def __init__(self, obj, parent=None): """ Constructor method. Receives the reference to the Blender object. The second parameter should be the name of the object's parent. """ logger.info('%s initialization' % obj.name) # Call the constructor of the parent class morse.core.sensor.Sensor.__init__(self, obj, parent) has_physics = bool(self.robot_parent.bge_object.getPhysicsId()) if self._type == 'Automatic': if has_physics: self._type = 'Velocity' else: self._type = 'Position' if self._type == 'Velocity' and not has_physics: logger.error( "Invalid configuration : Velocity computation without " "physics") return if self._type == 'Velocity': # make new references to the robot velocities and use those. self.robot_w = self.robot_parent.bge_object.localAngularVelocity self.robot_vel = self.robot_parent.bge_object.worldLinearVelocity else: self.pp = copy(self.position_3d) # previous linear velocity self.plv = mathutils.Vector((0.0, 0.0, 0.0)) # previous angular velocity self.pav = mathutils.Vector((0.0, 0.0, 0.0)) self.gravity = -blenderapi.gravity() # imu2body will transform a vector from imu frame to body frame self.imu2body = self.sensor_to_robot_position_3d() # rotate vector from body to imu frame self.rot_b2i = self.imu2body.rotation.conjugated() logger.debug("imu2body rotation RPY [% .3f % .3f % .3f]" % tuple(math.degrees(a) for a in self.imu2body.euler)) logger.debug("imu2body translation [% .3f % .3f % .3f]" % tuple(self.imu2body.translation)) if self.imu2body.translation.length > 0.01: self.compute_offset_acceleration = True else: self.compute_offset_acceleration = False # reference for rotating a vector from imu frame to world frame self.rot_i2w = self.bge_object.worldOrientation self.mag = MagnetoDriver() logger.info("IMU Component initialized, runs at %.2f Hz ", self.frequency)
def __init__(self, obj, parent=None): """ Constructor method. Receives the reference to the Blender object. The second parameter should be the name of the object's parent. """ logger.info('%s initialization' % obj.name) # Call the constructor of the parent class morse.core.sensor.Sensor.__init__(self, obj, parent) has_physics = bool(self.robot_parent.bge_object.getPhysicsId()) if self._type == 'Automatic': if has_physics: self._type = 'Velocity' else: self._type = 'Position' if self._type == 'Velocity' and not has_physics: logger.error("Invalid configuration : Velocity computation without " "physics") return if self._type == 'Velocity': # make new references to the robot velocities and use those. self.robot_w = self.robot_parent.bge_object.localAngularVelocity self.robot_vel = self.robot_parent.bge_object.worldLinearVelocity else: # reference to sensor position self.pos = self.bge_object.worldPosition # previous position self.pp = self.pos.copy() # previous attitude euler angles as vector self.patt = mathutils.Vector(self.position_3d.euler) # previous linear velocity self.plv = mathutils.Vector((0.0, 0.0, 0.0)) # previous angular velocity self.pav = mathutils.Vector((0.0, 0.0, 0.0)) self.gravity = - blenderapi.gravity() # imu2body will transform a vector from imu frame to body frame self.imu2body = self.sensor_to_robot_position_3d() # rotate vector from body to imu frame self.rot_b2i = self.imu2body.rotation.conjugated() logger.debug("imu2body rotation RPY [% .3f % .3f % .3f]" % tuple(math.degrees(a) for a in self.imu2body.euler)) logger.debug("imu2body translation [% .3f % .3f % .3f]" % tuple(self.imu2body.translation)) if self.imu2body.translation.length > 0.01: self.compute_offset_acceleration = True else: self.compute_offset_acceleration = False # reference for rotating a vector from imu frame to world frame self.rot_i2w = self.bge_object.worldOrientation self.mag = MagnetoDriver() logger.info("IMU Component initialized, runs at %.2f Hz ", self.frequency)
