def test_composition(): pc = PointCloud(np.array([[10, 10, 10], [20, 20, 20]])) hc = HybridCloud(np.array([[10, 10, 10], [20, 20, 20]]), np.array([[0, 1]]), vertices=np.array([[10, 10, 10], [20, 20, 20]])) transform = clouds.Compose([ clouds.Normalization(10), clouds.RandomRotate((60, 60)), clouds.Center() ]) transform(pc) transform(hc) assert np.all( np.round(np.mean(pc.vertices, axis=0)) == np.array([0, 0, 0])) assert np.all( np.round(np.mean(hc.vertices, axis=0)) == np.array([0, 0, 0])) dummy = np.array([[10, 10, 10], [20, 20, 20]]) / 10 angle_range = (60, 60) angles = np.random.uniform(angle_range[0], angle_range[1], (1, 3))[0] rot = Rot.from_euler('xyz', angles, degrees=True) dummy = rot.apply(dummy) centroid = np.mean(dummy, axis=0) dummy = dummy - centroid assert np.all(pc.vertices == dummy) assert np.all(hc.vertices == dummy) assert np.all(hc.vertices == dummy)
def apply_chunkhandler_ssd(): data = SuperSegmentationDataset( working_dir="/wholebrain/songbird/j0126/areaxfs_v6/") ssd_include = [491527, 1090051] chunk_size = 4000 features = {'sv': 1, 'mi': 2, 'vc': 3, 'syn_ssv': 4} transform = clouds.Compose([clouds.Center()]) ch = ChunkHandler(data=data, sample_num=4000, density_mode=False, specific=False, ctx_size=chunk_size, obj_feats=features, splitting_redundancy=1, sampling=True, transform=transform, ssd_include=ssd_include, ssd_labels='axoness', label_mappings=[(3, 2), (4, 3), (5, 1), (6, 1)]) save_path = os.path.expanduser('~/thesis/current_work/chunkhandler_tests/') ix = 0 while ix < 500: sample1 = ch[ix] sample2 = ch[ix + 1] ix += 2 sample = [sample1, sample2] with open(f'{save_path}{ix}.pkl', 'wb') as f: pickle.dump(sample, f) f.close() ch.terminate()
def apply_chunkhandler(save_path: str): path = os.path.expanduser('~/thesis/gt/20_09_27/voxeled/test/') chunk_size = 12000 features = { 'hc': np.array([1, 0, 0, 0]), 'mi': np.array([0, 1, 0, 0]), 'vc': np.array([0, 0, 1, 0]), 'sy': np.array([0, 0, 0, 1]) } identity = clouds.Compose([clouds.Center()]) ch = ChunkHandler(path, sample_num=10000, density_mode=False, specific=False, ctx_size=chunk_size, obj_feats=features, transform=identity, splitting_redundancy=1, sampling=True, split_on_demand=False, label_remove=[-2]) info = ch.get_set_info() print(info['node_labels']) print(info['labels']) import ipdb ipdb.set_trace()
def compare_chunks(): """ Create chunks with different ChunkHandlers and compare the results. """ path = os.path.expanduser('~/thesis/current_work/augmentation_tests/') features = { 'hc': np.array([1, 0, 0, 0]), 'mi': np.array([0, 1, 0, 0]), 'vc': np.array([0, 0, 1, 0]), 'sy': np.array([0, 0, 0, 1]) } transforms1 = clouds.Compose([ clouds.Center(), clouds.RandomScale(distr_scale=0.6, distr='uniform') ]) ch1 = ChunkHandler(path, sample_num=4000, density_mode=False, specific=True, ctx_size=4000, obj_feats=features, transform=transforms1) transforms2 = clouds.Compose([clouds.Center()]) ch2 = ChunkHandler(path, sample_num=4000, density_mode=False, specific=True, ctx_size=4000, obj_feats=features, transform=transforms2) save_path = path + 'scale/' if not os.path.exists(save_path): os.mkdir(save_path) for item in ch1.obj_names: for i in range(10): sample1, _ = ch1[(item, i)] sample2, _ = ch2[(item, i)] samples = [sample1, sample2] # meshes = [clouds.merge_clouds([sample1, meshes[0]]), clouds.merge_clouds([sample2, meshes[0]])] with open(f'{save_path}{item}_{i}.pkl', 'wb') as f: pickle.dump(samples, f) f.close()
def produce_chunks(chunk_size: int, sample_num: int): """ Create and analyse all resulting chunks of an dataset. """ features = {'hc': np.array([1])} center = clouds.Compose([clouds.Identity()]) path = os.path.expanduser('~/working_dir/gt/cmn/dnh/voxeled/') save_path = f'{path}analysis/' ch = ChunkHandler(path, sample_num=sample_num, density_mode=False, ctx_size=chunk_size, obj_feats=features, transform=center, splitting_redundancy=5, label_mappings=[(2, 0), (5, 1), (6, 2)], label_remove=[2], sampling=True, verbose=True, specific=True, hybrid_mode=True) vert_nums = [] counter = 0 chunk_num = 0 for item in ch.obj_names: chunk_num += ch.get_obj_length(item) for i in range(ch.get_obj_length(item)): sample, idcs, vert_num = ch[(item, i)] if vert_num < 10000: if not os.path.exists(save_path + f'examples/{item}/'): os.makedirs(save_path + f'examples/{item}/') with open(f'{save_path}examples/{item}/{i}.pkl', 'wb') as f: pickle.dump([sample, sample], f) vert_nums.append(vert_num) if vert_num < ch.sample_num: counter += 1 vert_nums = np.array(vert_nums) analysis = f"Min: {vert_nums.min()}\nMax: {vert_nums.max()}\nMean: {vert_nums.mean()}\nChunks with less points than requested: {counter}/{chunk_num}" print(analysis) with open(f'{save_path}{chunk_size}_vertnums.pkl', 'wb') as f: pickle.dump(vert_nums, f) with open(f'{save_path}{chunk_size}_{sample_num}.txt', 'w') as f: f.write(analysis) f.close() return counter / chunk_num
