Пример #1
0
    def compute_b_jones(self):
        """
        Computes the brightness matrix from the stokes parameters.

        Returns a (4,nsrc,ntime,nchan) matrix of complex scalars.
        """
        nsrc, ntime, nchan = self.dim_local_size('nsrc', 'ntime', 'nchan')

        try:
            B = np.empty(shape=(nsrc, ntime, 4), dtype=self.ct)
            S = self.stokes
            # Create the brightness matrix from the stokes parameters
            # Dimension (nsrc, ntime, 4)
            B[:,:,0] = S[:,:,0] + S[:,:,1]    # I+Q
            B[:,:,1] = S[:,:,2] + 1j*S[:,:,3] # U+Vi
            B[:,:,2] = S[:,:,2] - 1j*S[:,:,3] # U-Vi
            B[:,:,3] = S[:,:,0] - S[:,:,1]    # I-Q

            # Multiply the scalar power term into the matrix
            B_power = ne.evaluate('B*((f/rf)**a)', {
                 'rf': self.ref_frequency[np.newaxis, np.newaxis, :, np.newaxis],
                 'B': B[:,:,np.newaxis,:],
                 'f': self.frequency[np.newaxis, np.newaxis, :, np.newaxis],
                 'a': self.alpha[:, :, np.newaxis, np.newaxis] })

            assert B_power.shape == (nsrc, ntime, nchan, 4)

            return B_power

        except AttributeError as e:
            mbu.rethrow_attribute_exception(e)
Пример #2
0
    def compute_b_sqrt_jones(self, b_jones=None):
        """
        Computes the square root of the brightness matrix.

        Returns a (4,nsrc,ntime,nchan) matrix of complex scalars.
        """
        nsrc, ntime, nchan = self.dim_local_size('nsrc', 'ntime', 'nchan')

        try:
            # See
            # http://en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix
            # Note that this code handles a special case of the above
            # where we assume that both the trace and determinant
            # are real and positive.
            B = self.compute_b_jones() if b_jones is None else b_jones.copy()

            # trace = I+Q + I-Q = 2*I
            # det = (I+Q)*(I-Q) - (U+iV)*(U-iV) = I**2-Q**2-U**2-V**2
            trace = (B[:,:,:,0]+B[:,:,:,3]).real
            det = (B[:,:,:,0]*B[:,:,:,3] - B[:,:,:,1]*B[:,:,:,2]).real

            assert trace.shape == (nsrc, ntime, nchan)
            assert det.shape == (nsrc, ntime, nchan)

            assert np.all(trace >= 0.0), \
                'Negative brightness matrix trace'
            assert np.all(det >= 0.0), \
                'Negative brightness matrix determinant'

            s = np.sqrt(det)
            t = np.sqrt(trace + 2*s)

            # We don't have a solution for matrices
            # where both s and t are zero. In the case
            # of brightness matrices, zero s and t
            # implies that the matrix itself is 0.
            # Avoid infs and nans from divide by zero
            mask = np.logical_and(s == 0.0, t == 0.0)
            t[mask] = 1.0

            # Add s to the diagonal entries
            B[:,:,:,0] += s
            B[:,:,:,3] += s

            # Divide the entire matrix by t
            B /= t[:,:,:,np.newaxis]

            return B

        except AttributeError as e:
            mbu.rethrow_attribute_exception(e)
Пример #3
0
    def compute_ekb_jones_per_bl(self, ekb_sqrt=None):
        """
        Computes per baseline jones matrices based on the
        scalar EKB Square root terms

        Returns a (nsrc,ntime,nbl,nchan,4) matrix of complex scalars.
        """
        nsrc, npsrc, ngsrc, nssrc, ntime, nbl, nchan = self.dim_local_size(
            'nsrc', 'npsrc', 'ngsrc', 'nssrc', 'ntime', 'nbl', 'nchan')

        try:
            if ekb_sqrt is None:
                ekb_sqrt = self.compute_ekb_sqrt_jones_per_ant()

            ant0, ant1 = self.ap_idx(src=True, chan=True)

            ekb_sqrt_p = ekb_sqrt[ant0]
            ekb_sqrt_q = ekb_sqrt[ant1]
            assert ekb_sqrt_p.shape == (nsrc, ntime, nbl, nchan, 4)

            result = self.jones_multiply(ekb_sqrt_p, ekb_sqrt_q,
                hermitian=True).reshape(nsrc, ntime, nbl, nchan, 4)

            # Multiply in Gaussian Shape Terms
            if ngsrc > 0:
                src_beg = npsrc
                src_end = npsrc + ngsrc
                gauss_shape = self.compute_gaussian_shape()
                result[src_beg:src_end,:,:,:,:] *= gauss_shape[:,:,:,:,np.newaxis]

            # Multiply in Sersic Shape Terms
            if nssrc > 0:
                src_beg = npsrc + ngsrc
                src_end = npsrc + ngsrc + nssrc
                sersic_shape = self.compute_sersic_shape()
                result[src_beg:src_end,:,:,:,:] *= sersic_shape[:,:,:,:,np.newaxis]

            return result
            #return ebk_sqrt[1]*ebk_sqrt[0].conj()
        except AttributeError as e:
            mbu.rethrow_attribute_exception(e)