Пример #1
0
    def cal_dcf(self, fcf: Decimal, year: int, date: str) -> Decimal:
        fcf = decimal_utils.none_to_zero(fcf)
        if fcf <= 0:
            return Decimal(0), Decimal(0)

        inc_map: list = self._get_arr_by_name('inc_rate', date)
        dr_map: list = self._get_arr_by_name('discount_rate', date)

        mv = fcf
        inc_rate = 0.07
        discount_rate = 0.1

        # 计算10年的
        for i in range(0, 10):
            y = year + i + 1
            if y in inc_map:
                inc_rate = inc_map[y].value
            if y in dr_map:
                discount_rate = dr_map[y].value
            fcf = decimal_utils.div(decimal_utils.mul(fcf, (1 + inc_rate)), (1 + discount_rate))
            if fcf < 0:
                fcf = 0
            mv = decimal_utils.add(mv, fcf)

        inc_rate = inc_map[9999].value
        discount_rate = dr_map[9999].value

        mv_forever = decimal_utils.add(mv, decimal_utils.div(
            decimal_utils.mul(fcf, (1 + inc_rate)),
            (discount_rate - inc_rate)))

        return mv, mv_forever
Пример #2
0
    def fetch_daily_basic(self, ts_code: str = None, end_date: str = None, start_date: str = None,
                          trade_date: str = None) -> DataFrame:
        """
        https://tushare.pro/document/2?doc_id=32
        :param ts_code: 股票编码
        :param end_date: 起始日期
        :param start_date: 结束日期
        :param trade_date: 交易日期
        :return:
        """
        df: DataFrame = self.__pro.daily_basic(ts_code=ts_code, start_date=start_date, end_date=end_date,
                                               trade_date=trade_date)
        if not df.empty:
            # 按日期升序
            df = df.sort_values(by='trade_date')
            df.loc[:, 'turnover_rate'] = df.apply(lambda row: decimal_utils.none_to_zero(row.turnover_rate), axis=1)
            df.loc[:, 'volume_ratio'] = df.apply(lambda row: decimal_utils.none_to_zero(row.volume_ratio), axis=1)

            # 替换掉所有需要是0的之后,取最近的值填充
            df = df.ffill()
            df.loc[:, 'total_share'] = df.apply(lambda row:
                                                decimal_utils.mul(row.total_share, 10000, err_default=None), axis=1)
            df.loc[:, 'float_share'] = df.apply(lambda row:
                                                decimal_utils.mul(row.float_share, 10000, err_default=None), axis=1)
            df.loc[:, 'free_share'] = df.apply(lambda row:
                                               decimal_utils.mul(row.free_share, 10000, err_default=None), axis=1)
            df.loc[:, 'free_share'] = df.apply(lambda row:
                                               row.float_share if row.free_share is None or math.isnan(row.free_share)
                                               else row.free_share, axis=1)
            df.loc[:, 'total_mv'] = df.apply(lambda row:
                                             decimal_utils.mul(row.total_mv, 10000, err_default=None), axis=1)

        return df
Пример #3
0
    def fetch_forecast(self, ts_code: str = None, end_date: str = None, start_date: str = None,
                       ann_date: str = None, period: str = None) -> DataFrame:
        """
        https://tushare.pro/document/2?doc_id=45
        :param ts_code: 股票编码
        :param end_date: 起始日期
        :param start_date: 结束日期
        :param ann_date: 公告日期
        :param period: 报告期
        :return:
        """
        df: DataFrame = self.__pro.forecast_vip(ts_code=ts_code, period=period,
                                                start_date=start_date, end_date=end_date,
                                                ann_date=ann_date)
        df = df.where(pandas.notnull(df), None)

