def __init__(self, map_file, num, alpha, log_file_path, r_step, s_search):

        print 'Intializing particle filter'
        # TODO: load the map first
        self.visuvalize = visuvalize.Visuvalize(map_file, r_step, s_search)
        self.rotation_step = int(r_step)

        # initialize set of particles
        self.particles = []

        # read logs and based on the data propogate or update
        self.d = read_log_data.DataReader(log_file_path)

        # number of particles
        self.num = num

        # alphas for motion  model
        self.alpha = alpha

        # initial odom
        self.initial_odom = np.array([0, 0, 0])

        # check if the robot has moved to do resmapling
        self.isMoved = False
        self.start = True
        self.laser_count = 0

        self.z_test = []

        # read distance table
        self.z_required = np.load('distance_table.npy', mmap_mode='r')

        # generate random particles
        self.generate_particles = False

        # laser data
        self.ll = []

        #img count
        self.img_count = 0

        # for using vectorization
        self.particles_weight = np.ones(self.num) * 1.0 / self.num
        self.particles_pose = np.ndarray(shape=(self.num, 3), dtype=float)

        # initialize the motion model and mesurement model
        self.motion_model = motion_model.MotionModel(alpha, [0, 0, 0],
                                                     'normal')

        # measeurement model
        self.measurement_model = measurement_model.MeasurementModel(
            self.visuvalize.global_map, self.visuvalize.distance_table,
            self.rotation_step)
    def __init__(self, aPose, aDt, aScanRng_m, aScanAng_rad, aLandMarks):
        """"コンストラクタ
        引数:
            aPose:姿勢
               aPose[0, 0]:x座標[m]
               aPose[1, 0]:y座標[m]
               aPose[2, 0]:方角(rad)
            aDt:演算周期[sec]
            aScanRng_m:走査距離[m]
            aScanAng_rad:走査角度[rad]
            aLandMarks:ランドマーク
                        [[1番目LMのX座標, 1番目LMのY座標]
                         [2番目LMのX座標, 2番目LMのY座標]
                                         :
                         [n番目LMのX座標, n番目LMのY座標]]
        """
        self.__mScnSnsr = ScanSensor(aScanRng_m, aScanAng_rad, aLandMarks)
        self.__mScnSnsr.setNoiseParam(5, 2, 2)
        self.__mMvMdl = mm.MotionModel(aDt, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
        self.__mTrjEst = TrajectoryEstimator(aPose)

        #---------- 制御周期 ----------
        self.__mDt = aDt
        self.__mTime = 0

        #---------- 姿勢 ----------
        self.__mPosesActu = [aPose]  # 姿勢(実際値)
        #---------- 制御 ----------
        self.__mCtr = []
        #---------- 観測 ----------
        self.__mObsActu = []
        self.__mObsTrue = []
        self.__mHalfEdges = []

        # 誤差楕円の信頼区間[%]
        self.__mConfidence_interval = 99.0
        self.__mEllipse = error_ellipse.ErrorEllipse(
            self.__mConfidence_interval)

        self.__mScnSnsr.scan(aPose)
        self.__observe(aPose, len(self.__mPosesActu) - 1, self.__mTime)

        # ガウス・ニュートン法による、反復回数を決定する閾値
        #  Δxの2乗和(Δx.T・Δx)の値が閾値以下となったら計算終了
        self.__DELTA_SUM_TH = 0.01

        self.__isCalc = False  # 軌跡算出可否判定
        self.__loopCnt = 0.0  # 計算反復回数
        self.__deltaSum = 0.0  # Δxの2乗和(Δx.T・Δx)
        self.__det = 0.0  # 情報行列Hの行列式
        self.__cond = 0.0  # 情報行列Hの条件数
Пример #3
0
    def __init__(self, state, coef, w, global_map, table, rotation_step):

        # initialize pose
        self.pose = state

        # weight of the particle
        self.weight = w

        # initialize the motion model and mesurement model
        self.motion_model = motion_model.MotionModel(coef, [0, 0, 0], 'normal')

        # measeurement model
        self.measurement_model = measurement_model.MeasurementModel(
            global_map, table, rotation_step)