmp/build')  # doctest: +SKIP
    >>> # More complex example
    >>> disu = [['segid P and resid 157', 'segid P and resid 13'], ['segid K and resid 1', 'segid K and resid 25']]
    >>> molbuilt = amber.build(mol, outdir='/tmp/build', saltconc=0.15, disulfide=disu)  # doctest: +SKIP
    """
    # Remove pdb protein bonds as they can be regenerated by tleap. Keep non-protein bonds i.e. for ligands
    mol = mol.copy()
    _removeProteinBonds(mol)

    if teleap is None:
        teleap = _findTeLeap()
    else:
        if shutil.which(teleap) is None:
            raise NameError(
                'Could not find executable: `{}` in the PATH. Cannot build for AMBER.'
                .format(teleap))

    if not os.path.isdir(outdir):
        os.makedirs(outdir)
    _cleanOutDir(outdir)
    if ff is None:
        ff = defaultFf()
    if topo is None:
        topo = defaultTopo()
    if param is None:
        param = defaultParam()
    if caps is None:
        caps = _defaultProteinCaps(mol)

    _missingSegID(mol)
    _checkMixedSegment(mol)

    mol = _charmmLipid2Amber(mol)

    _applyProteinCaps(mol, caps)

    f = open(os.path.join(outdir, 'tleap.in'), 'w')
    f.write('# tleap file generated by amber.build\n')

    # Printing out the forcefields
    for i, force in enumerate(ensurelist(ff)):
        if not os.path.isfile(force):
            force = _locateFile(force, 'ff', teleap)
            if force is None:
                continue
        newname = 'ff{}_{}'.format(i, os.path.basename(force))
        shutil.copy(force, os.path.join(outdir, newname))
        f.write('source {}\n'.format(newname))
    f.write('\n')

    if gbsa:
        gbmodels = {
            1: 'mbondi',
            2: 'mbondi2',
            5: 'mbondi2',
            7: 'bondi',
            8: 'mbondi3'
        }
        f.write('set default PBradii {}\n\n'.format(gbmodels[igb]))

    # Adding custom atom types
    if atomtypes is not None:
        atomtypes = ensurelist(tocheck=atomtypes[0], tomod=atomtypes)
        f.write('addAtomTypes {\n')
        for at in atomtypes:
            if len(at) != 3:
                raise RuntimeError(
                    'Atom type definitions have to be triplets. Check the AMBER documentation.'
                )
            f.write('    {{ "{}" "{}" "{}" }}\n'.format(at[0], at[1], at[2]))
        f.write('}\n\n')

    # Loading OFF libraries
    if offlibraries is not None:
        offlibraries = ensurelist(offlibraries)
        for i, off in enumerate(offlibraries):
            if not os.path.isfile(off):
                raise RuntimeError(
                    'Could not find off-library in location {}'.format(off))
            newname = 'offlib{}_{}'.format(i, os.path.basename(off))
            shutil.copy(off, os.path.join(outdir, newname))
            f.write('loadoff {}\n'.format(newname))

    # Loading frcmod parameters
    f.write('# Loading parameter files\n')
    for i, p in enumerate(param):
        if not os.path.isfile(p):
            p = _locateFile(p, 'param', teleap)
            if p is None:
                continue
        newname = 'param{}_{}'.format(i, os.path.basename(p))
        shutil.copy(p, os.path.join(outdir, newname))
        f.write('loadamberparams {}\n'.format(newname))
    f.write('\n')

    # Loading prepi topologies
    f.write('# Loading prepi topologies\n')
    for i, t in enumerate(topo):
        if not os.path.isfile(t):
            t = _locateFile(t, 'topo', teleap)
            if t is None:
                continue
        newname = 'topo{}_{}'.format(i, os.path.basename(t))
        shutil.copy(t, os.path.join(outdir, newname))
        f.write('loadamberprep {}\n'.format(newname))
    f.write('\n')

    f.write('# Loading the system\n')
    f.write('mol = loadpdb input.pdb\n\n')

    if np.sum(mol.atomtype != '') != 0:
        logger.debug('Writing mol2 files for input to tleap.')
        segs = np.unique(mol.segid[mol.atomtype != ''])
        combstr = 'mol = combine {mol'
        for s in segs:
            name = 'segment{}'.format(s)
            mol2name = os.path.join(outdir, '{}.mol2'.format(name))
            mol.write(mol2name, (mol.atomtype != '') & (mol.segid == s))
            if not os.path.isfile(mol2name):
                raise NameError(
                    'Could not write a mol2 file out of the given Molecule.')
            f.write('# Loading the rest of the system\n')
            f.write('{} = loadmol2 {}.mol2\n\n'.format(name, name))
            combstr += ' {}'.format(name)
        combstr += '}\n\n'
        f.write(combstr)

    # Write patches for disulfide bonds (only after ionizing)
    if not ionize:
        # TODO: Remove this once we deprecate the class
        from htmd.builder.builder import DisulfideBridge
        from moleculekit.molecule import UniqueResidueID
        if disulfide is not None and len(disulfide) != 0 and isinstance(
                disulfide[0], DisulfideBridge):
            newdisu = []
            for d in disulfide:
                r1 = UniqueResidueID.fromMolecule(
                    mol, 'resid {} and segname {}'.format(d.resid1, d.segid1))
                r2 = UniqueResidueID.fromMolecule(
                    mol, 'resid {} and segname {}'.format(d.resid2, d.segid2))
                newdisu.append([r1, r2])
            disulfide = newdisu
        # TODO: Remove up to here ----------------------

        if disulfide is not None and len(disulfide) != 0 and isinstance(
                disulfide[0][0], str):
            disulfide = convertDisulfide(mol, disulfide)

        if disulfide is None:
            logger.info('Detecting disulfide bonds.')
            disulfide = detectDisulfideBonds(mol)

