Пример #1
0
 def get_vector(self, atom0, atom1, distance):
     if atom0 in atom1.iter_neighbors():
         return None
     bond_type = bonds.bonded(atom0.number, atom1.number, distance)
     if bond_type is None:
         return None
     else:
         return Bond(bond_type=bond_type, targets=[atom0, atom1])
Пример #2
0
    def detect_bonds(self, exceptions=None):
        """Initialize the ``bonds`` attribute based on inter-atomic distances

           **Optional argument:**

           exceptions:
                Specify custom threshold for certain pairs of elements. This
                must be a dictionary with ((num0, num1), threshold) as items.

           For each pair of elements, a distance threshold is used to detect
           bonded atoms. The distance threshold is based on a database of known
           bond lengths. If the database does not contain a record for the given
           element pair, the threshold is based on the sum of covalent radii.
        """
        with log.section('SYS'):
            from molmod.bonds import bonds
            if self.bonds is not None:
                if log.do_warning:
                    log.warn('Overwriting existing bonds.')
            work = np.zeros((self.natom*(self.natom-1))/2, float)
            self.cell.compute_distances(work, self.pos)
            ishort = (work < bonds.max_length*1.01).nonzero()[0]
            new_bonds = []
            for i in ishort:
                i0, i1 = _unravel_triangular(i)
                n0 = self.numbers[i0]
                n1 = self.numbers[i1]
                if exceptions is not None:
                    threshold = exceptions.get((n0, n1))
                    if threshold is None and n0!=n1:
                        threshold = exceptions.get((n1, n0))
                    if threshold is not None:
                        if work[i] < threshold:
                            new_bonds.append([i0, i1])
                        continue
                if bonds.bonded(n0, n1, work[i]):
                    new_bonds.append([i0, i1])
            self.bonds = np.array(new_bonds)
            self._init_derived_bonds()
Пример #3
0
    def detect_bonds(self, exceptions=None):
        """Initialize the ``bonds`` attribute based on inter-atomic distances

           **Optional argument:**

           exceptions:
                Specify custom threshold for certain pairs of elements. This
                must be a dictionary with ((num0, num1), threshold) as items.

           For each pair of elements, a distance threshold is used to detect
           bonded atoms. The distance threshold is based on a database of known
           bond lengths. If the database does not contain a record for the given
           element pair, the threshold is based on the sum of covalent radii.
        """
        with log.section('SYS'):
            from molmod.bonds import bonds
            if self.bonds is not None:
                if log.do_warning:
                    log.warn('Overwriting existing bonds.')
            work = np.zeros((self.natom * (self.natom - 1)) // 2, float)
            self.cell.compute_distances(work, self.pos)
            ishort = (work < bonds.max_length * 1.01).nonzero()[0]
            new_bonds = []
            for i in ishort:
                i0, i1 = _unravel_triangular(i)
                n0 = self.numbers[i0]
                n1 = self.numbers[i1]
                if exceptions is not None:
                    threshold = exceptions.get((n0, n1))
                    if threshold is None and n0 != n1:
                        threshold = exceptions.get((n1, n0))
                    if threshold is not None:
                        if work[i] < threshold:
                            new_bonds.append([i0, i1])
                        continue
                if bonds.bonded(n0, n1, work[i]):
                    new_bonds.append([i0, i1])
            self.bonds = np.array(new_bonds)
            self._init_derived_bonds()
Пример #4
0
    def from_geometry(cls, molecule, do_orders=False, scaling=1.0):
        """Construct a MolecularGraph object based on interatomic distances

           All short distances are computed with the binning module and compared
           with a database of bond lengths. Based on this comparison, bonded
           atoms are detected.

           Argument:
            | ``molecule``  --  The molecule to derive the graph from

           Optional arguments:
            | ``do_orders``  --  set to True to estimate the bond order
            | ``scaling``  --  scale the threshold for the connectivity. increase
                               this to 1.5 in case of transition states when a
                               fully connected topology is required.
        """
        from molmod.bonds import bonds

        unit_cell = molecule.unit_cell
        pair_search = PairSearchIntra(
            molecule.coordinates,
            bonds.max_length*bonds.bond_tolerance,
            unit_cell
        )

        orders = []
        lengths = []
        edges = []

        for i0, i1, delta, distance in pair_search:
            bond_order = bonds.bonded(molecule.numbers[i0], molecule.numbers[i1], distance/scaling)
            if bond_order is not None:
                if do_orders:
                    orders.append(bond_order)
                lengths.append(distance)
                edges.append((i0,i1))

        if do_orders:
            result = cls(edges, molecule.numbers, orders, symbols=molecule.symbols)
        else:
            result = cls(edges, molecule.numbers, symbols=molecule.symbols)

