Пример #1
0
    async def post(self):
        r_dict = {'code': 0}
        open_id = self.get_i_argument('open_id', '')
        race_cid = self.get_i_argument('race_cid', '')

        if not race_cid:
            r_dict['code'] = 1001
            return r_dict

        try:
            member = await find_member_by_open_id(open_id)
            if not member.auth_address:
                r_dict['code'] = 1002
                return r_dict

            race = await Race.find_one({'cid': race_cid})

            rankings = []
            province = member.auth_address.get('province')
            city = member.auth_address.get('city')

            if not race.city_code:
                # 省级活动, 城市排序
                match_stage = MatchStage({
                    'auth_address.province': province,
                    'race_cid': race_cid
                })
                group_stage = GroupStage('auth_address.city', sum={'$sum': 1})

            else:
                # 市级活动, 区域排序
                c = await AdministrativeDivision.find_one({
                    'title': city,
                    'parent_code': {
                        "$ne": None
                    }
                })
                match_stage = MatchStage({
                    'auth_address.city': city,
                    'race_cid': race_cid
                })
                group_stage = GroupStage('auth_address.district',
                                         sum={'$sum': 1})

            area_list = await RaceMapping.aggregate(stage_list=[
                match_stage, group_stage,
                SortStage([('sum', DESC)])
            ]).to_list(None)

            for area in area_list:
                rank = {
                    'title': area.id if area.id else '其他地区',
                    'people_count': area.sum
                }
                rankings.append(rank)
            r_dict = {'code': 1000, 'rankings': rankings}
        except Exception:
            logger.error(traceback.format_exc())

        return r_dict
Пример #2
0
def do_stat_in_history(history_model, city_code_list, choice_time, ad_map={}):
    """

    :param history_model:
    :param city_code_list:
    :param ad_map:
    :param choice_time
    :return:
    """
    #  取前一天凌晨12点之前的数据
    time_match = get_yesterday()
    if not choice_time:
        match_stage = MatchStage({'updated_dt': {'$lt': time_match}})
    else:
        #  当天下一天凌晨的时候
        max_choice_time = choice_time.replace(hour=23, minute=59, second=59, microsecond=999)
        match_stage = MatchStage({'updated_dt': {'$gte': choice_time, '$lt': max_choice_time}})
    cursor = history_model.sync_aggregate([
        match_stage,
        GroupStage('member_cid', quantity={"$sum": 1}),
        LookupStage(Member, '_id', 'cid', 'member_list'),
        ProjectStage(**{
            'province_code': {'$arrayElemAt': ['$member_list.province_code', 0]},
            'city_code': {'$arrayElemAt': ['$member_list.city_code', 0]},
            'quantity': '$quantity'
        }),
        MatchStage({'city_code': {'$in': city_code_list}}),
        GroupStage('city_code', quantity={'$sum': "$quantity"}, province_code={'$first': '$province_code'}),
        SortStage([('quantity', DESC)])
    ])

    data = {}
    while True:
        try:
            his = cursor.next()
            city_data = data.get(his.province_code, {})

            city = ad_map.get(his.id)
            if not city:
                city = AdministrativeDivision.sync_find_one({'code': his.id, 'parent_code': {'$ne': None}})
                ad_map[city.code] = city
            city_data[city.title] = his.quantity
            data[his.province_code] = city_data
        except StopIteration:
            break
        except Exception as e:
            logger.error(str(e))
            continue

    return data, ad_map
Пример #3
0
def do_merge_city_stat_member_time(province_dict: dict, city_code_list=None):
    """
    合并省份统计信息
    :param province_dict:
    :param city_code_list
    :return:
    """
    query_dict = {}
    if province_dict:
        query_dict['province_code'] = {'$in': [code for code in province_dict.keys()]}
        if city_code_list:
            query_dict['city_code'] = {'$in': city_code_list}
        else:
            query_dict['city_code'] = {'$ne': None}
        #  取前一天凌晨12点之前的数据
        time_match = get_yesterday()
        query_dict['updated_dt'] = {'$lt': time_match}
        match_stage = MatchStage(query_dict)
        group_stage = GroupStage('city_code', quantity={'$sum': '$learn_times'},
                                 province_code={'$first': '$province_code'})
        sort_stage = SortStage([('quantity', DESC)])
        p_lookup_stage = LookupStage(AdministrativeDivision, 'province_code', 'post_code', 'province_list')
        c_lookup_stage = LookupStage(AdministrativeDivision, '_id', 'post_code', 'city_list')

