Пример #1
0
    def __init__(self, ns=0, MLP=None):

        QObject.__init__(self)

        self.MLP = MLP
        self.interrupted = False

        self.layers = None
        if self.MLP:
            self.layers = self.getMlpTopology()

        self.ns = ns  # Neighbourhood size of training rasters.
        self.data = None  # Training data
        self.catlist = None  # List of unique output values of the output raster
        self.train_error = None  # Error on training set
        self.val_error = None  # Error on validation set
        self.minValError = None  # The minimum error that is achieved on the validation set
        self.valKappa = 0  # Kappa on on the validation set
        self.sampler = None  # Sampler

        # Results of the MLP prediction
        self.prediction = None  # Raster of the MLP prediction results
        self.confidence = None  # Raster of the MLP results confidence (1 = the maximum confidence, 0 = the least confidence)
        self.transitionPotentials = None  # Dictionary of transition potencial maps: {category1: map1, category2: map2, ...}

        # Outputs of the activation function for small and big numbers
        self.sigmax, self.sigmin = sigmoid(100), sigmoid(
            -100)  # Max and Min of the sigmoid function
        self.sigrange = self.sigmax - self.sigmin  # Range of the sigmoid
Пример #2
0
    def __init__(self, ns=0, MLP=None):

        QObject.__init__(self)

        self.MLP = MLP
        self.interrupted = False

        self.layers = None
        if self.MLP:
            self.layers = self.getMlpTopology()

        self.ns = ns            # Neighbourhood size of training rasters.
        self.data = None        # Training data
        self.catlist     = None # List of unique output values of the output raster
        self.train_error = None # Error on training set
        self.val_error   = None # Error on validation set
        self.minValError = None # The minimum error that is achieved on the validation set
        self.valKappa    = 0     # Kappa on on the validation set
        self.sampler     = None # Sampler

        # Results of the MLP prediction
        self.prediction = None  # Raster of the MLP prediction results
        self.confidence = None  # Raster of the MLP results confidence (1 = the maximum confidence, 0 = the least confidence)
        self.transitionPotentials = None # Dictionary of transition potencial maps: {category1: map1, category2: map2, ...}

        # Outputs of the activation function for small and big numbers
        self.sigmax, self.sigmin = sigmoid(100), sigmoid(-100)  # Max and Min of the sigmoid function
        self.sigrange = self.sigmax - self.sigmin               # Range of the sigmoid
Пример #3
0
    def __init__(self, ns=0, MLP=None):

        QObject.__init__(self)

        self.MLP = MLP

        self.layers = None
        if self.MLP:
            self.layers = self.getMlpTopology()

        self.ns = ns            # Neighbourhood size of training rasters.
        self.data = None        # Training data
        self.classlist   = None # List of unique output values of the output raster
        self.train_error = None # Error on training set
        self.val_error   = None # Error on validation set
        self.minValError = None # The minimum error that is achieved on the validation set

        # Results of the MLP prediction
        self.prediction = None  # Raster of the MLP prediction results
        self.confidence = None  # Raster of the MLP results confidence

        # Outputs of the activation function for small and big numbers
        self.sigmax, self.sigmin = sigmoid(100), sigmoid(-100)  # Max and Min of the sigmoid function
        self.sigrange = self.sigmax - self.sigmin               # Range of the sigmoid