        # Fix structure to match the disulfide patching
        if len(disulfide) != 0:
            torem = np.zeros(mol.numAtoms, dtype=bool)
            f.write('# Adding disulfide bonds\n')
            for d in disulfide:
                # Rename the residues to CYX if there is a disulfide bond
                atoms1 = d[0].selectAtoms(mol, indexes=False)
                atoms2 = d[1].selectAtoms(mol, indexes=False)
                mol.resname[atoms1] = 'CYX'
                mol.resname[atoms2] = 'CYX'
                # Remove (eventual) HG hydrogens on these CYS (from proteinPrepare)
                torem |= (atoms1 & (mol.name == 'HG')) | (atoms2 &
                                                          (mol.name == 'HG'))
                # Convert to stupid amber residue numbering
                uqseqid = sequenceID(
                    (mol.resid, mol.insertion, mol.segid)) + mol.resid[0]
                uqres1 = int(np.unique(uqseqid[atoms1]))
                uqres2 = int(np.unique(uqseqid[atoms2]))
                f.write('bond mol.{}.SG mol.{}.SG\n'.format(uqres1, uqres2))
            f.write('\n')
            mol.remove(torem, _logger=False)

    # Calculate the bounding box and store it in the CRD file
    f.write('setBox mol "vdw"\n\n')

    f.write('# Writing out the results\n')
    f.write('saveamberparm mol ' + prefix + '.prmtop ' + prefix + '.crd\n')
    f.write('quit')
    f.close()

    # Printing and loading the PDB file. AMBER can work with a single PDB file if the segments are separate by TER
    logger.debug('Writing PDB file for input to tleap.')
    pdbname = os.path.join(outdir, 'input.pdb')

    # mol2 files have atomtype, here we only write parts not coming from mol2
    # We need to write the input.pdb at the end since we modify the resname for disulfide bridges in mol
    mol.write(pdbname, mol.atomtype == '')
    if not os.path.isfile(pdbname):
        raise NameError(
            'Could not write a PDB file out of the given Molecule.')

    molbuilt = None
    if execute:
        if not teleapimports:
            teleapimports = []
            # Source default Amber (i.e. the same paths tleap imports)
            amberhome = defaultAmberHome(teleap=teleap)
            teleapimports += [
                os.path.join(amberhome, s)
                for s in _defaultAmberSearchPaths.values()
            ]
            if len(teleapimports) == 0:
                raise RuntimeWarning(
                    'No default Amber force-field found. Check teLeap location: {}'
                    .format(teleap))
            # Source HTMD Amber paths that contain ffs
            htmdamberdir = htmdAmberHome()
            teleapimports += [
                os.path.join(htmdamberdir, os.path.dirname(f)) for f in ff
                if os.path.isfile(os.path.join(htmdamberdir, f))
            ]
            if len(teleapimports) == 0:
                raise RuntimeError(
                    'No default Amber force-field imports found. Check '
                    '`htmd.builder.amber.defaultAmberHome()` and `htmd.builder.amber.htmdAmberHome()`'
                )
        # Set import flags for teLeap
        teleapimportflags = []
        for p in teleapimports:
            teleapimportflags.append('-I')
            teleapimportflags.append(str(p))
        logpath = os.path.abspath(os.path.join(outdir, 'log.txt'))
        logger.info('Starting the build.')
        currdir = os.getcwd()
        os.chdir(outdir)
        f = open(logpath, 'w')
        try:
            cmd = [teleap, '-f', './tleap.in']
            cmd[1:1] = teleapimportflags
            logger.debug(cmd)
            call(cmd, stdout=f)
        except:
            raise NameError('teLeap failed at execution')
        f.close()
        errors = _logParser(logpath)
        os.chdir(currdir)
        if errors:
            raise BuildError(errors + [
                'Check {} for further information on errors in building.'.
                format(logpath)
            ])
        logger.info('Finished building.')

        if os.path.exists(os.path.join(outdir, 'structure.crd')) and \
                        os.path.getsize(os.path.join(outdir, 'structure.crd')) != 0 and \
                        os.path.getsize(os.path.join(outdir, 'structure.prmtop')) != 0:
            try:
                molbuilt = Molecule(os.path.join(outdir, 'structure.prmtop'))
                molbuilt.read(os.path.join(outdir, 'structure.crd'))
            except Exception as e:
                raise RuntimeError(
                    'Failed at reading structure.prmtop/structure.crd due to error: {}'
                    .format(e))
        else:
            raise BuildError(
                'No structure pdb/prmtop file was generated. Check {} for errors in building.'
                .format(logpath))

        if ionize:
            shutil.move(os.path.join(outdir, 'structure.crd'),
                        os.path.join(outdir, 'structure.noions.crd'))
            shutil.move(os.path.join(outdir, 'structure.prmtop'),
                        os.path.join(outdir, 'structure.noions.prmtop'))
            totalcharge = np.sum(molbuilt.charge)
            nwater = np.sum(molbuilt.atomselect('water and noh'))
            anion, cation, anionatom, cationatom, nanion, ncation = ionizef(
                totalcharge,
                nwater,
                saltconc=saltconc,
                anion=saltanion,
                cation=saltcation)
            newmol = ionizePlace(mol, anion, cation, anionatom, cationatom,
                                 nanion, ncation)
            # Redo the whole build but now with ions included
            return build(newmol,
                         ff=ff,
                         topo=topo,
                         param=param,
                         prefix=prefix,
                         outdir=outdir,
                         caps={},
                         ionize=False,
                         execute=execute,
                         saltconc=saltconc,
                         disulfide=disulfide,
                         teleap=teleap,
                         atomtypes=atomtypes,
                         offlibraries=offlibraries)

    tmpbonds = molbuilt.bonds
    molbuilt.bonds = []  # Removing the bonds to speed up writing
    molbuilt.write(os.path.join(outdir, 'structure.pdb'))
    molbuilt.bonds = tmpbonds  # Restoring the bonds
    detectCisPeptideBonds(molbuilt)  # Warn in case of cis bonds
    return molbuilt
Пример #8
0
    def write(self, inputdir, outputdir):
        """Write the equilibration protocol

        Writes the equilibration protocol and files into a folder for execution
        using files inside the inputdir directory

        Parameters
        ----------
        inputdir : str
            Path to a directory containing the files produced by a build process.
        outputdir : str
            Directory where to write the equilibration setup files.