        if not df.empty:
            df.loc[:, 'net_profit_min'] = df.apply(lambda row:
                                                   decimal_utils.mul(row.net_profit_min, 10000, err_default=None),
                                                   axis=1)
            df.loc[:, 'net_profit_max'] = df.apply(lambda row:
                                                   decimal_utils.mul(row.net_profit_max, 10000, err_default=None),
                                                   axis=1)
            df.loc[:, 'last_parent_net'] = df.apply(lambda row:
                                                    decimal_utils.mul(row.last_parent_net, 10000, err_default=None),
                                                    axis=1)
            self.fix_ann_date_with_list_date(df, 'ann_date')
            df.loc[:, 'mq_ann_date'] = df.apply(lambda row: row.ann_date,
                                                axis=1)
        return df
Пример #4
0
def extract_from_dividend(result_list: list, store: MqQuarterStore,
                          period_dict: dict, d: TsDividend):
    # 有可能有非固定分红的派钱
    lp: str = date_utils.latest_period_date(d.end_date)
    update_date: str = date_utils.format_delta(d.imp_ann_date, -1)

    call_add_nx = partial(add_nx,
                          ts_code=d.ts_code,
                          period=lp,
                          update_date=update_date,
                          report_type=mq_report_type.report,
                          store=store,
                          result_list=result_list,
                          period_dict=period_dict)

    # 叠加到最近一个季度的分红中
    dividend: Decimal = decimal_utils.mul(d.cash_div_tax, d.base_share)
    if lp != d.end_date:
        ori_d: MqQuarterMetric = store.find_period_latest(
            ts_code=d.ts_code,
            period=lp,
            update_date=update_date,
            name=mq_quarter_metric_enum.dividend.name)
        if ori_d is not None:
            dividend = dividend + ori_d.value
    call_add_nx(name='dividend', value=dividend)
Пример #5
0
    def update_adj(self, adj_type: str, latest_adj: str):
        """
        更新到想要的复权状态
        :param adj_type: 复权类型 qfq-前复权 hfq-后复权 其他-不复权
        :param latest_adj: 最新复权因子
        :return:
        """
        div_factor = 1
        if self.adj_type == 'qfq' and not decimal_utils.equals(
                self.adj, self.latest_adj):
            div_factor = decimal_utils.div(self.adj, self.latest_adj)
        elif self.adj_type == 'hfq':
            div_factor = self.adj

        mul_factor = 1
        if adj_type == 'qfq' and not decimal_utils.equals(
                self.adj, latest_adj):
            mul_factor = decimal_utils.div(self.adj, latest_adj)
        elif adj_type == 'hfq':
            mul_factor = self.adj

        factor = 1 if decimal_utils.equals(mul_factor,
                                           div_factor) else decimal_utils.div(
                                               mul_factor, div_factor)

        if factor == 1:
            return

        self.open = decimal_utils.mul(self.open, factor)
        self.high = decimal_utils.mul(self.high, factor)
        self.low = decimal_utils.mul(self.low, factor)
        self.close = decimal_utils.mul(self.close, factor)
        self.up_limit = decimal_utils.mul(self.up_limit, factor)
        self.down_limit = decimal_utils.mul(self.down_limit, factor)
        self.pre_close = decimal_utils.mul(self.pre_close, factor)
Пример #6
0
def multiply(i1: MqQuarterMetric, i2: MqQuarterMetric,
             name: str) -> MqQuarterMetric:
    if i1 is None or i2 is None:
        return None
    return MqQuarterMetric(ts_code=i1.ts_code,
                           report_type=i1.report_type | i2.report_type,
                           period=i1.period,
                           update_date=i1.update_date,
                           name=name,
                           value=decimal_utils.mul(i1.value, i2.value))
Пример #7
0
    def __init__(self, ts_code: str, trade_date: str, is_trade: int,
                 adj_type: str, adj: decimal, latest_adj: decimal,
                 open_price: decimal, high: decimal, low: decimal,
                 close: decimal, up_limit: decimal, down_limit: decimal,
                 pre_close: decimal):
        factor = 1
        if adj_type == 'qfq' and not decimal_utils.equals(adj, latest_adj):
            factor = decimal_utils.div(adj, latest_adj)
        elif adj_type == 'hfq':
            factor = adj