def apply_torchhandler(): path = os.path.expanduser('~/thesis/gt/cmn/dnh/test/') chunk_size = 5000 features = {'hc': np.array([1])} identity = clouds.Compose([clouds.Center()]) th = TorchHandler(path, sample_num=5000, density_mode=False, tech_density=100, bio_density=100, specific=False, ctx_size=chunk_size, obj_feats=features, transform=identity, splitting_redundancy=1, sampling=True, split_on_demand=True, nclasses=4, feat_dim=1, hybrid_mode=True, exclude_borders=True) for ix in range(len(th)): sample = th[ix]
def __init__(self, data: Union[str, SuperSegmentationDataset], sample_num: int, density_mode: bool = True, bio_density: float = None, tech_density: int = None, ctx_size: int = None, transform: clouds.Compose = clouds.Compose( [clouds.Identity()]), specific: bool = False, data_type: str = 'ce', obj_feats: dict = None, label_mappings: List[Tuple[int, int]] = None, hybrid_mode: bool = False, splitting_redundancy: int = 1, label_remove: List[int] = None, sampling: bool = True, force_split: bool = False, padding: int = None, verbose: bool = False, split_on_demand: bool = False, split_jitter: int = 0, epoch_size: int = None, workers: int = 2, voxel_sizes: Optional[dict] = None, ssd_exclude: List[int] = None, ssd_include: List[int] = None, ssd_labels: str = None, exclude_borders: int = 0, rebalance: dict = None): """ Args: data: Path to objects saved as pickle files. Existing chunking information would be available in the folder 'splitted' at this location. sample_num: Number of vertices which should be sampled from the surface of each chunk. Should be equal to the capacity of the given network architecture. tech_density: poisson sampling density with which data set was preprocessed in point/um² bio_density: chunk sampling density in point/um². This determines the size of the chunks. If previous chunking information should be used, this information must be available in the splitted/ folder with 'bio_density' as name. transform: Transformations which should be applied to the chunks before returning them (e.g. see :func:`morphx.processing.clouds.Compose`) specific: Flag for setting mode of requesting specific or rather randomly drawn chunks. data_type: Type of dataset, 'ce': CloudEnsembles, 'hc': HybridClouds obj_feats: Only used when inputs are CloudEnsembles. Dict with feature array (1, n) keyed by the name of the corresponding object in the CloudEnsemble. The HybridCloud gets addressed with 'hc'. label_mappings: list of labels which should get replaced by other labels. E.g. [(1, 2), (3, 2)] means that the labels 1 and 3 will get replaced by 3. splitting_redundancy: indicates how many times each skeleton node is included in different contexts. label_remove: List of labels indicating which nodes should be removed from the dataset. This is is independent from the label_mappings, as the label removal is done during splitting. sampling: Flag for random sampling from the extracted subsets. force_split: Split dataset again even if splitting information exists. padding: add padded points if a subset contains less points than there should be sampled. verbose: Return additional information about size of subsets. split_on_demand: Do not generate splitting information in advance, but rather generate chunks on the fly. split_jitter: Used only if split_on_demand = True. Adds jitter to the context size of the generated chunks. epoch_size: Parameter for epoch size that can be used when dataset size is unknown and epoch size should somehow be bounded. workers: Number of workers in case of ssd dataset. voxel_sizes: Voxelization options in case of ssd dataset use. Given as dict with voxel sizes keyed by cell part identifier (e.g. 