        Examples
        --------
        >>> md = Equilibration()
        >>> md.write('./build','./equil')
        """

        from moleculekit.molecule import Molecule

        self._findFiles(inputdir)
        self._amberFixes()

        from htmd.units import convert

        numsteps = convert(self.timeunits,
                           "timesteps",
                           self.runtime,
                           timestep=self.acemd.timestep)

        self.acemd.temperature = self.temperature
        self.acemd.thermostattemperature = self.temperature
        self.acemd.run = str(numsteps)

        pdbfile = os.path.join(inputdir, self.acemd.coordinates)
        inmol = Molecule(pdbfile)

        from htmd.builder.builder import detectCisPeptideBonds

        detectCisPeptideBonds(inmol)

        if np.any(inmol.atomselect("lipids")) and not self.useconstantratio:
            logger.warning(
                "Lipids detected in input structure. We highly recommend setting useconstantratio=True "
                "for membrane simulations.")

        if self.restraintsteps is None:
            constrsteps = int(numsteps / 2)
        else:
            constrsteps = int(self.restraintsteps)

        if self.restraints is not None:
            self.acemd.restraints = self.restraints
        else:
            self.acemd.restraints = self.defaultEquilRestraints(constrsteps,
                                                                mol=inmol)

        if self.acemd.boxsize is None and self.acemd.extendedsystem is None:
            coords = inmol.get("coords", sel="water")
            if coords.size == 0:  # It's a vacuum simulation
                coords = inmol.get("coords", sel="all")
                dim = np.max(coords, axis=0) - np.min(coords, axis=0)
                dim += 12.0
            else:
                dim = np.max(coords, axis=0) - np.min(coords, axis=0)
            self.acemd.boxsize = "{} {} {}".format(dim[0], dim[1], dim[2])

        if self.useconstantratio:
            self.acemd.useconstantratio = "on"

        self.acemd.setup(inputdir, outputdir, overwrite=True)
Пример #9
0
    def write(self, inputdir, outputdir, cisbondcheck=True):
        """Writes the production protocol and files into a folder.

        Parameters
        ----------
        inputdir : str
            Path to a directory containing the files produced by a equilibration process.
        outputdir : str
            Directory where to write the production setup files.
        cisbondcheck : bool
            Set to False to disable the cis peptidic bond checks
        """
        from moleculekit.molecule import Molecule
        from htmd.units import convert
        from htmd.builder.builder import detectCisPeptideBonds

        self._findFiles(inputdir)
        self._amberFixes()

        self.acemd.temperature = self.temperature
        self.acemd.thermostattemperature = self.temperature

        numsteps = convert(self.timeunits,
                           "timesteps",
                           self.runtime,
                           timestep=self.acemd.timestep)
        self.acemd.run = str(numsteps)

        structfile = os.path.join(inputdir, self.acemd.structure)
        pdbfile = os.path.join(inputdir, self.acemd.coordinates)
        inmol = Molecule([structfile, pdbfile])

        if cisbondcheck:
            detectCisPeptideBonds(inmol, respect_bonds=True)

        if np.any(inmol.atomselect("lipids")) and not self.useconstantratio:
            logger.warning(
                "Lipids detected in input structure. We highly recommend setting useconstantratio=True "
                "for membrane simulations.")

        if self.restraints is not None:
            logger.info(
                "Using user-provided restraints and ignoring constraints and fb_potential"
            )
            self.acemd.restraints = self.restraints
        else:
            restraints = list()
            if self.fb_k > 0:
                logger.warning(
                    "Converting fb_potential to restraints. This is a convenience "
                    "functional conversion. We recommend to start using restraints."
                )
                restraints += self._fb_potential2restraints(inputdir)
            if self.useconstraints:
                logger.warning(
                    "Converting constraints to restraints. This is a convenience "
                    "functional conversion. We recommend to start using restraints"
                )
                restraints += self._constraints2restraints()
            else:
                if len(self.constraints) != 0:
                    logger.warning(
                        "You have setup constraints to {} but constraints are turned off. "
                        "If you want to use constraints, define "
                        "useconstraints=True".format(self.constraints))
            if len(restraints) != 0:
                self.acemd.restraints = restraints

        if self.useconstantratio:
            self.acemd.barostatconstratio = "on"

        if self.adaptive:
            self.acemd.binvelocities = None

        self.acemd.setup(inputdir, outputdir, overwrite=True)
Пример #10
0
def build(mol, topo=None, param=None, stream=None, prefix='structure', outdir='./build', caps=None, ionize=True, saltconc=0,
          saltanion=None, saltcation=None, disulfide=None, patches=None, noregen=None, aliasresidues=None, psfgen=None, execute=True, _clean=True):
    """ Builds a system for CHARMM

    Uses VMD and psfgen to build a system for CHARMM. Additionally it allows for ionization and adding of disulfide bridges.

