Пример #1
0
def run() -> None:
    logging.getLogger('main').info('Loading lexicon...')
    lexicon = Lexicon.load(shared.filenames['wordlist'])

    logging.getLogger('main').info('Loading rules...')
    rules_file = shared.filenames['rules-modsel']
    if not file_exists(rules_file):
        rules_file = shared.filenames['rules']
    rule_set = RuleSet.load(rules_file)

    edges_file = shared.filenames['graph-modsel']
    if not file_exists(edges_file):
        edges_file = shared.filenames['graph']
    logging.getLogger('main').info('Loading the graph...')
    edge_set = EdgeSet.load(edges_file, lexicon, rule_set)
    full_graph = FullGraph(lexicon, edge_set)
    if shared.config['General'].getboolean('supervised'):
        full_graph.remove_isolated_nodes()
#     full_graph.load_edges_from_file(graph_file)

# count rule frequencies in the full graph
#     rule_freq = defaultdict(lambda: 0)
#     for edge in full_graph.iter_edges():
#         rule_freq[edge.rule] += 1

# initialize a PointModel
    logging.getLogger('main').info('Initializing the model...')
    model = ModelSuite(rule_set, lexicon=lexicon)
    #     model = PointModel()
    #     model.fit_rootdist(lexicon.entries())
    #     model.fit_ruledist(rule for (rule, domsize) in rules)
    #     for rule, domsize in rules:
    #         model.add_rule(rule, domsize, freq=rule_freq[rule])

    softem(full_graph, model)
Пример #2
0
 def load(model_type: str, filename: str, rule_set: RuleSet) -> EdgeModel:
     if model_type == 'simple':
         return SimpleEdgeModel.load(filename, rule_set)
     elif model_type == 'neural':
         lexicon = Lexicon.load(shared.filenames['wordlist'])
         edge_set = \
             EdgeSet.load(shared.filenames['graph'], lexicon, rule_set)
         negex_sampler = NegativeExampleSampler(rule_set)
         return NeuralEdgeModel.load(filename, rule_set, edge_set,
                                     negex_sampler)
     else:
         raise UnknownModelTypeException('edge', model_type)
Пример #3
0
def run() -> None:
    logging.getLogger('main').info('Loading lexicon...')
    lexicon = Lexicon.load(shared.filenames['wordlist'])

    logging.getLogger('main').info('Loading rules...')
    rules_file = shared.filenames['rules-modsel']
    if not file_exists(rules_file):
        rules_file = shared.filenames['rules']
    rule_set = RuleSet.load(rules_file)

    edges_file = shared.filenames['graph-modsel']
    if not file_exists(edges_file):
        edges_file = shared.filenames['graph']
    logging.getLogger('main').info('Loading the graph...')
    edge_set = EdgeSet.load(edges_file, lexicon, rule_set)
    full_graph = FullGraph(lexicon, edge_set)

    # initialize a ModelSuite and save it
    logging.getLogger('main').info('Initializing the model...')
    model = ModelSuite(rule_set, lexicon=lexicon)
    model.initialize(full_graph)
    logging.getLogger('main').info('Saving the model...')
    model.save()
Пример #4
0
def run() -> None:
    logging.getLogger('main').info('Loading lexicon...')
    lexicon = Lexicon.load(shared.filenames['wordlist'])

    logging.getLogger('main').info('Loading rules...')
    rule_set = RuleSet.load(shared.filenames['rules'])

    logging.getLogger('main').info('Loading the graph...')
    edge_set = EdgeSet.load(shared.filenames['graph'], lexicon, rule_set)
    full_graph = FullGraph(lexicon, edge_set)

    logging.getLogger('main').info('Initializing the model...')
    model = ModelSuite(rule_set, lexicon=lexicon)
    model.initialize(full_graph)
    deleted_rules = set()

    for iter_num in range(shared.config['modsel'].getint('iterations')):
        sampler = MCMCGraphSampler(
            full_graph, model,
            shared.config['modsel'].getint('warmup_iterations'),
            shared.config['modsel'].getint('sampling_iterations'))
        sampler.add_stat('acc_rate', AcceptanceRateStatistic(sampler))
        sampler.add_stat('edge_freq', EdgeFrequencyStatistic(sampler))
        sampler.add_stat('exp_cost', ExpectedCostStatistic(sampler))
        sampler.run_sampling()

        # fit the model
        edge_weights = sampler.stats['edge_freq'].value()
        root_weights = np.ones(len(full_graph.lexicon))
        for idx in range(edge_weights.shape[0]):
            root_id = \
                full_graph.lexicon.get_id(full_graph.edge_set[idx].target)
            root_weights[root_id] -= edge_weights[idx]
        model.fit(sampler.lexicon, sampler.edge_set, root_weights,
                  edge_weights)

        # compute the rule statistics
        freq, contrib = sampler.compute_rule_stats()

        # determine the rules to delete
        deleted_rules |= set(np.where(contrib < 0)[0])
        logging.getLogger('main').info(\
            '{} rules deleted.'.format(len(deleted_rules)))

