Пример #1
0
def run_ensemble(model_class,
                 parameters,
                 param_set_id,
                 seed_base,
                 number_of_trajectories,
                 storage_mode="Shared"):
    """ Generates an ensemble consisting of number_of_trajectories realizations by
        running the model 'nt' number of times. The resulting result objects
        are serialized and written to one of the MOLNs storage locations, each
        assigned a random filename. The default behavior is to write the
        files to the Shared storage location (global non-persistent). Optionally, files can be
        written to the Object Store (global persistent), storage_model="Persistent"

        Returns: a list of filenames for the serialized result objects.

        """

    import sys
    import uuid
    from molnsutil import PersistentStorage, LocalStorage, SharedStorage

    if storage_mode == "Shared":
        storage = SharedStorage()
    elif storage_mode == "Persistent":
        storage = PersistentStorage()
    else:
        raise MolnsUtilException(
            "Unknown storage type '{0}'".format(storage_mode))
    # Create the model
    try:
        model_class_cls = cloudpickle.loads(model_class)
        if parameters is not None:
            model = model_class_cls(**parameters)
        else:
            model = model_class_cls()
    except Exception as e:
        notes = "Error instantiation the model class, caught {0}: {1}\n".format(
            type(e), e)
        notes += "dir={0}\n".format(dir())
        raise MolnsUtilException(notes)

    # Run the solver
    filenames = []
    processes = []
    results = model.run(seed=seed_base,
                        number_of_trajectories=number_of_trajectories)
    if not isinstance(results, list):
        results = [results]
    for result in results:
        try:
            # We should try to thread this to hide latency in file upload...
            filename = str(uuid.uuid1())
            storage.put(filename, result)
            filenames.append(filename)
        except:
            raise

    return {'filenames': filenames, 'param_set_id': param_set_id}
Пример #2
0
def write_file(storage_mode,filename, result):
    
    from molnsutil import LocalStorage, SharedStorage, PersistentStorage

    if storage_mode=="Shared":
        storage  = SharedStorage()
    elif storage_mode=="Persistent":
        storage = PersistentStorage()
    else:
        raise MolnsUtilException("Unknown storage type '{0}'".format(storage_mode))
    
    storage.put(filename, result)
Пример #3
0
def write_file(storage_mode, filename, result):

    from molnsutil import LocalStorage, SharedStorage, PersistentStorage

    if storage_mode == "Shared":
        storage = SharedStorage()
    elif storage_mode == "Persistent":
        storage = PersistentStorage()
    else:
        raise MolnsUtilException(
            "Unknown storage type '{0}'".format(storage_mode))

    storage.put(filename, result)
Пример #4
0
def run_ensemble(model_class, parameters, param_set_id, seed_base, number_of_trajectories, storage_mode="Shared"):
    """ Generates an ensemble consisting of number_of_trajectories realizations by
        running the model 'nt' number of times. The resulting result objects
        are serialized and written to one of the MOLNs storage locations, each
        assigned a random filename. The default behavior is to write the
        files to the Shared storage location (global non-persistent). Optionally, files can be
        written to the Object Store (global persistent), storage_model="Persistent"

        Returns: a list of filenames for the serialized result objects.

        """

    import sys
    import uuid
    from molnsutil import PersistentStorage, LocalStorage, SharedStorage

    if storage_mode=="Shared":
        storage  = SharedStorage()
    elif storage_mode=="Persistent":
        storage = PersistentStorage()
    else:
        raise MolnsUtilException("Unknown storage type '{0}'".format(storage_mode))
    # Create the model
    try:
        model_class_cls = cloudpickle.loads(model_class)
        if parameters is not None:
            model = model_class_cls(**parameters)
        else:
            model = model_class_cls()
    except Exception as e:
        notes = "Error instantiation the model class, caught {0}: {1}\n".format(type(e),e)
        notes +=  "dir={0}\n".format(dir())
        raise MolnsUtilException(notes)

    # Run the solver
    filenames = []
    processes=[]
    results = model.run(seed=seed_base, number_of_trajectories=number_of_trajectories)
    if not isinstance(results, list):
        results = [results]
    for result in results:
        try:
            # We should try to thread this to hide latency in file upload...
            filename = str(uuid.uuid1())
            storage.put(filename, result)
            filenames.append(filename)
        except:
            raise

    return {'filenames':filenames, 'param_set_id':param_set_id}