    Parameters
    ----------
    mol : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The Molecule object containing the system
    topo : list of str
        A list of topology `rtf` files.
        Use :func:`charmm.listFiles <htmd.builder.charmm.listFiles>` to get a list of available topology files.
        Default: ['top/top_all36_prot.rtf', 'top/top_all36_lipid.rtf', 'top/top_water_ions.rtf']
    param : list of str
        A list of parameter `prm` files.
        Use :func:`charmm.listFiles <htmd.builder.charmm.listFiles>` to get a list of available parameter files.
        Default: ['par/par_all36_prot_mod.prm', 'par/par_all36_lipid.prm', 'par/par_water_ions.prm']
    stream : list of str
        A list of stream `str` files containing topologies and parameters.
        Use :func:`charmm.listFiles <htmd.builder.charmm.listFiles>` to get a list of available stream files.
        Default: ['str/prot/toppar_all36_prot_arg0.str']
    prefix : str
        The prefix for the generated pdb and psf files
    outdir : str
        The path to the output directory
        Default: './build'
    caps : dict
        A dictionary with keys segids and values lists of strings describing the caps of that segment.
        e.g. caps['P'] = ['first ACE', 'last CT3'] or caps['P'] = ['first none', 'last none']. 
        Default: will apply ACE and CT3 caps to proteins and none caps to the rest.
    ionize : bool
        Enable or disable ionization
    saltconc : float
        Salt concentration (in Molar) to add to the system after neutralization.
    saltanion : {'CLA'}
        The anion type. Please use only CHARMM ion atom names.
    saltcation : {'SOD', 'MG', 'POT', 'CES', 'CAL', 'ZN2'}
        The cation type. Please use only CHARMM ion atom names.
    disulfide : list of pairs of atomselection strings
        If None it will guess disulfide bonds. Otherwise provide a list pairs of atomselection strings for each pair of
        residues forming the disulfide bridge.
    patches : list of str
        Any further patches the user wants to apply
    noregen : list of str
        A list of patches that must not be regenerated (angles and dihedrals)
        Default: ['FHEM', 'PHEM', 'PLOH', 'PLO2', 'PLIG', 'PSUL']
    aliasresidues : dict of aliases
        A dictionary of key: value pairs of residue names we want to alias
    psfgen : str
        Path to psfgen executable used to build for CHARMM
    execute : bool
        Disable building. Will only write out the input script needed by psfgen. Does not include ionization.

    Returns
    -------
    molbuilt : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The built system in a Molecule object

    Example
    -------
    >>> from htmd.ui import *
    >>> mol = Molecule("3PTB")
    >>> mol.filter("not resname BEN")
    >>> molbuilt = charmm.build(mol, outdir='/tmp/build', ionize=False)  # doctest: +ELLIPSIS
    Bond between A: [serial 185 resid 42 resname CYS chain A segid 0]
                 B: [serial 298 resid 58 resname CYS chain A segid 0]...
    >>> # More complex example
    >>> topos  = ['top/top_all36_prot.rtf', './benzamidine.rtf', 'top/top_water_ions.rtf']
    >>> params = ['par/par_all36_prot_mod.prm', './benzamidine.prm', 'par/par_water_ions.prm']
    >>> disu = [['segid P and resid 157', 'segid P and resid 13'], ['segid K and resid 1', 'segid K and resid 25']]
    >>> ar = {'SAPI24': 'SP24'}  # Alias large resnames to a short-hand version
    >>> molbuilt = charmm.build(mol, topo=topos, param=params, outdir='/tmp/build', saltconc=0.15, disulfide=disu, aliasresidues=ar)  # doctest: +SKIP
    """

    mol = mol.copy()
    _missingSegID(mol)
    _checkMixedSegment(mol)
    _checkLongResnames(mol, aliasresidues)
    if psfgen is None:
        psfgen = shutil.which('psfgen', mode=os.X_OK)
        if not psfgen:
            raise FileNotFoundError('Could not find psfgen executable, or no execute permissions are given. '
                                    'Run `conda install psfgen`.')
    if not os.path.isdir(outdir):
        os.makedirs(outdir)
    if _clean:
        _cleanOutDir(outdir)
    if topo is None:
        topo = defaultTopo()
    if param is None:
        param = defaultParam()
    if stream is None:
        stream = defaultStream()
    if caps is None:
        caps = _defaultCaps(mol)
    # patches that must _not_ be regenerated
    if noregen is None:
        noregen = ['FHEM', 'PHEM', 'PLOH', 'PLO2', 'PLIG', 'PSUL']

    alltopo = topo.copy()
    allparam = param.copy()

    # Splitting the stream files and adding them to the list of parameter and topology files
    charmmdir = path.join(home(), 'builder', 'charmmfiles')
    for s in stream:
        if s[0] != '.' and path.isfile(path.join(charmmdir, s)):
            s = path.join(charmmdir, s)
        outrtf, outprm = _prepareStream(s)
        alltopo.append(outrtf)
        allparam.append(outprm)

    #_missingChain(mol)
    #_checkProteinGaps(mol)
    if patches is None:
        patches = []
    if isinstance(patches, str):
        patches = [patches]
    allpatches = []
    allpatches += patches
    # Find protonated residues and add patches for them
    allpatches += _protonationPatches(mol)

    f = open(path.join(outdir, 'build.vmd'), 'w')
    f.write('# psfgen file generated by charmm.build\n')
    f.write('package require psfgen;\n')
    f.write('psfcontext reset;\n\n')

    # Copying and printing out the topologies
    if not path.exists(path.join(outdir, 'topologies')):
        os.makedirs(path.join(outdir, 'topologies'))
    for i in range(len(alltopo)):
        if alltopo[i][0] != '.' and path.isfile(path.join(charmmdir, alltopo[i])):
            alltopo[i] = path.join(charmmdir, alltopo[i])
        localname = '{}.'.format(i) + path.basename(alltopo[i])
        shutil.copy(alltopo[i], path.join(outdir, 'topologies', localname))
        f.write('topology ' + path.join('topologies', localname) + '\n')
    f.write('\n')

    _printAliases(f)
    if aliasresidues is not None:  # User defined aliases
        for key, val in aliasresidues.items():
            mol.resname[mol.resname == key] = val
            f.write('        pdbalias residue {} {}\n'.format(val, key))