        # delete the edges with selected rules from the graph
        edges_to_delete = []
        for edge in full_graph.edges_iter():
            if model.rule_set.get_id(edge.rule) in deleted_rules:
                edges_to_delete.append(edge)
        full_graph.remove_edges(edges_to_delete)

        # deleting the rules is not necessary -- instead, save the reduced
        # rule set at the end; fitting will be performed separately

    logging.getLogger('main').info('Saving the graph...')
    full_graph.edge_set.save(shared.filenames['graph-modsel'])

    # remove the deleted rules from the rule set and save it
    logging.getLogger('main').info('Saving the rule set...')
    new_rule_set = RuleSet()
    for i, rule in enumerate(rule_set):
        if i not in deleted_rules:
            new_rule_set.add(rule, rule_set.get_domsize(rule))
    new_rule_set.save(shared.filenames['rules-modsel'])
Пример #5
0
def run() -> None:
    logging.getLogger('main').info('Loading lexicon...')
    lexicon = Lexicon.load(shared.filenames['wordlist'])

    logging.getLogger('main').info('Loading rules...')
    rules_file = shared.filenames['rules-modsel']
    if not file_exists(rules_file):
        rules_file = shared.filenames['rules']
    rule_set = RuleSet.load(rules_file)

    edges_file = shared.filenames['graph-modsel']
    if not file_exists(edges_file):
        edges_file = shared.filenames['graph']
    logging.getLogger('main').info('Loading the graph...')
    edge_set = EdgeSet.load(edges_file, lexicon, rule_set)
    full_graph = FullGraph(lexicon, edge_set)

    # initialize a ModelSuite
    logging.getLogger('main').info('Loading the model...')
    model = ModelSuite.load()

    # setup the sampler
    logging.getLogger('main').info('Setting up the sampler...')
    sampler = MCMCGraphSamplerFactory.new(
        full_graph,
        model,
        warmup_iter=shared.config['sample'].getint('warmup_iterations'),
        sampling_iter=shared.config['sample'].getint('sampling_iterations'),
        iter_stat_interval=shared.config['sample'].getint(
            'iter_stat_interval'),
        depth_cost=shared.config['Models'].getfloat('depth_cost'))
    if shared.config['sample'].getboolean('stat_cost'):
        sampler.add_stat('cost', stats.ExpectedCostStatistic(sampler))
    if shared.config['sample'].getboolean('stat_acc_rate'):
        sampler.add_stat('acc_rate', stats.AcceptanceRateStatistic(sampler))
    if shared.config['sample'].getboolean('stat_iter_cost'):
        sampler.add_stat('iter_cost', stats.CostAtIterationStatistic(sampler))
    if shared.config['sample'].getboolean('stat_edge_freq'):
        sampler.add_stat('edge_freq', stats.EdgeFrequencyStatistic(sampler))
    if shared.config['sample'].getboolean('stat_undirected_edge_freq'):
        sampler.add_stat('undirected_edge_freq',
                         stats.UndirectedEdgeFrequencyStatistic(sampler))
    if shared.config['sample'].getboolean('stat_rule_freq'):
        sampler.add_stat('freq', stats.RuleFrequencyStatistic(sampler))
    if shared.config['sample'].getboolean('stat_rule_contrib'):
        sampler.add_stat('contrib',
                         stats.RuleExpectedContributionStatistic(sampler))

    # run sampling and print results
    logging.getLogger('main').info('Running sampling...')
    sampler.run_sampling()
    sampler.summary()

    sampler.save_root_costs('sample-root-costs.txt')
    sampler.save_edge_costs('sample-edge-costs.txt')

    # save paths to a file
    pathlen = 0
    with open_to_write('paths.txt') as fp:
        for entry in lexicon:
            root = sampler.branching.root(entry)
            path = sampler.branching.path(root, entry)
            path.reverse()
            size = sampler.branching.subtree_size(root)
            fp.write(' <- '.join([str(e) for e in path]) + \
                     ' ({}, {})\n'.format(len(path), size))
            pathlen += len(path)
    logging.getLogger('main').debug('Average path length: {}'\
                                    .format(pathlen / len(lexicon)))

    # save rule frequency model fits to a file
    if model.edge_frequency_model == 'lognormal':
        with open_to_write('freqmodel.txt') as fp:
            for r_id, rule in enumerate(model.rule_set):
                write_line(fp, (rule, model.edge_frequency_model.means[r_id],
                                model.edge_frequency_model.sdevs[r_id]))

    # count words at each depth in the graph
    counts_per_depth = defaultdict(lambda: 0)
    queue = [(word, 0) for word in lexicon \
                       if sampler.branching.parent(word) is None]
    while queue:
        (word, d) = queue.pop()
        counts_per_depth[d] += 1
        queue.extend([(word, d+1) \
                      for word in sampler.branching.successors(word)])
    logging.getLogger('main').debug('Number of nodes per depth:')
    for d, c in counts_per_depth.items():
        logging.getLogger('main').debug('{} {}'.format(d, c))