Пример #1
0
            yerr=u_period,
            marker="x",
            linestyle="None",
            color="black",
            label="experimental data")
ax.set(xlabel='count', ylabel="Period (s)")
fig.suptitle('Pendulum period')
savefig('pendulum_data.png')

# Let us assume that the period is constant

pendulum_model = make_lmfit_model("T", allow_constant_model=True)
pendulum_params = pendulum_model.make_params(T=2.0)
pendulum_fit_results = model_fit(pendulum_model,
                                 pendulum_params,
                                 count,
                                 period,
                                 u_y=u_period)

pendulum_fit = pendulum_fit_results.best_fit
u_pendulum_fit = pendulum_fit_results.eval_uncertainty(sigma=1)
pendulum_fit_parameters = get_fit_parameters(pendulum_fit_results)
pvalue = 1.0 - stats.chi2.cdf(
    pendulum_fit_results.chisqr,
    pendulum_fit_results.ndata - pendulum_fit_results.nvarys)

print("""
[[Simple pendulum]]
===================
  p-value       = {pvalue:.2E}
""".format(pars=pendulum_fit_parameters, f=pendulum_fit_results,
Пример #2
0
    __filepath = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                              'quiz_data.csv')
    data = pandas.read_csv(__filepath).to_numpy()
except:
    data = "Warning: failed to import data from csv file. Possibly the monashspa library is not installed correctly."

x = data[:,0]
u_x = data[:,1]
temp = data[:,2]

name = "linear model"

# Create the model and run fit
model = make_lmfit_model("a*x + b")
params = model.make_params(a=1.0, b=0.0)
fit_results = model_fit(model, params, temp, x, u_y=u_x)

# Extract result and print nicely
fit = fit_results.best_fit
u_fit = fit_results.eval_uncertainty(sigma=1)
fit_parameters = get_fit_parameters(fit_results)
pvalue = 1.0 - stats.chi2.cdf(fit_results.chisqr,
                              fit_results.ndata-fit_results.nvarys)

print("""
[[{name}]]
=================
  p-value       = {pvalue:.2E}
""".format(name=name, pvalue=pvalue))
print(fit_results.fit_report())
Пример #3
0
    # Fill these arrays with the relative resolution and the uncertainty on that estimate for each of the
    # particle energies
    rel_resolutions_withall = []
    u_rel_resolutions_withall = []

    from lmfit import fit_report
    from scipy import stats
    from monashspa.common.fitting import linear_fit, get_fit_parameters, make_lmfit_model, model_fit
    from monashspa.common.figures import savefig

    name = 'Energy resolution'
    model = make_lmfit_model("sqrt(a*a/x + b*b + c*c/(x*x))")
    params = model.make_params(a=0.09, b=0.03, c=3)
    fit_results = model_fit(model,
                            params,
                            particle_energies,
                            rel_resolutions_withall,
                            u_y=u_rel_resolutions_withall)

    # Extract result and print nicely
    fit = fit_results.best_fit
    u_fit = fit_results.eval_uncertainty(sigma=1)
    fit_parameters = get_fit_parameters(fit_results)
    pvalue = 1.0 - stats.chi2.cdf(fit_results.chisqr,
                                  fit_results.ndata - fit_results.nvarys)

    print("""
    [[{name}]]
    =================
      p-value       = {pvalue:.2E}
    """.format(name=name, pvalue=pvalue))
Пример #4
0
except FileNotFoundError:
    print(
        "ERROR: Failed to read CSV file {file} with data. It should be in the same folder {folder} as the Python file"
        .format(file=datafile, folder=folder))

if type(data) == type(None):
    sys.exit(1)

volume = data[:, 0]
u_volume = data[:, 1]
temp = data[:, 2]

# Create the model and run fit
gas_model = make_lmfit_model(model)
gas_params = gas_model.make_params(R=0.01)
gas_fit_results = model_fit(gas_model, gas_params, temp, volume, u_y=u_volume)

# Extract result and print nicely
gas_fit = gas_fit_results.best_fit
u_gas_fit = gas_fit_results.eval_uncertainty(sigma=1)
gas_fit_parameters = get_fit_parameters(gas_fit_results)
pvalue = 1.0 - stats.chi2.cdf(gas_fit_results.chisqr,
                              gas_fit_results.ndata - gas_fit_results.nvarys)

print("""
[[{name}]]
=================
  p-value       = {pvalue:.2E}
""".format(name=name, pvalue=pvalue))
print(gas_fit_results.fit_report())
xval = np.arange(start=-5.0, stop=5.0, step=0.8)
u_yval = 0.8 + xval * xval / 15.
yval = 1.5 * xval + np.random.normal(0.0, u_yval)

#######################################################################

# Name of the model that you fit
name = "linear model"

#######################################################################

# Create the model and run fit
model = make_lmfit_model("a*x + b")
params = model.make_params(a=1.0, b=0.0)
fit_results = model_fit(model, params, xval, yval, u_y=u_yval)

# Extract result and print nicely
fit = fit_results.best_fit
u_fit = fit_results.eval_uncertainty(sigma=1)
fit_parameters = get_fit_parameters(fit_results)
pvalue = 1.0 - stats.chi2.cdf(fit_results.chisqr,
                              fit_results.ndata - fit_results.nvarys)

print("""
[[{name}]]
=================
  p-value       = {pvalue:.2E}
""".format(name=name, pvalue=pvalue))
print(fit_results.fit_report())