    # Printing out segments
    if not path.exists(path.join(outdir, 'segments')):
        os.makedirs(path.join(outdir, 'segments'))
    logger.info('Writing out segments.')
    segments = _getSegments(mol)
    wateratoms = mol.atomselect('water')
    for seg in segments:
        pdbname = 'segment' + seg + '.pdb'
        segatoms = mol.segid == seg
        mol.write(path.join(outdir, 'segments', pdbname), sel=segatoms)

        segwater = wateratoms & segatoms
        f.write('segment ' + seg + ' {\n')
        if np.all(segatoms == segwater):  # If segment only contains waters, set: auto none
            f.write('\tauto none\n')
        f.write('\tpdb ' + path.join('segments', pdbname) + '\n')
        if caps is not None and seg in caps:
            for c in caps[seg]:
                f.write('\t' + c + '\n')
        f.write('}\n')
        f.write('coordpdb ' + path.join('segments', pdbname) + ' ' + seg + '\n\n')

    # Printing out patches for the disulfide bridges
    # TODO: Remove this once we deprecate the class
    from htmd.builder.builder import DisulfideBridge
    from moleculekit.molecule import UniqueResidueID
    if disulfide is not None and len(disulfide) != 0 and isinstance(disulfide[0], DisulfideBridge):
        newdisu = []
        for d in disulfide:
            r1 = UniqueResidueID.fromMolecule(mol, 'resid {} and segname {}'.format(d.resid1, d.segid1))
            r2 = UniqueResidueID.fromMolecule(mol, 'resid {} and segname {}'.format(d.resid2, d.segid2))
            newdisu.append([r1, r2])
        disulfide = newdisu
    # TODO: Remove up to here ----------------------

    if disulfide is not None and len(disulfide) != 0 and isinstance(disulfide[0][0], str):
        disulfide = convertDisulfide(mol, disulfide)

    if disulfide is None:
        disulfide = detectDisulfideBonds(mol)

    if len(disulfide) != 0:
        for d in disulfide:
            str0 = '{}:{}{}'.format(d[0].segid, d[0].resid, d[0].insertion)
            str1 = '{}:{}{}'.format(d[1].segid, d[1].resid, d[1].insertion)
            f.write('patch DISU {} {}\n'.format(str0, str1))
        f.write('\n')

    noregenpatches = [p for p in allpatches if p.split()[1] in noregen]
    regenpatches = [p for p in allpatches if p.split()[1] not in noregen]

    # Printing regenerable patches
    if len(regenpatches) != 0:
        for p in regenpatches:
            f.write(p + '\n')
        f.write('\n')

    # Regenerate angles and dihedrals
    f.write('regenerate angles dihedrals\n')
    f.write('\n')

    # Printing non-regenerable patches
    if len(noregenpatches) != 0:
        for p in noregenpatches:
            f.write(p + '\n')
        f.write('\n')

    f.write('guesscoord\n')
    f.write('writepsf ' + prefix + '.psf\n')
    f.write('writepdb ' + prefix + '.pdb\n')
    #f.write('quit\n')
    f.close()

    if allparam is not None:
        combine(allparam, path.join(outdir, 'parameters'))

    molbuilt = None
    if execute:
        logpath = os.path.abspath('{}/log.txt'.format(outdir))
        logger.info('Starting the build.')
        currdir = os.getcwd()
        os.chdir(outdir)
        f = open(logpath, 'w')
        #call([vmd, '-dispdev', 'text', '-e', './build.vmd'], stdout=f)
        my_env = os.environ.copy()
        my_env['LC_ALL'] = 'C'
        call([psfgen, './build.vmd'], stdout=f, stderr=f, env=my_env)
        f.close()
        errors = _logParser(logpath)
        os.chdir(currdir)
        if errors:
            raise BuildError(errors + ['Check {} for further information on errors in building.'.format(logpath)])
        logger.info('Finished building.')

        if path.isfile(path.join(outdir, 'structure.pdb')) and path.isfile(path.join(outdir, 'structure.psf')):
            molbuilt = Molecule(path.join(outdir, 'structure.pdb'), validateElements=False)
            molbuilt.read(path.join(outdir, 'structure.psf'), validateElements=False)
        else:
            raise BuildError('No structure pdb/psf file was generated. Check {} for errors in building.'.format(logpath))

        if ionize:
            os.makedirs(path.join(outdir, 'pre-ionize'))
            data = glob(path.join(outdir, '*'))
            for f in data:
                shutil.move(f, path.join(outdir, 'pre-ionize'))
            totalcharge = np.sum(molbuilt.charge)
            nwater = np.sum(molbuilt.atomselect('water and noh'))
            anion, cation, anionatom, cationatom, nanion, ncation = ionizef(totalcharge, nwater, saltconc=saltconc,
                                                                            anion=saltanion, cation=saltcation)
            newmol = ionizePlace(mol, anion, cation, anionatom, cationatom, nanion, ncation)
            # Redo the whole build but now with ions included
            return build(newmol, topo=alltopo, param=allparam, stream=[], prefix=prefix, outdir=outdir, ionize=False,
                         caps=caps, execute=execute, saltconc=saltconc, disulfide=disulfide, patches=patches,
                         noregen=noregen, aliasresidues=aliasresidues, psfgen=psfgen, _clean=False)
    _checkFailedAtoms(molbuilt)
    _recoverProtonations(molbuilt)
    return molbuilt
Пример #11
0
    def write(self, inputdir, outputdir):
        """ Write the equilibration protocol

        Writes the equilibration protocol and files into a folder for execution
        using files inside the inputdir directory

        Parameters
        ----------
        inputdir : str
            Path to a directory containing the files produced by a build process.
        outputdir : str
            Directory where to write the equilibration setup files.