class IMU(morse.core.sensor.Sensor): """ This sensor emulates an Inertial Measurement Unit (IMU), measuring the angular velocity and linear acceleration including acceleration due to gravity. For the magnetic field part, refer to the documentation of :doc:`./magnetometer`. If the robot has a physics controller, the velocities are directly read from it's properties ``localAngularVelocity`` and ``worldLinearVelocity``. Otherwise the velocities are calculated by simple differentiation. Linear acceleration is always computed by differentiation of the linear velocity. The measurements are given in the IMU coordinate system, so the location and rotation of the IMU with respect to the robot is taken into account. """ _name = "Inertial measurement unit" add_data('angular_velocity', [0.0, 0.0, 0.0], "vec3<float>", 'rates in IMU x, y, z axes (in radian . sec ^ -1)') add_data('linear_acceleration', [0.0, 0.0, 0.0], "vec3<float>", 'acceleration in IMU x, y, z axes (in m . sec ^ -2)') add_data('magnetic_field', [0.0, 0.0, 0.0], "vec3<float>", 'magnetic field along x, y, z axes (in nT)') add_property('_type', 'Automatic', 'ComputationMode', 'string', "Kind of computation, can be one of ['Velocity', 'Position']. " "Only robot with dynamic and Velocity control can choose Velocity " "computation. Default choice is Velocity for robot with physics, " "and Position for others") def __init__(self, obj, parent=None): """ Constructor method. Receives the reference to the Blender object. The second parameter should be the name of the object's parent. """ logger.info('%s initialization' % obj.name) # Call the constructor of the parent class morse.core.sensor.Sensor.__init__(self, obj, parent) has_physics = bool(self.robot_parent.bge_object.getPhysicsId()) if self._type == 'Automatic': if has_physics: self._type = 'Velocity' else: self._type = 'Position' if self._type == 'Velocity' and not has_physics: logger.error("Invalid configuration : Velocity computation without " "physics") return if self._type == 'Velocity': # make new references to the robot velocities and use those. self.robot_w = self.robot_parent.bge_object.localAngularVelocity self.robot_vel = self.robot_parent.bge_object.worldLinearVelocity else: # reference to sensor position self.pos = self.bge_object.worldPosition # previous position self.pp = self.pos.copy() # previous attitude euler angles as vector self.patt = mathutils.Vector(self.position_3d.euler) # previous linear velocity self.plv = mathutils.Vector((0.0, 0.0, 0.0)) # previous angular velocity self.pav = mathutils.Vector((0.0, 0.0, 0.0)) self.gravity = - blenderapi.gravity() # imu2body will transform a vector from imu frame to body frame self.imu2body = self.sensor_to_robot_position_3d() # rotate vector from body to imu frame self.rot_b2i = self.imu2body.rotation.conjugated() logger.debug("imu2body rotation RPY [% .3f % .3f % .3f]" % tuple(math.degrees(a) for a in self.imu2body.euler)) logger.debug("imu2body translation [% .3f % .3f % .3f]" % tuple(self.imu2body.translation)) if self.imu2body.translation.length > 0.01: self.compute_offset_acceleration = True else: self.compute_offset_acceleration = False # reference for rotating a vector from imu frame to world frame self.rot_i2w = self.bge_object.worldOrientation self.mag = MagnetoDriver() logger.info("IMU Component initialized, runs at %.2f Hz ", self.frequency) def sim_imu_simple(self): """ Simulate angular velocity and linear acceleration measurements via simple differences. """ # linear and angular velocities lin_vel = (self.pos - self.pp) * self.frequency att = mathutils.Vector(self.position_3d.euler) ang_vel = (att - self.patt) * self.frequency # linear acceleration in imu frame dv_imu = self.rot_i2w.transposed() * (lin_vel - self.plv) * self.frequency # measurement includes gravity and acceleration accel_meas = dv_imu + self.rot_i2w.transposed() * self.gravity # save current position and attitude for next step self.pp = self.pos.copy() self.patt = att # save velocity for next step self.plv = lin_vel self.pav = ang_vel return ang_vel, accel_meas def sim_imu_with_physics(self): """ Simulate angular velocity and linear acceleration measurements using the physics of the robot. """ # rotate the angular rates from the robot frame into the imu frame rates = self.rot_b2i * self.robot_w #logger.debug("rates in robot frame (% .4f, % .4f, % .4f)", self.robot_w[0], self.robot_w[1], self.robot_w[2]) #logger.debug("rates in imu frame (% .4f, % .4f, % .4f)", rates[0], rates[1], rates[2]) # differentiate linear velocity in world (inertial) frame # and rotate to imu frame dv_imu = self.rot_i2w.transposed() * (self.robot_vel - self.plv) * self.frequency #logger.debug("velocity_dot in imu frame (% .4f, % .4f, % .4f)", dv_imu[0], dv_imu[1], dv_imu[2]) # rotate acceleration due to gravity into imu frame g_imu = self.rot_i2w.transposed() * self.gravity # measurement includes gravity and acceleration accel_meas = dv_imu + g_imu if self.compute_offset_acceleration: # acceleration due to rotation (centripetal) # is zero if imu is mounted in robot center (assumed axis of rotation) a_centripetal = self.rot_b2i * rates.cross(rates.cross(self.imu2body.translation)) #logger.debug("centripetal acceleration (% .4f, % .4f, % .4f)", a_rot[0], a_rot[1], a_rot[2]) # linear acceleration due to angular acceleration a_alpha = self.rot_b2i * (self.robot_w - self.pav).cross(self.imu2body.translation) * self.frequency # final measurement includes acceleration due to rotation center not in IMU accel_meas += a_centripetal + a_alpha # save velocity for next step self.plv = self.robot_vel.copy() self.pav = self.robot_w.copy() return rates, accel_meas def default_action(self): """ Get the speed and acceleration of the robot and transform it into the imu frame """ if self._type == 'Velocity': (rates, accel) = self.sim_imu_with_physics() else: (rates, accel) = self.sim_imu_simple() # Store the important data self.local_data['angular_velocity'] = rates self.local_data['linear_acceleration'] = accel self.local_data['magnetic_field'] = self.mag.compute(self.position_3d)
class IMU(morse.core.sensor.Sensor): """ This sensor emulates an Inertial Measurement Unit (IMU), measuring the angular velocity and linear acceleration including acceleration due to gravity. For the magnetic field part, refer to the documentation of :doc:`./magnetometer`. If the robot has a physics controller, the velocities are directly read from it's properties ``localAngularVelocity`` and ``worldLinearVelocity``. Otherwise the velocities are calculated by simple differentiation. Linear acceleration is always computed by differentiation of the linear velocity. The measurements are given in the IMU coordinate system, so the location and rotation of the IMU with respect to the robot is taken into account. """ _name = "Inertial measurement unit" add_data('angular_velocity', [0.0, 0.0, 0.0], "vec3<float>", 'rates in IMU x, y, z axes (in radian . sec ^ -1)') add_data('linear_acceleration', [0.0, 0.0, 0.0], "vec3<float>", 'acceleration in IMU x, y, z axes (in m . sec ^ -2)') add_data('magnetic_field', [0.0, 0.0, 0.0], "vec3<float>", 'magnetic field along x, y, z axes (in nT)') add_property( '_type', 'Automatic', 'ComputationMode', 'string', "Kind of computation, can be one of ['Velocity', 'Position']. " "Only robot with dynamic and Velocity control can choose Velocity " "computation. Default choice is Velocity for robot with physics, " "and Position for others") def __init__(self, obj, parent=None): """ Constructor method. Receives the reference to the Blender object. The second parameter should be the name of the object's parent. """ logger.info('%s initialization' % obj.name) # Call the constructor of the parent class morse.core.sensor.Sensor.