def test_cds_length(self): net = mm.cds_length(self.network) net2 = mm.cds_length(self.network, mode='mean', name='cds_mean') sumval = 1753.626758955522 mean = 219.20334486944023 assert net.nodes[(1603650.450422848, 6464368.600601688)]['cds_len'] == sumval assert net2.nodes[(1603650.450422848, 6464368.600601688)]['cds_mean'] == mean
def test_cds_length(self): net = mm.cds_length(self.network) net2 = mm.cds_length(self.network, mode="mean", name="cds_mean") sumval = 1753.626758955522 mean = 219.20334486944023 assert net.nodes[(1603650.450422848, 6464368.600601688)]["cds_len"] == sumval assert net2.nodes[(1603650.450422848, 6464368.600601688)]["cds_mean"] == mean with pytest.raises(ValueError): net2 = mm.cds_length(self.network, mode="nonexistent") assert mm.cds_length(self.network, radius=None) == 2291.4520621447705
def time_cds_length(self): mm.cds_length(self.network)
degree="degree", length="mm_len", mean_node_degree=False, proportion={ 0: True, 3: True, 4: True }, cyclomatic=False, edge_node_ratio=False, gamma=False, local_closeness=True, closeness_distance="mm_len", ) print("cds length") graph = mm.cds_length(graph, radius=3, name="ldsCDL") print("eigenvector") try: graph = mm.eigenvector(graph, name="xcnEiC", max_iter=500) except Exception: graph = mm.eigenvector(graph, name="xcnEiC", max_iter=1000) print("clustering") graph = mm.clustering(graph, name="xcnSCl") print("mean_node_dist") graph = mm.mean_node_dist(graph, name="mtdMDi") nodes, edges, sw = mm.nx_to_gdf(graph, spatial_weights=True)