        Examples
        --------
        >>> md = Equilibration()
        >>> md.write('./build','./equil')
        """

        from moleculekit.molecule import Molecule

        # Do version consistency check
        if (self._version == 2 and not isinstance(self.acemd, Acemd2)) and \
                (self._version == 3 and not isinstance(self.acemd, Acemd)):
            raise RuntimeError(
                'Acemd object version ({}) inconsistent with protocol version at instantiation '
                '({})'.format(type(self.acemd), self._version))

        self._findFiles(inputdir)
        self._amberFixes()

        from htmd.units import convert
        numsteps = convert(self.timeunits,
                           'timesteps',
                           self.runtime,
                           timestep=self.acemd.timestep)
        if self._version == 3:
            self.acemd.temperature = self.temperature
            self.acemd.thermostattemperature = self.temperature
            self.acemd.run = str(numsteps)

        pdbfile = os.path.join(inputdir, self.acemd.coordinates)
        inmol = Molecule(pdbfile)

        from htmd.builder.builder import detectCisPeptideBonds
        detectCisPeptideBonds(inmol)

        if np.any(inmol.atomselect('lipids')) and not self.useconstantratio:
            logger.warning(
                'Lipids detected in input structure. We highly recommend setting useconstantratio=True '
                'for membrane simulations.')

        if self.constraintsteps is None:
            constrsteps = int(numsteps / 2)
        else:
            constrsteps = int(self.constraintsteps)

        if self._version == 2:
            if self.restraints:
                raise RuntimeWarning(
                    'restraints are only available on {}(_version=3)'.format(
                        self.__class__.__name__))
            if isinstance(self.acemd.TCL, tuple):
                tcl = list(self.acemd.TCL)
                tcl[0] = tcl[0].format(
                    NUMSTEPS=numsteps,
                    KCONST=self.fb_k,
                    REFINDEX=' '.join(
                        map(str, inmol.get('index', self.fb_reference))),
                    SELINDEX=' '.join(
                        map(str, inmol.get('index', self.fb_selection))),
                    BOX=' '.join(map(str, self.fb_box)),
                    NVTSTEPS=self.nvtsteps,
                    CONSTRAINTSTEPS=constrsteps,
                    TEMPERATURE=self.temperature)
                self.acemd.TCL = tcl[0] + tcl[1]
            else:
                logger.warning('{} default TCL was already formatted.'.format(
                    self.__class__.__name__))
        elif self._version == 3:
            if self.restraints is not None:
                logger.info(
                    'Using user-provided restraints and ignoring constraints and fb_potential'
                )
                self.acemd.restraints = self.restraints
            else:
                logger.warning(
                    'Converting constraints and fb_potential to restraints. This is a convenience '
                    'functional conversion. We recommend start using restraints with '
                    '{}(_version=3)'.format(self.__class__.__name__))
                restraints = list()
                # convert constraints to restraints and add them
                if self.constraints is not None:
                    restraints += self._constraints2restraints(constrsteps)
                # convert fb_potential to restraints and add them
                if self.fb_k > 0:
                    restraints += self._fb_potential2restraints(inputdir)
                self.acemd.restraints = restraints

        if ((self._version == 2) and self.acemd.celldimension is None and self.acemd.extendedsystem is None) or \
            ((self._version == 3) and self.acemd.boxsize is None and self.acemd.extendedsystem is None):
            coords = inmol.get('coords', sel='water')
            if coords.size == 0:  # It's a vacuum simulation
                coords = inmol.get('coords', sel='all')
                dim = np.max(coords, axis=0) - np.min(coords, axis=0)
                dim += 12.
            else:
                dim = np.max(coords, axis=0) - np.min(coords, axis=0)
            if self._version == 2:
                self.acemd.celldimension = '{} {} {}'.format(
                    dim[0], dim[1], dim[2])
            else:
                self.acemd.boxsize = '{} {} {}'.format(dim[0], dim[1], dim[2])

        if self.useconstantratio:
            self.acemd.useconstantratio = 'on'

        self.acemd.setup(inputdir, outputdir, overwrite=True)

        if self._version == 2:
            # Adding constraints by writing them to the consref file
            inconsreffile = os.path.join(inputdir, self.acemd.consref)
            consrefmol = Molecule(inconsreffile)
            consrefmol.set('occupancy', 0)
            consrefmol.set('beta', 0)
            if len(self.constraints) == 0:
                raise RuntimeError(
                    'You have not defined any constraints for the {} ('
                    'constraints={{}}).'.format(self.__class__.__name__))
            else:
                for sel in self.constraints:
                    consrefmol.set('beta', self.constraints[sel], sel)
            outconsreffile = os.path.join(outputdir, self.acemd.consref)
            consrefmol.write(outconsreffile)
# Write and test your answer here

np.unique(m.chain)

"""## How many residues per each chain?"""

for ch in np.unique(m.chain):
  tmp = m.copy()
  tmp.filter(f"protein and chain {ch} and name CA")
  nres = tmp.numAtoms
  print(f"Chain {ch} has {nres} residues (CA atoms)")

# Alternative (non-destructive) implementation
for ch in np.unique(m.chain):
  asel=m.atomselect(f"protein and chain {ch} and name CA")
  nres = np.sum(asel)
  print(f"Chain {ch} has {nres} residues (CA atoms)")

"""## How many atoms?"""

for ch in np.unique(m.chain):
  tmp = m.copy()
  tmp.filter(f"protein and chain {ch}")
  nat = tmp.numAtoms
  print(f"Chain {ch} has {nat} atoms")

"""## Is your structure solvated? If so, remove solvent."""

nwat = np.sum(m.atomselect("water"))
print(nwat)
Пример #13
0
def build(
    mol,
    topo=None,
    param=None,
    stream=None,
    prefix="structure",
    outdir="./build",
    caps=None,
    ionize=True,
    saltconc=0,
    saltanion=None,
    saltcation=None,
    disulfide=None,
    regenerate=["angles", "dihedrals"],
    patches=None,
    noregen=None,
    aliasresidues=None,
    psfgen=None,
    execute=True,
    _clean=True,
):
    """Builds a system for CHARMM

    Uses VMD and psfgen to build a system for CHARMM. Additionally it allows for ionization and adding of disulfide bridges.