        self.ts_code = ts_code
        self.trade_date = trade_date
        self.is_trade = is_trade
        self.adj_type = adj_type
        self.adj = adj
        self.latest_adj = latest_adj
        self.open = decimal_utils.mul(open_price, factor)
        self.high = decimal_utils.mul(high, factor)
        self.low = decimal_utils.mul(low, factor)
        self.close = decimal_utils.mul(close, factor)
        self.up_limit = decimal_utils.mul(up_limit, factor)
        self.down_limit = decimal_utils.mul(down_limit, factor)
        self.pre_close = decimal_utils.mul(pre_close, factor)
Пример #8
0
def cal(daily_store: mq_daily_store.MqDailyStore,
        quarter_store: mq_quarter_store.MqQuarterStore, ts_code: str,
        update_date: str) -> MqDailyMetric:
    daily_find = partial(daily_store.find_date_exact,
                         ts_code=ts_code,
                         update_date=update_date)
    quarter_find = partial(quarter_store.find_latest,
                           ts_code=ts_code,
                           update_date=update_date)
    score = -1
    period = '00000000'
    dividend_yields = daily_find(
        name=mq_daily_metric_enum.dividend_yields.name)
    risk_point = quarter_find(name=mq_quarter_metric_enum.risk_point.name)
    revenue_quarter = quarter_find(
        name=mq_quarter_metric_enum.revenue_quarter.name)
    dprofit_quarter = quarter_find(
        name=mq_quarter_metric_enum.dprofit_quarter.name)

    if dividend_yields is None or \
            calculate.gt(risk_point, 0, 'value', True) or \
            calculate.lt(dividend_yields, 0.03, 'value', True) or \
            not earn_and_dividend_in_year(quarter_store, ts_code, dividend_yields.period, update_date, 5) or \
            not earn_in_period(quarter_store, ts_code, dividend_yields.period, update_date, 4) or \
            calculate.lt(revenue_quarter, max_desc_yoy, 'yoy', True) or \
            calculate.lt(revenue_quarter, dprofit_quarter, 'yoy', True):
        score = -1
    else:
        period = dividend_yields.period
        pe = daily_find(name=mq_daily_metric_enum.pe.name)
        pb = daily_find(name=mq_daily_metric_enum.pb.name)

        dividend_score = decimal_utils.mul(dividend_yields.value,
                                           Decimal(1000))  # * 100 / 10 * 100
        pe_score = decimal_utils.valid_score((1 - decimal_utils.div(
            calculate.get_val(pe, 'value', max_pe), max_pe, err_default=0)) *
                                             100)
        pb_score = decimal_utils.valid_score((1 - decimal_utils.div(
            calculate.get_val(pb, 'value', max_pb), max_pb, err_default=0)) *
                                             100)
        pepb_score = decimal_utils.valid_score((1 - decimal_utils.div(
            decimal_utils.mul(calculate.get_val(pe, 'value', max_pe),
                              calculate.get_val(pb, 'value', max_pb)),
            max_pepb)) * 100)

        profit_yoy_score = history_profit_yoy_score(quarter_store, ts_code,
                                                    dividend_yields.period,
                                                    update_date, 5)
        dividend_yoy_score = history_dividend_yoy_score(
            quarter_store, ts_code, dividend_yields.period, update_date, 5)

        if profit_yoy_score == 0 or dividend_yoy_score == 0:
            score = 0
        elif pe_score == 0 and pb_score == 0 and pepb_score == 0:
            score = 0
        else:
            score = decimal_utils.add(
                decimal_utils.mul(dividend_score, 0.3),
                decimal_utils.mul(dividend_yoy_score, 0.2),
                decimal_utils.mul((pe_score + pb_score + pepb_score), 0.1),
                decimal_utils.mul(profit_yoy_score, 0.2))

    val_score_metric = MqDailyMetric(ts_code=ts_code,
                                     report_type=mq_report_type.mq_predict,
                                     period=period,
                                     update_date=update_date,
                                     name=mq_daily_metric_enum.val_score.name,
                                     value=decimal_utils.valid_score(score))
    return [val_score_metric]