'sv' or 'mi'). exclude_borders: Offset radius (chunk_size - exclude_border) for excluding border regions of chunks from loss calculation. rebalance: dict for rebalancing of dataset if certain classes dominate. dict contains factor keyed by labels where the factor indicate how often the labels should get resampled. This was introduced for rebalancing the CMN ads dataset. Now this is outcommented and replaced by a hacky version for terminals. """ if type(data) == SuperSegmentationDataset: self._data = data else: self._data = os.path.expanduser(data) if not os.path.exists(self._data): os.makedirs(self._data) # --- split cells into chunks and save this split information to file for later loading --- if not split_on_demand: if not os.path.exists(self._data + 'splitted/'): os.makedirs(self._data + 'splitted/') self._splitfile = '' if density_mode: if bio_density is None or tech_density is None: raise ValueError( "Density mode requires bio_density and tech_density" ) self._splitfile = f'{self._data}splitted/d{bio_density}_p{sample_num}' \ f'_r{splitting_redundancy}_lr{label_remove}.pkl' else: if ctx_size is None: raise ValueError("Context mode requires chunk_size.") self._splitfile = f'{self._data}splitted/s{ctx_size}_r{splitting_redundancy}_lr{label_remove}.pkl' self._splitted_objs = None orig_splitfile = self._splitfile while os.path.exists(self._splitfile): if not force_split: # continue with existing split information with open(self._splitfile, 'rb') as f: self._splitted_objs = pickle.load(f) f.close() break else: # generate new split information without overriding the old version = re.findall(r"v(\d+).", self._splitfile) if len(version) == 0: self._splitfile = self._splitfile[:-4] + '_v1.pkl' else: version = int(version[0]) self._splitfile = orig_splitfile[:-4] + f'_v{version + 1}.pkl' # actual splitting happens here splitting.split(data, self._splitfile, bio_density=bio_density, capacity=sample_num, tech_density=tech_density, density_splitting=density_mode, chunk_size=ctx_size, splitted_hcs=self._splitted_objs, redundancy=splitting_redundancy, label_remove=label_remove, split_jitter=split_jitter) with open(self._splitfile, 'rb') as f: self._splitted_objs = pickle.load(f) f.close() self._voxel_sizes = dict(sv=80, mi=100, syn_ssv=100, vc=100) if voxel_sizes is not None: self._voxel_sizes = voxel_sizes self._sample_num = sample_num self._transform = transform self._specific = specific self._data_type = data_type self._obj_feats = obj_feats self._label_mappings = label_mappings self._hybrid_mode = hybrid_mode self._label_remove = label_remove self._sampling = sampling self._padding = padding self._verbose = verbose self._split_on_demand = split_on_demand self._bio_density = bio_density self._tech_density = tech_density self._density_mode = density_mode self._chunk_size = ctx_size self._splitting_redundancy = splitting_redundancy self._split_jitter = split_jitter self._epoch_size = epoch_size self._workers = workers self._ssd_labels = ssd_labels self._ssd_exclude = ssd_exclude self._rebalance = rebalance self._exclude_borders = exclude_borders if ssd_exclude is None: self._ssd_exclude = [] self._ssd_include = ssd_include if self._ssd_labels is None and type( self._data) == SuperSegmentationDataset: raise ValueError( "ssd_labels must be specified when working with a SuperSegmentationDataset!" ) self._obj_names = [] self._objs = [] self._chunk_list = [] self._parts = {} if type(data) == SuperSegmentationDataset: self._load_func = self.get_item_ssd elif self._specific: self._load_func = self.get_item_specific else: self._load_func = self.get_item # --- dataloader for experiments when using CMN predictions as ground truth --- if type(self._data) == SuperSegmentationDataset: for key in self._obj_feats: self._parts[key] = [ self._voxel_sizes[key], self._obj_feats[key] ] # If ssd dataset is given, multiple workers are used for splitting the ssvs of the given dataset. self._obj_names = Queue() self._chunk_list = Queue(maxsize=10000) if self._ssd_include is None: sizes = [sso.size for sso in self._data.ssvs] idcs = np.argsort(sizes) self._ssd_include = np.array(self._data.ssv_ids)[idcs[-200:]] for ssv in self._ssd_include: if ssv not in self._ssd_exclude: self._obj_names.put(ssv) self._splitters = [ Process(target=worker_split, args=(self._obj_names, self._chunk_list, self._data, self._chunk_size, self._chunk_size / self._splitting_redundancy, self._parts, self._ssd_labels, self._label_mappings, self._split_jitter)) for ix in range(workers) ] for splitter in self._splitters: splitter.start() # --- dataloader for experiments with cells saved as pickle files --- else: files = glob.glob(data + '*.pkl') for file in files: slashs = [pos for pos, char in enumerate(file) if char == '/'] name = file[slashs[-1] + 1:-4] self._obj_names.append(name) if not self._specific: # load entire dataset into memory obj = self._adapt_obj( objects.load_obj(self._data_type, file)) self._objs.append(obj) if not self._specific: if split_on_demand: # do not use split information from file but split cells on the fly for ix, obj in enumerate(tqdm(self._objs)): base_nodes = np.arange(len(obj.nodes)).reshape( -1, 1)[obj.node_labels != -1] base_nodes = np.random.choice(base_nodes, int(len(base_nodes) / 3), replace=True) chunks = context_splitting_kdt(obj, base_nodes, self._chunk_size) for chunk in chunks: self._chunk_list.append((ix, chunk)) else: # use split information from file for item in self._splitted_objs: if item in self._obj_names: for idx in range(len(self._splitted_objs[item])): self._chunk_list.append((item, idx)) if self._rebalance is not None: # rebalance occurence of chunks by using chunks which contain specific labels multiple times print("Rebalancing...") balance = {} for key in self._rebalance: balance[key] = 0 for ix in tqdm(range(len(self._chunk_list))): item = self._chunk_list[ix] obj = self._objs[self._obj_names.index(item[0])] for key in self._rebalance: if key in np.unique(obj.labels): for i in range(self._rebalance[key]): self._chunk_list.append(item) balance[key] += 1 print("Done with rebalancing!") print(balance) random.shuffle(self._chunk_list) self._curr_obj = None self._curr_name = None self._ix = 0 self._size = len(self._chunk_list)
def compare_transforms(chunk_size: int, sample_num: int): """ Create and save all resulting chunks of an dataset with different transforms """ # features = {'hc': np.array([1, 0, 0, 0]), # 'mi': np.array([0, 1, 0, 0]), # 'vc': np.array([0, 0, 1, 0]), # 'sy': np.array([0, 0, 0, 1])} features = {'hc': np.array([1])} identity = clouds.Compose([clouds.Identity()]) center = clouds.Compose([clouds.Center()]) path = os.path.expanduser('~/thesis/gt/cmn/dnh/voxeled/') save_path = f'{path}examples/' ch = ChunkHandler(path, sample_num=sample_num, density_mode=False, tech_density=100, bio_density=100, specific=True, ctx_size=chunk_size, obj_feats=features, transform=identity, splitting_redundancy=2, label_mappings=[(5, 3), (6, 4)], label_remove=None, sampling=True, verbose=True) ch_transform = ChunkHandler(path, sample_num=5000, density_mode=False, tech_density=100, bio_density=100, specific=True, ctx_size=chunk_size, obj_feats=features, transform=center, splitting_redundancy=2, label_mappings=[(5, 3), (6, 4)], label_remove=None, sampling=True, verbose=True) vert_nums = [] counter = 0 chunk_num = 0 total = None for item in ch.obj_names: total_cell = None chunk_num += ch.get_obj_length(item) for i in range(ch.get_obj_length(item)): sample, idcs, vert_num = ch[(item, i)] sample_t, _, _ = ch_transform[(item, i)] vert_nums.append(vert_num) if not os.path.exists(save_path + f'{item}/'): os.makedirs(save_path + f'{item}/') if vert_num < ch.sample_num: counter += 1 with open(f'{save_path}{item}/{i}.pkl', 'wb') as f: pickle.dump([sample, sample_t], f) if total_cell is None: total_cell = sample else: total_cell = clouds.merge_clouds([total_cell, sample]) if total is None: total = total_cell else: total = clouds.merge_clouds([total, total_cell]) with open(f'{save_path}{item}/total.pkl', 'wb') as f: pickle.dump(total_cell, f) with open(f'{save_path}total.pkl', 'wb') as f: pickle.dump(total, f) vert_nums = np.array(vert_nums) print(f"Min: {vert_nums.min()}") print(f"Max: {vert_nums.max()}") print(f"Mean: {vert_nums.mean()}") print(f"Chunks with less points than requested: {counter}/{chunk_num}") with open(f'{save_path}{chunk_size}_vertnums.pkl', 'wb') as f: pickle.dump(vert_nums, f) f.close()