    Parameters
    ----------
    mol : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The Molecule object containing the system
    topo : list of str
        A list of topology `rtf` files.
        Use :func:`charmm.listFiles <htmd.builder.charmm.listFiles>` to get a list of available topology files.
        Default: ['top/top_all36_prot.rtf', 'top/top_all36_lipid.rtf', 'top/top_water_ions.rtf']
    param : list of str
        A list of parameter `prm` files.
        Use :func:`charmm.listFiles <htmd.builder.charmm.listFiles>` to get a list of available parameter files.
        Default: ['par/par_all36_prot.prm', 'par/par_all36_lipid.prm', 'par/par_water_ions.prm']
    stream : list of str
        A list of stream `str` files containing topologies and parameters.
        Use :func:`charmm.listFiles <htmd.builder.charmm.listFiles>` to get a list of available stream files.
        Default: ['str/prot/toppar_all36_prot_arg0.str']
    prefix : str
        The prefix for the generated pdb and psf files
    outdir : str
        The path to the output directory
        Default: './build'
    caps : dict
        A dictionary with keys segids and values lists of strings describing the caps of that segment.
        e.g. caps['P'] = ['first ACE', 'last CT3'] or caps['P'] = ['first none', 'last none'].
        Default: will apply ACE and CT3 caps to proteins and none caps to the rest.
    ionize : bool
        Enable or disable ionization
    saltconc : float
        Salt concentration (in Molar) to add to the system after neutralization.
    saltanion : {'CLA'}
        The anion type. Please use only CHARMM ion atom names.
    saltcation : {'SOD', 'MG', 'POT', 'CES', 'CAL', 'ZN2'}
        The cation type. Please use only CHARMM ion atom names.
    disulfide : list of pairs of atomselection strings
        If None it will guess disulfide bonds. Otherwise provide a list pairs of atomselection strings for each pair of
        residues forming the disulfide bridge.
    regenerate : None or list of strings of: ['angles', 'dihedrals']
        Disable angle/dihedral regeneration with `regenerate=None`, or enable it with `regenerate=['angles', 'diheldrals']`
        or just one of the two options with `regenerate=['angles']` or `regenerate=['diheldrals']`.
    patches : list of str
        Any further patches the user wants to apply
    noregen : list of str
        A list of patches that must not be regenerated (angles and dihedrals)
        Default: ['FHEM', 'PHEM', 'PLOH', 'PLO2', 'PLIG', 'PSUL']
    aliasresidues : dict of aliases
        A dictionary of key: value pairs of residue names we want to alias
    psfgen : str
        Path to psfgen executable used to build for CHARMM
    execute : bool
        Disable building. Will only write out the input script needed by psfgen. Does not include ionization.

    Returns
    -------
    molbuilt : :class:`Molecule <moleculekit.molecule.Molecule>` object
        The built system in a Molecule object

    Example
    -------
    >>> from htmd.ui import *
    >>> mol = Molecule("3PTB")
    >>> mol.filter("not resname BEN")
    >>> molbuilt = charmm.build(mol, outdir='/tmp/build', ionize=False)  # doctest: +ELLIPSIS
    Bond between A: [serial 185 resid 42 resname CYS chain A segid 0]
                 B: [serial 298 resid 58 resname CYS chain A segid 0]...
    >>> # More complex example
    >>> topos  = ['top/top_all36_prot.rtf', './BEN.rtf', 'top/top_water_ions.rtf']
    >>> params = ['par/par_all36_prot.prm', './BEN.prm', 'par/par_water_ions.prm']
    >>> disu = [['segid P and resid 157', 'segid P and resid 13'], ['segid K and resid 1', 'segid K and resid 25']]
    >>> ar = {'SAPI24': 'SP24'}  # Alias large resnames to a short-hand version
    >>> molbuilt = charmm.build(mol, topo=topos, param=params, outdir='/tmp/build', saltconc=0.15, disulfide=disu, aliasresidues=ar)  # doctest: +SKIP
    """

    mol = mol.copy()
    _missingSegID(mol)
    _checkMixedSegment(mol)
    _checkLongResnames(mol, aliasresidues)
    if psfgen is None:
        psfgen = shutil.which("psfgen", mode=os.X_OK)
        if not psfgen:
            raise FileNotFoundError(
                "Could not find psfgen executable, or no execute permissions are given. "
                "Run `conda install psfgen -c acellera`.")
    if not os.path.isdir(outdir):
        os.makedirs(outdir)
    if _clean:
        _cleanOutDir(outdir)
    if topo is None:
        topo = defaultTopo()
    if param is None:
        param = defaultParam()
    if stream is None:
        stream = defaultStream()
    if caps is None:
        caps = _defaultCaps(mol)
    # patches that must _not_ be regenerated
    if noregen is None:
        noregen = ["FHEM", "PHEM", "PLOH", "PLO2", "PLIG", "PSUL"]

    alltopo = topo.copy()
    allparam = param.copy()

    # Splitting the stream files and adding them to the list of parameter and topology files
    charmmdir = htmdCharmmHome()
    for s in stream:
        if s[0] != "." and path.isfile(path.join(charmmdir, s)):
            s = path.join(charmmdir, s)
        outrtf, outprm = _prepareStream(s)
        alltopo.append(outrtf)
        allparam.append(outprm)

    # _missingChain(mol)
    # _checkProteinGaps(mol)
    if patches is None:
        patches = []
    if isinstance(patches, str):
        patches = [patches]
    allpatches = []
    allpatches += patches
    # Find protonated residues and add patches for them
    allpatches += _protonationPatches(mol)

    f = open(path.join(outdir, "build.vmd"), "w")
    f.write("# psfgen file generated by charmm.build\n")
    f.write("package require psfgen;\n")
    f.write("psfcontext reset;\n\n")