        city_cursor = MemberLearningDayStatistics.sync_aggregate(
            [match_stage, group_stage, sort_stage, p_lookup_stage, c_lookup_stage])
        t_province_dict = {}
        t_province_dict = get_merge_city_data(city_cursor, province_dict, t_province_dict)
        if t_province_dict:
            province_dict.update(t_province_dict)
Пример #4
0
def do_merge_city_stat_member_quantity(province_dict: dict, choice_time, city_code_list=None):
    """
    合并省份统计信息
    :param province_dict:
    :param city_code_list
    :param choice_time
    :return:
    """
    query_dict = {}
    if province_dict:
        query_dict['province_code'] = {'$in': [code for code in province_dict.keys()]}
        if city_code_list:
            query_dict['city_code'] = {'$in': city_code_list}
        else:
            query_dict['city_code'] = {'$ne': None}
        if not choice_time:
            #  取前一天凌晨12点之前的数据
            yesterday = get_yesterday()
            query_dict['updated_dt'] = {'$lt': yesterday}
        else:
            #  当天下一天凌晨的时候
            max_choice_time = choice_time.replace(hour=23, minute=59, second=59, microsecond=999)
            query_dict['updated_dt'] = {'$gte': choice_time, '$lt': max_choice_time}
        query_dict['status'] = STATUS_USER_ACTIVE
        match_stage = MatchStage(query_dict)
        group_stage = GroupStage('city_code', quantity={'$sum': 1}, province_code={'$first': '$province_code'})
        sort_stage = SortStage([('quantity', DESC)])
        p_lookup_stage = LookupStage(AdministrativeDivision, 'province_code', 'post_code', 'province_list')
        c_lookup_stage = LookupStage(AdministrativeDivision, '_id', 'post_code', 'city_list')

        city_cursor = Member.sync_aggregate([match_stage, group_stage, sort_stage, p_lookup_stage, c_lookup_stage])
        t_province_dict = {}
        t_province_dict = get_merge_city_data(city_cursor, province_dict, t_province_dict)
        if t_province_dict:
            province_dict.update(t_province_dict)
Пример #5
0
def do_statistics_member_quantity(cache_key, city_code_list, choice_time):
    """开始统计

    :param cache_key:
    :param city_code_list:
    :param choice_time
    :return:
    """

    RedisCache.set(cache_key, KEY_CACHE_REPORT_DOING_NOW, 5 * 60)

    stage_list = []
    if city_code_list:
        stage_list.append(MatchStage({'city_code': {'$in': city_code_list}}))
    if not choice_time:
        #  取前一天凌晨12点之前的数据
        yesterday_time = get_yesterday()
        time_match = MatchStage({'updated_dt': {'$lt': yesterday_time}})
    else:
        #  当天下一天凌晨的时候
        max_choice_time = choice_time.replace(hour=23, minute=59, second=59, microsecond=999)
        time_match = MatchStage({'updated_dt': {'$gte': choice_time, '$lt': max_choice_time}})
    stage_list.append(time_match)
    stage_list.append(MatchStage({'status': STATUS_USER_ACTIVE}))
    group_stage = GroupStage('province_code', quantity={'$sum': 1})
    lookup_stage = LookupStage(AdministrativeDivision, '_id', 'post_code', 'ad_list')
    sort_stage = SortStage([('quantity', DESC)])

    stage_list += [group_stage, lookup_stage, sort_stage]
    province_cursor = Member.sync_aggregate(stage_list)
    province_dict = {}
    while True:
        try:
            province_stat = province_cursor.next()
            if province_stat:
                province_code = province_stat.id if province_stat.id else '000000'
                quantity = province_stat.quantity
                title = 'undefined'
                ad_list = province_stat.ad_list
                if ad_list:
                    ad: FacadeO = ad_list[0]
                    if ad:
                        title = ad.title.replace('省', '').replace('市', '')
                province_dict[province_code] = {
                    'code': province_code,
                    'title': title,
                    'data': quantity
                }
        except StopIteration:
            break
    # 合并城市统计信息
    do_merge_city_stat_member_quantity(province_dict, choice_time, city_code_list)