def __init__(self, data_path: str, sample_num: int, nclasses: int, feat_dim: int, density_mode: bool = True, bio_density: float = None, tech_density: int = None, ctx_size: int = None, transform: clouds.Compose = clouds.Compose( [clouds.Identity()]), specific: bool = False, data_type: str = 'ce', obj_feats: dict = None, label_mappings: List[Tuple[int, int]] = None, hybrid_mode: bool = False, splitting_redundancy: int = 1, label_remove: List[int] = None, sampling: bool = True, force_split: bool = False, padding: int = None, split_on_demand: bool = False, split_jitter: int = 0, epoch_size: int = None, workers: int = 2, voxel_sizes: Optional[dict] = None, ssd_exclude: List[int] = None, ssd_include: List[int] = None, ssd_labels: str = None, exclude_borders: int = 0, rebalance: dict = None, extend_no_pred: List[int] = None): self._ch = ChunkHandler(data_path, sample_num, density_mode=density_mode, bio_density=bio_density, tech_density=tech_density, ctx_size=ctx_size, transform=transform, specific=specific, data_type=data_type, obj_feats=obj_feats, label_mappings=label_mappings, hybrid_mode=hybrid_mode, splitting_redundancy=splitting_redundancy, label_remove=label_remove, sampling=sampling, force_split=force_split, padding=padding, split_on_demand=split_on_demand, split_jitter=split_jitter, epoch_size=epoch_size, workers=workers, voxel_sizes=voxel_sizes, ssd_exclude=ssd_exclude, ssd_include=ssd_include, ssd_labels=ssd_labels, rebalance=rebalance, exclude_borders=exclude_borders) self._specific = specific self._nclasses = nclasses self._sample_num = sample_num self._feat_dim = feat_dim self._padding = padding self._extend_no_pred = extend_no_pred
def training_thread(acont: ArgsContainer): torch.cuda.empty_cache() lr = 1e-3 lr_stepsize = 10000 lr_dec = 0.995 max_steps = int(acont.max_step_size / acont.batch_size) torch.manual_seed(acont.random_seed) np.random.seed(acont.random_seed) random.seed(acont.random_seed) if acont.use_cuda: device = torch.device('cuda') else: device = torch.device('cpu') lcp_flag = False # load model if acont.architecture == 'lcp' or acont.model == 'ConvAdaptSeg': kwargs = {} if acont.model == 'ConvAdaptSeg': kwargs = dict(kernel_num=acont.pl, architecture=acont.architecture, activation=acont.act, norm=acont.norm_type) conv = dict(layer=acont.conv[0], kernel_separation=acont.conv[1]) model = ConvAdaptSeg(acont.input_channels, acont.class_num, get_conv(conv), get_search(acont.search), **kwargs) lcp_flag = True elif acont.use_big: model = SegBig(acont.input_channels, acont.class_num, trs=acont.track_running_stats, dropout=acont.dropout, use_bias=acont.use_bias, norm_type=acont.norm_type, use_norm=acont.use_norm, kernel_size=acont.kernel_size, neighbor_nums=acont.neighbor_nums, reductions=acont.reductions, first_layer=acont.first_layer, padding=acont.padding, nn_center=acont.nn_center, centroids=acont.centroids, pl=acont.pl, normalize=acont.cp_norm) else: model = SegAdapt(acont.input_channels, acont.class_num, architecture=acont.architecture, trs=acont.track_running_stats, dropout=acont.dropout, use_bias=acont.use_bias, norm_type=acont.norm_type, kernel_size=acont.kernel_size, padding=acont.padding, nn_center=acont.nn_center, centroids=acont.centroids, kernel_num=acont.pl, normalize=acont.cp_norm, act=acont.act) batch_size = acont.batch_size train_transforms = clouds.Compose(acont.train_transforms) train_ds = TorchHandler(data_path=acont.train_path, sample_num=acont.sample_num, nclasses=acont.class_num, feat_dim=acont.input_channels, density_mode=acont.density_mode, ctx_size=acont.chunk_size, bio_density=acont.bio_density, tech_density=acont.tech_density, transform=train_transforms, obj_feats=acont.features, label_mappings=acont.label_mappings, hybrid_mode=acont.hybrid_mode, splitting_redundancy=acont.splitting_redundancy, label_remove=acont.label_remove, sampling=acont.sampling, padding=acont.padding, split_on_demand=acont.split_on_demand, split_jitter=acont.split_jitter, epoch_size=acont.epoch_size, workers=acont.workers, voxel_sizes=acont.voxel_sizes, ssd_exclude=acont.ssd_exclude, ssd_include=acont.ssd_include, ssd_labels=acont.ssd_labels, exclude_borders=acont.exclude_borders, rebalance=acont.rebalance, extend_no_pred=acont.extend_no_pred) if acont.optimizer == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=lr) elif acont.optimizer == 'sgd': optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=0.5e-5) else: raise ValueError('Unknown optimizer') if acont.scheduler == 'steplr': scheduler = torch.optim.lr_scheduler.StepLR(optimizer, lr_stepsize, lr_dec) elif acont.scheduler == 'cosannwarm': scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=5000, T_mult=2) else: raise ValueError('Unknown scheduler') # calculate class weights if necessary weights = None if acont.class_weights is not None: weights = torch.from_numpy(acont.class_weights).float() criterion = torch.nn.CrossEntropyLoss(weight=weights) if acont.use_cuda: criterion.cuda() if acont.use_val: val_path = acont.val_path else: val_path = None trainer = Trainer3d( model=model, criterion=criterion, optimizer=optimizer, device=device, train_dataset=train_ds, v_path=val_path, val_freq=acont.val_freq, val_red=acont.val_iter, channel_num=acont.input_channels, batchsize=batch_size, num_workers=4, save_root=acont.save_root, exp_name=acont.name, num_classes=acont.class_num, schedulers={"lr": scheduler}, target_names=acont.target_names, stop_epoch=acont.stop_epoch, enable_tensorboard=False, lcp_flag=lcp_flag, ) # Archiving training script, src folder, env info Backup(script_path=__file__, save_path=trainer.save_path).archive_backup() acont.save2pkl(trainer.save_path + '/argscont.pkl') with open(trainer.save_path + '/argscont.txt', 'w') as f: f.write(str(acont.attr_dict)) f.close() trainer.run(max_steps)
def generate_predictions_with_model(argscont: ArgsContainer, model_path: str, cell_path: str, out_path: str, prediction_redundancy: int = 1, batch_size: int = -1, chunk_redundancy: int = -1, force_split: bool = False, training_seed: bool = False, label_mappings: List[Tuple[int, int]] = None, label_remove: List[int] = None, border_exclusion: int = 0, state_dict: str = None, model=None, **args): """ Can be used to generate predictions for multiple files using a specific model (either passed as path to state_dict or as pre-loaded model). Args: argscont: argument container for current model. model_path: path to model state dict. cell_path: path to cells used for prediction. out_path: path to folder where predictions of this model should get saved. prediction_redundancy: number of times each cell should be processed (using the same chunks but different points due to random sampling). batch_size: batch size, if -1 this defaults to the batch size used during training. chunk_redundancy: number of times each cell should get splitted into a complete chunk set (including different chunks each time). force_split: split cells even if cached split information exists. training_seed: use random seed from training. label_mappings: List of tuples like (from, to) where 'from' is label which should get mapped to 'to'. Defaults to label_mappings from training or to val_label_mappings of ArgsContainer. label_remove: List of labels to remove from the cells. Defaults to label_remove from training or to val_label_remove of ArgsContainer. border_exclusion: nm distance which defines how much of the chunk borders should be excluded from predictions. state_dict: state dict holding model for prediction. model: loaded model to use for prediction. """ if os.path.exists(out_path): print(f"{out_path} already exists. Skipping...") return if training_seed: torch.manual_seed(argscont.random_seed) np.random.seed(argscont.random_seed) random.seed(argscont.random_seed) if argscont.use_cuda: device = torch.device('cuda') else: device = torch.device('cpu') lcp_flag = False if model is not None: model = model if isinstance(model, ConvAdaptSeg): lcp_flag = True else: # load model if argscont.architecture == 'lcp' or argscont.model == 'ConvAdaptSeg': kwargs = {} if argscont.model == 'ConvAdaptSeg': kwargs = dict(kernel_num=argscont.pl, architecture=argscont.architecture, activation=argscont.act, norm=argscont.norm_type) conv = dict(layer=argscont.conv[0], kernel_separation=argscont.conv[1]) model = ConvAdaptSeg(argscont.input_channels, argscont.class_num, get_conv(conv), get_search(argscont.search), **kwargs) lcp_flag = True elif argscont.use_big: model = SegBig(argscont.input_channels, argscont.class_num, trs=argscont.track_running_stats, dropout=argscont.dropout, use_bias=argscont.use_bias, norm_type=argscont.norm_type, use_norm=argscont.use_norm, kernel_size=argscont.kernel_size, neighbor_nums=argscont.neighbor_nums, reductions=argscont.reductions, first_layer=argscont.first_layer, padding=argscont.padding, nn_center=argscont.nn_center, centroids=argscont.centroids, pl=argscont.pl, normalize=argscont.cp_norm) else: model = SegAdapt(argscont.input_channels, argscont.class_num, architecture=argscont.architecture, trs=argscont.track_running_stats, dropout=argscont.dropout, use_bias=argscont.use_bias, norm_type=argscont.norm_type, kernel_size=argscont.kernel_size, padding=argscont.padding, nn_center=argscont.nn_center, centroids=argscont.centroids, kernel_num=argscont.pl, normalize=argscont.cp_norm, act=argscont.act) try: full = torch.load(model_path + state_dict) model.load_state_dict(full) except RuntimeError: model.load_state_dict(full['model_state_dict']) model.to(device) model.eval() transforms = clouds.Compose(argscont.val_transforms) if chunk_redundancy == -1: chunk_redundancy = argscont.splitting_redundancy if batch_size == -1: batch_size = argscont.batch_size if label_remove is None: if argscont.val_label_remove is not None: label_remove = argscont.val_label_remove else: label_remove = argscont.label_remove if label_mappings is None: if argscont.val_label_mappings is not None: label_mappings = argscont.val_label_mappings else: label_mappings = argscont.label_mappings torch_handler = TorchHandler(cell_path, argscont.sample_num, argscont.class_num, density_mode=argscont.density_mode, bio_density=argscont.bio_density, tech_density=argscont.tech_density, transform=transforms, specific=True, obj_feats=argscont.features, ctx_size=argscont.chunk_size, label_mappings=label_mappings, hybrid_mode=argscont.hybrid_mode, feat_dim=argscont.input_channels, splitting_redundancy=chunk_redundancy, label_remove=label_remove, sampling=argscont.sampling, force_split=force_split, padding=argscont.padding, exclude_borders=border_exclusion) prediction_mapper = PredictionMapper(cell_path, out_path, torch_handler.splitfile, label_remove=label_remove, hybrid_mode=argscont.hybrid_mode) obj = None obj_names = torch_handler.obj_names.copy() for obj in torch_handler.obj_names: if os.path.exists(out_path + obj + '_preds.pkl'): print(obj + " has already been processed. Skipping...") obj_names.remove(obj) continue if torch_handler.get_obj_length(obj) == 0: print(obj + " has no chunks to process. Skipping...") obj_names.remove(obj) continue print(f"Processing {obj}") predict_cell(torch_handler, obj, batch_size, argscont.sample_num, prediction_redundancy, device, model, prediction_mapper, argscont.input_channels, point_subsampling=argscont.sampling, lcp_flag=lcp_flag) if obj is not None: prediction_mapper.save_prediction() else: return argscont.save2pkl(out_path + 'argscont.pkl') del model torch.cuda.empty_cache()
def analyse_features(m_path: str, args_path: str, out_path: str, val_path: str, context_list: List[Tuple[str, int]], label_mappings: List[Tuple[int, int]] = None, label_remove: List[int] = None, splitting_redundancy: int = 1, test: bool = False): device = torch.device('cuda') m_path = os.path.expanduser(m_path) out_path = os.path.expanduser(out_path) args_path = os.path.expanduser(args_path) val_path = os.path.expanduser(val_path) # load model specifications argscont = ArgsContainer().load_from_pkl(args_path) lcp_flag = False # load model if argscont.architecture == 'lcp' or argscont.model == 'ConvAdaptSeg': kwargs = {} if argscont.model == 'ConvAdaptSeg': kwargs = dict(f_map_num=argscont.pl, architecture=argscont.architecture, act=argscont.act, norm=argscont.norm_type) conv = dict(layer=argscont.conv[0], kernel_separation=argscont.conv[1]) model = get_network(argscont.model, argscont.input_channels, argscont.class_num, conv, argscont.search, **kwargs) lcp_flag = True elif argscont.use_big: model = SegBig(argscont.input_channels, argscont.class_num, trs=argscont.track_running_stats, dropout=0, use_bias=argscont.use_bias, norm_type=argscont.norm_type, use_norm=argscont.use_norm, kernel_size=argscont.kernel_size, neighbor_nums=argscont.neighbor_nums, reductions=argscont.reductions, first_layer=argscont.first_layer, padding=argscont.padding, nn_center=argscont.nn_center, centroids=argscont.centroids, pl=argscont.pl, normalize=argscont.cp_norm) else: print("Adaptable model was found!") model = SegAdapt(argscont.input_channels, argscont.class_num, architecture=argscont.architecture, trs=argscont.track_running_stats, dropout=argscont.dropout, use_bias=argscont.use_bias, norm_type=argscont.norm_type, kernel_size=argscont.kernel_size, padding=argscont.padding, nn_center=argscont.nn_center, centroids=argscont.centroids, kernel_num=argscont.pl, normalize=argscont.cp_norm, act=argscont.act) try: full = torch.load(m_path) model.load_state_dict(full) except RuntimeError: model.load_state_dict(full['model_state_dict']) model.to(device) model.eval() pts = torch.rand(1, argscont.sample_num, 3, device=device) feats = torch.rand(1, argscont.sample_num, argscont.input_channels, device=device) contexts = [] th = None if not test: # prepare data loader if label_mappings is None: label_mappings = argscont.label_mappings if label_remove is None: label_remove = argscont.label_remove transforms = clouds.Compose(argscont.val_transforms) th = TorchHandler(val_path, argscont.sample_num, argscont.class_num, density_mode=argscont.density_mode, bio_density=argscont.bio_density, tech_density=argscont.tech_density, transform=transforms, specific=True, obj_feats=argscont.features, ctx_size=argscont.chunk_size, label_mappings=label_mappings, hybrid_mode=argscont.hybrid_mode, feat_dim=argscont.input_channels, splitting_redundancy=splitting_redundancy, label_remove=label_remove, sampling=argscont.sampling, force_split=False, padding=argscont.padding, exclude_borders=0) for context in context_list: pts = torch.zeros((1, argscont.sample_num, 3)) feats = torch.ones((1, argscont.sample_num, argscont.input_channels)) sample = th[context] pts[0] = sample['pts'] feats[0] = sample['features'] o_mask = sample['o_mask'].numpy().astype(bool) l_mask = sample['l_mask'].numpy().astype(bool) target = sample['target'].numpy() target = target[l_mask].astype(int) contexts.append((feats, pts, o_mask, l_mask, target)) else: contexts.append((feats, pts)) for c_ix, context in enumerate(contexts): # set hooks if lcp_flag: layer_outs = SaveFeatures(list(model.children())[0][1:]) act_outs = SaveFeatures([layer.activation for layer in list(model.children())[0][1:]]) else: layer_outs = SaveFeatures(list(model.children())[1]) act_outs = SaveFeatures([list(model.children())[0]]) feats = context[0].to(device, non_blocking=True) pts = context[1].to(device, non_blocking=True) if lcp_flag: pts = pts.transpose(1, 2) feats = feats.transpose(1, 2) output = model(feats, pts).cpu().detach() if lcp_flag: output = output.transpose(1, 2).numpy() if not test: output = np.argmax(output[0][context[2]].reshape(-1, th.num_classes), axis=1) pts = context[1][0].numpy() identifier = f'{context_list[c_ix][0]}_{context_list[c_ix][1]}' target = PointCloud(pts, context[4]) x_offset = (pts[:, 0].max() - pts[:, 0].min()) * 1.5 * 3 pred = PointCloud(pts[context[3]], output) pred.move(np.array([x_offset / 2, 0, 0])) clouds.merge([target, pred]).save2pkl(out_path + identifier + '_0io_r_a.pkl') for ix, layer in enumerate(layer_outs.features): if len(layer) < 2: continue feats = layer[0].detach().cpu()[0] feats_act = act_outs.features[ix].detach().cpu()[0] pts = layer[1].detach().cpu()[0] if lcp_flag: feats = feats.transpose(0, 1).numpy() feats_act = feats_act.transpose(0, 1).numpy() pts = pts.transpose(0, 1).numpy() else: feats = feats.numpy() feats_act = feats_act.numpy() pts = pts.numpy() x_offset = (pts[:, 0].max() - pts[:, 0].min()) * 1.5 * 3 x_offset_act = x_offset / 3 y_size = (pts[:, 1].max() - pts[:, 1].min()) * 1.5 y_offset = 0 row_num = feats.shape[1] / 8 total_pc = None total_pc_act = None for i in range(feats.shape[1]): if i % 8 == 0 and i != 0: y_offset += y_size pc = PointCloud(vertices=pts, features=feats[:, i].reshape(-1, 1)) pc_act = PointCloud(vertices=pts, features=feats_act[:, i].reshape(-1, 1)) pc.move(np.array([(i % 8) * x_offset, y_offset, 0])) pc_act.move(np.array([(i % 8) * x_offset + x_offset / 2.8, y_offset, 0])) pc = clouds.merge_clouds([pc, pc_act]) pc_act = PointCloud(vertices=pts, features=feats_act[:, i].reshape(-1, 1)) pc_act.move(np.array([(i % 8) * x_offset_act, y_offset, 0])) if total_pc is None: total_pc = pc total_pc_act = pc_act else: total_pc = clouds.merge_clouds([total_pc, pc]) total_pc_act = clouds.merge_clouds([total_pc_act, pc_act]) total_pc.move(np.array([-4 * x_offset - x_offset / 2, -row_num / 2 * y_size - y_size / 2, 0])) total_pc_act.move(np.array([-4 * x_offset_act - x_offset_act / 2, -row_num / 2 * y_size - y_size / 2, 0])) total_pc.save2pkl(out_path + f'{context_list[c_ix][0]}_{context_list[c_ix][1]}_l{ix}_r.pkl') total_pc_act.save2pkl(out_path + f'{context_list[c_ix][0]}_{context_list[c_ix][1]}_l{ix}_a.pkl')