__init__(self, obj, parent) has_physics = bool(self.robot_parent.bge_object.getPhysicsId()) if self._type == 'Automatic': if has_physics: self._type = 'Velocity' else: self._type = 'Position' if self._type == 'Velocity' and not has_physics: logger.error( "Invalid configuration : Velocity computation without " "physics") return if self._type == 'Velocity': # make new references to the robot velocities and use those. self.robot_w = self.robot_parent.bge_object.localAngularVelocity self.robot_vel = self.robot_parent.bge_object.worldLinearVelocity else: self.pp = copy(self.position_3d) # previous linear velocity self.plv = mathutils.Vector((0.0, 0.0, 0.0)) # previous angular velocity self.pav = mathutils.Vector((0.0, 0.0, 0.0)) self.gravity = -blenderapi.gravity() # imu2body will transform a vector from imu frame to body frame self.imu2body = self.sensor_to_robot_position_3d() # rotate vector from body to imu frame self.rot_b2i = self.imu2body.rotation.conjugated() logger.debug("imu2body rotation RPY [% .3f % .3f % .3f]" % tuple(math.degrees(a) for a in self.imu2body.euler)) logger.debug("imu2body translation [% .3f % .3f % .3f]" % tuple(self.imu2body.translation)) if self.imu2body.translation.length > 0.01: self.compute_offset_acceleration = True else: self.compute_offset_acceleration = False # reference for rotating a vector from imu frame to world frame self.rot_i2w = self.bge_object.worldOrientation self.mag = MagnetoDriver() logger.info("IMU Component initialized, runs at %.2f Hz ", self.frequency) def sim_imu_simple(self): """ Simulate angular velocity and linear acceleration measurements via simple differences. """ # linear and angular velocities lin_vel = linear_velocities(self.pp, self.position_3d, 1 / self.frequency) ang_vel = angular_velocities(self.pp, self.position_3d, 1 / self.frequency) # linear acceleration in imu frame dv_imu = self.rot_i2w.transposed() * (lin_vel - self.plv) * self.frequency # measurement includes gravity and acceleration accel_meas = dv_imu + self.rot_i2w.transposed() * self.gravity # save current position and attitude for next step self.pp = copy(self.position_3d) # save velocity for next step self.plv = lin_vel self.pav = ang_vel return ang_vel, accel_meas def sim_imu_with_physics(self): """ Simulate angular velocity and linear acceleration measurements using the physics of the robot. """ # rotate the angular rates from the robot frame into the imu frame rates = self.rot_b2i * self.robot_w #logger.debug("rates in robot frame (% .4f, % .4f, % .4f)", self.robot_w[0], self.robot_w[1], self.robot_w[2]) #logger.debug("rates in imu frame (% .4f, % .4f, % .4f)", rates[0], rates[1], rates[2]) # differentiate linear velocity in world (inertial) frame # and rotate to imu frame dv_imu = self.rot_i2w.transposed() * (self.robot_vel - self.plv) * self.frequency #logger.debug("velocity_dot in imu frame (% .4f, % .4f, % .4f)", dv_imu[0], dv_imu[1], dv_imu[2]) # rotate acceleration due to gravity into imu frame g_imu = self.rot_i2w.transposed() * self.gravity # measurement includes gravity and acceleration accel_meas = dv_imu + g_imu if self.compute_offset_acceleration: # acceleration due to rotation (centripetal) # is zero if imu is mounted in robot center (assumed axis of rotation) a_centripetal = self.rot_b2i * rates.cross( rates.cross(self.imu2body.translation)) #logger.debug("centripetal acceleration (% .4f, % .4f, % .4f)", a_rot[0], a_rot[1], a_rot[2]) # linear acceleration due to angular acceleration a_alpha = self.rot_b2i * (self.robot_w - self.pav).cross( self.imu2body.translation) * self.frequency # final measurement includes acceleration due to rotation center not in IMU accel_meas += a_centripetal + a_alpha # save velocity for next step self.plv = self.robot_vel.copy() self.pav = self.robot_w.copy() return rates, accel_meas def default_action(self): """ Get the speed and acceleration of the robot and transform it into the imu frame """ if self._type == 'Velocity': (rates, accel) = self.sim_imu_with_physics() else: (rates, accel) = self.sim_imu_simple() # Store the important data self.local_data['angular_velocity'] = rates self.local_data['linear_acceleration'] = accel self.local_data['magnetic_field'] = self.mag.compute(self.position_3d)