    data = [v for v in province_dict.values()]
    if not data:
        early_warning_empty("start_statistics_member_quantity", cache_key, city_code_list, '学习近况中人数数据为空,请检查!')
    RedisCache.set(cache_key, msgpack.packb(data))
Пример #6
0
    async def post(self):
        r_dict = {'code': 0}

        race_cid = self.get_argument('race_cid', '')
        condition = self.get_argument('condition_value')
        group_type = self.get_argument('group_type', 'date')
        count_pass = self.get_argument('count_pass')
        if count_pass:
            sum_value = '$pass_num'
        else:
            sum_value = '$people_num'

        pre_data = self.get_argument('pre_data')
        query = {'race_cid': race_cid, 'record_flag': 1}
        if pre_data:
            pre_data: dict = json.loads(pre_data)
            query.update(pre_data)
        match_stage = MatchStage(query)
        stage_list = [match_stage, MatchStage(parse_race_condition(condition))]
        sort_stage = SortStage([('sum', DESC)])

        group_id = None
        if group_type == 'date':
            group_id = 'daily_code'
            sort_stage = SortStage([('_id', ASC)])
        if group_type == 'province':
            group_id = 'province'
        if group_type == 'city':
            group_id = 'city'
        if group_type == 'district':
            group_id = 'district'

        group_stage = GroupStage(group_id, sum={'$sum': sum_value})
        stage_list += [group_stage, sort_stage]

        try:

            stats = await ReportRacePeopleStatistics.aggregate(stage_list
                                                               ).to_list(None)
            series_data = [s.sum for s in stats]

            x_axis_data = [s.id for s in stats if s]
            if not x_axis_data:
                x_axis_data = ['暂无数据']
            r_dict = {
                'code': 1,
                'bar': {
                    'xAxisData': x_axis_data,
                    'seriesData': series_data
                }
            }
        except Exception:
            logger.error(traceback.format_exc())

        return r_dict
def do_statistics_subject_parameter(cache_key, m_province_code_list,
                                    m_city_code_list, s_province_code_list,
                                    s_city_code_list, s_gender_list,
                                    s_age_group_list, s_education_list):
    """

    :param cache_key:
    :param m_province_code_list:
    :param m_city_code_list:
    :param s_province_code_list:
    :param s_city_code_list:
    :param s_gender_list:
    :param s_age_group_list:
    :param s_education_list:
    :return:
    """
    RedisCache.set(cache_key, KEY_CACHE_REPORT_DOING_NOW, 5 * 60)
    data = {}
    max_q = None
    max_q_list = SubjectChoiceRules.sync_aggregate(
        [GroupStage('max', max={'$max': '$quantity'})]).to_list(1)
    if max_q_list:
        max_q = max_q_list[0]
    if max_q and max_q.max > 0:
        stage_list = do_create_query(max_q.max + 1, m_province_code_list,
                                     m_city_code_list, s_province_code_list,
                                     s_city_code_list, s_gender_list,
                                     s_age_group_list, s_education_list)
        if stage_list:
            if stage_list:
                stat_result = None
                stat_result_list = MemberDailyStatistics.sync_aggregate(
                    stage_list).to_list(1)
                if stat_result_list:
                    stat_result = stat_result_list[0]
                if stat_result:
                    for i in range(max_q.max + 1):
                        attr = str(i)
                        if hasattr(stat_result, attr):
                            data[attr] = getattr(stat_result, attr, 0)
    if not data:
        early_warning_empty(
            "start_statistics_subject_quantity", cache_key,
            str(
                dict(cache_key=cache_key,
                     m_province_code_list=m_province_code_list,
                     m_city_code_list=m_city_code_list,
                     s_province_code_list=s_province_code_list,
                     s_city_code_list=s_city_code_list,
                     s_gender_list=s_gender_list,
                     s_age_group_list=s_age_group_list,
                     s_education_list=s_education_list)), '学习趋势统计数据为空,请检查!')
    RedisCache.set(cache_key, msgpack.packb(data))
Пример #8
0
async def generate_awards_by_item_settings(basic_setting, settings):
    """

    :param basic_setting:
    :param settings:
    :return:
    """
    if not (basic_setting and settings):
        raise Exception('no basic_setting or settings')