        # run a check on all neighbors. if two bonds point in a direction that
        # differs only by 45 deg. the longest of the two is discarded. the
        # double loop over the neighbors is done such that the longest bonds
        # are eliminated first
        slated_for_removal = set([])
        threshold = 0.5**0.5
        for c, ns in result.neighbors.iteritems():
            lengths_ns = []
            for n in ns:
                delta = molecule.coordinates[n] - molecule.coordinates[c]
                if unit_cell is not None:
                    delta = unit_cell.shortest_vector(delta)
                length = numpy.linalg.norm(delta)
                lengths_ns.append([length, delta, n])
            lengths_ns.sort(reverse=True, cmp=(lambda r0, r1: cmp(r0[0], r1[0])))
            for i0, (length0, delta0, n0) in enumerate(lengths_ns):
                for i1, (length1, delta1, n1) in enumerate(lengths_ns[:i0]):
                    if length1 == 0.0:
                        continue
                    cosine = numpy.dot(delta0, delta1)/length0/length1
                    if cosine > threshold:
                        # length1 > length0
                        slated_for_removal.add((c,n1))
                        lengths_ns[i1][0] = 0.0
        # construct a mask
        mask = numpy.ones(len(edges), bool)
        for i0, i1 in slated_for_removal:
            edge_index = result.edge_index.get(frozenset([i0,i1]))
            if edge_index is None:
                raise ValueError('Could not find edge that has to be removed: %i %i' % (i0, i1))
            mask[edge_index] = False
        # actual removal
        edges = [edges[i] for i in xrange(len(edges)) if mask[i]]
        if do_orders:
            bond_order = [bond_order[i] for i in xrange(len(bond_order)) if mask[i]]
            result = cls(edges, molecule.numbers, orders)
        else:
            result = cls(edges, molecule.numbers)

        lengths = [lengths[i] for i in xrange(len(lengths)) if mask[i]]
        result.bond_lengths = numpy.array(lengths)

        return result
Пример #5
0
    def from_geometry(cls, molecule, do_orders=False, scaling=1.0):
        """Construct a MolecularGraph object based on interatomic distances

           All short distances are computed with the binning module and compared
           with a database of bond lengths. Based on this comparison, bonded
           atoms are detected.

           Argument:
            | ``molecule``  --  The molecule to derive the graph from

           Optional arguments:
            | ``do_orders``  --  set to True to estimate the bond order
            | ``scaling``  --  scale the threshold for the connectivity. increase
                               this to 1.5 in case of transition states when a
                               fully connected topology is required.
        """
        from molmod.bonds import bonds

        unit_cell = molecule.unit_cell
        pair_search = PairSearchIntra(molecule.coordinates,
                                      bonds.max_length * bonds.bond_tolerance,
                                      unit_cell)

        orders = []
        lengths = []
        edges = []

        for i0, i1, delta, distance in pair_search:
            bond_order = bonds.bonded(molecule.numbers[i0],
                                      molecule.numbers[i1], distance / scaling)
            if bond_order is not None:
                if do_orders:
                    orders.append(bond_order)
                lengths.append(distance)
                edges.append((i0, i1))

        if do_orders:
            result = cls(edges,
                         molecule.numbers,
                         orders,
                         symbols=molecule.symbols)
        else:
            result = cls(edges, molecule.numbers, symbols=molecule.symbols)

        # run a check on all neighbors. if two bonds point in a direction that
        # differs only by 45 deg. the longest of the two is discarded. the
        # double loop over the neighbors is done such that the longest bonds
        # are eliminated first
        slated_for_removal = set([])
        threshold = 0.5**0.5
        for c, ns in result.neighbors.items():
            lengths_ns = []
            for n in ns:
                delta = molecule.coordinates[n] - molecule.coordinates[c]
                if unit_cell is not None:
                    delta = unit_cell.shortest_vector(delta)
                length = np.linalg.norm(delta)
                lengths_ns.append([length, delta, n])
            lengths_ns.sort(reverse=True, key=(lambda r: r[0]))
            for i0, (length0, delta0, n0) in enumerate(lengths_ns):
                for i1, (length1, delta1, n1) in enumerate(lengths_ns[:i0]):
                    if length1 == 0.0:
                        continue
                    cosine = np.dot(delta0, delta1) / length0 / length1
                    if cosine > threshold:
                        # length1 > length0
                        slated_for_removal.add((c, n1))
                        lengths_ns[i1][0] = 0.0
        # construct a mask
        mask = np.ones(len(edges), bool)
        for i0, i1 in slated_for_removal:
            edge_index = result.edge_index.get(frozenset([i0, i1]))
            if edge_index is None:
                raise ValueError(
                    'Could not find edge that has to be removed: %i %i' %
                    (i0, i1))
            mask[edge_index] = False
        # actual removal
        edges = [edges[i] for i in range(len(edges)) if mask[i]]
        if do_orders:
            bond_order = [
                bond_order[i] for i in range(len(bond_order)) if mask[i]
            ]
            result = cls(edges, molecule.numbers, orders)
        else:
            result = cls(edges, molecule.numbers)

        lengths = [lengths[i] for i in range(len(lengths)) if mask[i]]
        result.bond_lengths = np.array(lengths)

        return result