    # Copying and printing out the topologies
    if not path.exists(path.join(outdir, "topologies")):
        os.makedirs(path.join(outdir, "topologies"))
    for i in range(len(alltopo)):
        if alltopo[i][0] != "." and path.isfile(
                path.join(charmmdir, alltopo[i])):
            alltopo[i] = path.join(charmmdir, alltopo[i])
        localname = "{}.".format(i) + path.basename(alltopo[i])
        shutil.copy(alltopo[i], path.join(outdir, "topologies", localname))
        f.write("topology " + path.join("topologies", localname) + "\n")
    f.write("\n")

    _printAliases(f)
    if aliasresidues is not None:  # User defined aliases
        for key, val in aliasresidues.items():
            mol.resname[mol.resname == key] = val
            f.write("        pdbalias residue {} {}\n".format(val, key))

    # Printing out segments
    if not path.exists(path.join(outdir, "segments")):
        os.makedirs(path.join(outdir, "segments"))
    logger.info("Writing out segments.")
    segments = _getSegments(mol)
    wateratoms = mol.atomselect("water")
    for seg in segments:
        pdbname = "segment" + seg + ".pdb"
        segatoms = mol.segid == seg
        mol.write(path.join(outdir, "segments", pdbname), sel=segatoms)

        segwater = wateratoms & segatoms
        f.write("segment " + seg + " {\n")
        if np.all(segatoms ==
                  segwater):  # If segment only contains waters, set: auto none
            f.write("\tauto none\n")
        f.write("\tpdb " + path.join("segments", pdbname) + "\n")
        if caps is not None and seg in caps:
            for c in caps[seg]:
                f.write("\t" + c + "\n")
        f.write("}\n")
        f.write("coordpdb " + path.join("segments", pdbname) + " " + seg +
                "\n\n")

    if (disulfide is not None and len(disulfide) != 0
            and isinstance(disulfide[0][0], str)):
        disulfide = convertDisulfide(mol, disulfide)

    if disulfide is None:
        disulfide = detectDisulfideBonds(mol)

    if len(disulfide) != 0:
        for d in sorted(disulfide, key=lambda x: x[0].segid):
            str0 = f"{d[0].segid}:{d[0].resid}{d[0].insertion}"
            str1 = f"{d[1].segid}:{d[1].resid}{d[1].insertion}"
            f.write(f"patch DISU {str0} {str1}\n")
        f.write("\n")

    noregenpatches = [p for p in allpatches if p.split()[1] in noregen]
    regenpatches = [p for p in allpatches if p.split()[1] not in noregen]

    # Printing regenerable patches
    if len(regenpatches) != 0:
        for p in regenpatches:
            f.write(p + "\n")
        f.write("\n")

    # Regenerate angles and dihedrals
    if regenerate is not None:
        f.write("regenerate {}\n".format(" ".join(regenerate)))
        f.write("\n")

    # Printing non-regenerable patches
    if len(noregenpatches) != 0:
        for p in noregenpatches:
            f.write(p + "\n")
        f.write("\n")

    f.write("guesscoord\n")
    f.write("writepsf " + prefix + ".psf\n")
    f.write("writepdb " + prefix + ".pdb\n")
    # f.write('quit\n')
    f.close()

    if allparam is not None:
        combine(allparam, path.join(outdir, "parameters"))

    molbuilt = None
    if execute:
        logpath = os.path.abspath("{}/log.txt".format(outdir))
        logger.info("Starting the build.")
        currdir = os.getcwd()
        os.chdir(outdir)
        f = open(logpath, "w")
        # call([vmd, '-dispdev', 'text', '-e', './build.vmd'], stdout=f)
        my_env = os.environ.copy()
        my_env["LC_ALL"] = "C"
        call([psfgen, "./build.vmd"], stdout=f, stderr=f, env=my_env)
        f.close()
        errors = _logParser(logpath)
        os.chdir(currdir)
        if errors:
            raise BuildError(errors + [
                "Check {} for further information on errors in building.".
                format(logpath)
            ])
        logger.info("Finished building.")

        if path.isfile(path.join(outdir, "structure.pdb")) and path.isfile(
                path.join(outdir, "structure.psf")):
            molbuilt = Molecule(path.join(outdir, "structure.pdb"))
            molbuilt.read(path.join(outdir, "structure.psf"))
        else:
            raise BuildError(
                "No structure pdb/psf file was generated. Check {} for errors in building."
                .format(logpath))

        if ionize:
            os.makedirs(path.join(outdir, "pre-ionize"))
            data = glob(path.join(outdir, "*"))
            for f in data:
                shutil.move(f, path.join(outdir, "pre-ionize"))
            totalcharge = np.sum(molbuilt.charge)
            nwater = np.sum(molbuilt.atomselect("water and noh"))
            anion, cation, anionatom, cationatom, nanion, ncation = ionizef(
                molbuilt,
                totalcharge,
                nwater,
                saltconc=saltconc,
                anion=saltanion,
                cation=saltcation,
            )
            newmol = ionizePlace(mol, anion, cation, anionatom, cationatom,
                                 nanion, ncation)
            # Redo the whole build but now with ions included
            return build(
                newmol,
                topo=alltopo,
                param=allparam,
                stream=[],
                prefix=prefix,
                outdir=outdir,
                ionize=False,
                caps=caps,
                execute=execute,
                saltconc=saltconc,
                disulfide=disulfide,
                regenerate=regenerate,
                patches=patches,
                noregen=noregen,
                aliasresidues=aliasresidues,
                psfgen=psfgen,
                _clean=False,
            )
    _checkFailedAtoms(molbuilt)
    _recoverProtonations(molbuilt)
    detectCisPeptideBonds(molbuilt,
                          respect_bonds=True)  # Warn in case of cis bonds
    return molbuilt