    # 删除还未发出的红包
    await RedPacketBox.delete_many({
        'rule_cid': basic_setting.rule_cid,
        'member_cid': None
    })
    box_list = await RedPacketBox.aggregate(
        [
            MatchStage({
                'rule_cid': basic_setting.rule_cid,
                'award_cid': {
                    '$ne': None
                }
            }),
            GroupStage('award_cid', sum={'$sum': 1})
        ],
        read_preference=ReadPreference.PRIMARY).to_list(None)

    # 红包的发放情况
    get_situ = {box.id: box.sum for box in box_list}

    award_list = list()
    for config in settings:
        for _ in range(config.quantity - get_situ.get(config.cid, 0)):
            box = RedPacketBox()
            box.race_cid = basic_setting.race_cid
            box.rule_cid = basic_setting.rule_cid
            box.award_cid = config.cid
            box.award_msg = config.message
            box.award_amount = config.amount
            award_list.append(box)

    has_sent_count = sum(get_situ.values())
    while len(award_list) < basic_setting.expect_num - has_sent_count:
        box = RedPacketBox()
        box.race_cid = basic_setting.race_cid
        box.rule_cid = basic_setting.rule_cid
        box.award_msg = basic_setting.fail_msg
        award_list.append(box)

    shuffle(award_list)
    if award_list:
        for award in award_list:
            await award.save()
async def _get_learning_code(history):
    """
    获取学习日编码
    :param member_cid: 会员CID
    :return:
    """
    if history:
        l_code = RedisCache.get('LEARNING_STATISTICS_CODE_%s' % history.cid)
        if not l_code:
            prev_datetime = copy.deepcopy(history.fight_datetime).replace(
                hour=23, minute=59, second=59,
                microsecond=999999) - datetime.timedelta(days=1)
            match_stage = MatchStage({
                'member_cid': history.member_cid,
                'fight_datetime': {
                    '$lte': prev_datetime
                }
            })
            project_stage = ProjectStage(date={
                '$dateToString': {
                    'format': '%Y%m%d',
                    'date': '$fight_datetime'
                }
            })
            group_stage = GroupStage('date')

            mgh_cursor = MemberGameHistory.aggregate(
                [match_stage, project_stage, group_stage])
            # mch_cursor = MemberCheckPointHistory.aggregate([match_stage, project_stage, group_stage])

            tmp_dict = {}
            while await mgh_cursor.fetch_next:
                mgh = mgh_cursor.next_object()
                if mgh:
                    tmp_dict[mgh.id] = int(mgh.id)
            # while await mch_cursor.fetch_next:
            #     mch = mch_cursor.next_object()
            #     if mch:
            #         tmp_dict[mch.id] = int(mch.id)
            l_code = 1
            if tmp_dict:
                l_code = len(tmp_dict.keys()) + 1
            remain_seconds = get_day_remain_seconds()
            if remain_seconds:
                RedisCache.set(
                    'LEARNING_STATISTICS_CODE_%s' % history.member_cid, l_code,
                    remain_seconds)
        else:
            l_code = int(l_code)
        return l_code
    return None
Пример #10
0
def start_split_subject_stat_task(self, category, task_dt):
    """

    :param self:
    :param category:
    :param task_dt:
    :return:
    """
    logger.info('START(%s): Begin split subject_statistics, condition is %s' %
                (self.request.id, str(category)))

    try:
        result = RedisCache.hget(KEY_CACHE_REPORT_CONDITION, str(category))
        if result is not None:
            logger.warning(
                ' END (%s): DOING or Done split subject_statistics, condition is %s'
                % (self.request.id, str(category)))
            return

        count_list = MemberSubjectStatistics.sync_aggregate(
            stage_list=[GroupStage(category),
                        CountStage()]).to_list(1)
        count = count_list[0].count if count_list else 0
        logger.info('request(%s): SPLIT, count=%s' % (self.request.id, count))

        quot, rema = divmod(count, SKIP_NUM)

        ReportSubjectStatisticsMiddle.sync_delete_many({'category': category})
        task_num = quot
        if rema:
            task_num = quot + 1
            start_task_subject_statistics.delay(category, task_dt,
                                                quot * SKIP_NUM,
                                                self.request.id, task_num)

        for i in range(quot):
            start_task_subject_statistics.delay(category, task_dt,
                                                i * SKIP_NUM, self.request.id,
                                                task_num)

        RedisCache.hset(KEY_CACHE_REPORT_CONDITION, str(category),
                        STATUS_SUBJECT_STATISTICS_IN_PROCESS)

    except Exception:
        logger.error(traceback.format_exc())

    logger.info(' END (%s): Finish split subject_statistics, condition is %s' %
                (self.request.id, str(category)))
Пример #11
0
async def do_get_subject_analysis_stat_data(race_subject_cid_list,
                                            gender=None,
                                            age_group=None,
                                            education=None):
    """
    获取机器题目分析统计数据
    :param race_subject_cid_list:
    :param gender:
    :param age_group:
    :param education:
    :return:
    """
    if race_subject_cid_list:
        data = {}
        match_dict = {'subject_cid': {'$in': race_subject_cid_list}}
        if gender and gender in SEX_LIST:
            match_dict['gender'] = gender
        if age_group and age_group in TYPE_AGE_GROUP_LIST:
            match_dict['age_group'] = age_group
        if education and education in TYPE_EDUCATION_LIST:
            match_dict['education'] = education

        robot_analysis_cursor = FightRobotAnalysisReference.aggregate([
            MatchStage(match_dict),
            GroupStage(
                group_field='subject_cid',
                accuracy={'$avg': '$accuracy'},
                avg_correct_seconds={'$avg': '$avg_correct_seconds'},
                avg_incorrect_seconds={'$avg': '$avg_incorrect_seconds'},
                words={'$avg': '$words'}),
        ])
        while await robot_analysis_cursor.fetch_next:
            robot_analysis = robot_analysis_cursor.next_object()
            data[robot_analysis.oid] = {
                'accuracy':
                robot_analysis.accuracy,
                'correct_seconds':
                math.ceil(robot_analysis.avg_correct_seconds),
                'incorrect_seconds':
                math.ceil(robot_analysis.avg_incorrect_seconds),
                'words':
                int(robot_analysis.words)
            }
        return data
    return None
Пример #12
0
def get_awarded_stars(member, fight_history):
    count = 0
    if member and fight_history:
        try:
            award_history_list = MemberStarsAwardHistory.sync_aggregate([
                MatchStage({
                    'member_cid': member.cid,
                    'award_dt': {
                        '$lte': fight_history.fight_datetime
                    },
                    'dan_grade': fight_history.dan_grade
                }),
                GroupStage('member_cid', count={'$sum': '$quantity'})
            ]).to_list(1)
            if award_history_list:
                print('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa')
                award_history = award_history_list[0]
                if award_history:
                    count = award_history.count
        except Exception:
            print(traceback.format_exc())
    return count
Пример #13
0
    async def post(self):
        r_dict = {'code': 0}
        open_id = self.get_i_argument('open_id', None)
        race_cid = self.get_i_argument('race_cid', None)
        if not race_cid:
            r_dict['code'] = 1001
            return r_dict
        member = await find_member_by_open_id(open_id)
        if not member:
            r_dict['code'] = 1002
            return r_dict
        try:
            rankings = []
            #  找到活动下面的所有的单位
            match_stage = MatchStage({'race_cid': race_cid, 'record_flag': 1})
            group_stage = GroupStage('company_cid', sum={'$sum': 1})

            company_list = await RaceMapping.aggregate(stage_list=[
                match_stage, group_stage,
                SortStage([('sum', DESC)])
            ]).to_list(None)
            for company in company_list:
                # 分类
                company_assort = await Company.find_one({
                    'cid': company.id,
                    'record_flag': 1
                })

                rank = {
                    'title': company_assort.title if company_assort else '其他',
                    'people_count': company.sum
                }
                rankings.append(rank)
            r_dict = {'code': 1000, 'rankings': rankings}
        except Exception:
            logger.error(traceback.format_exc())

        return r_dict
Пример #14
0
def do_statistics_subject_radar(cache_key, root_dimension_code,
                                m_city_code_list, province_code_list,
                                city_code_list, gender_list, age_group_list,
                                education_list):
    """

    :param cache_key:
    :param root_dimension_code:
    :param m_city_code_list:
    :param province_code_list:
    :param city_code_list:
    :param gender_list:
    :param age_group_list:
    :param education_list:
    :return:
    """
    RedisCache.set(cache_key, KEY_CACHE_REPORT_DOING_NOW, 5 * 60)
    data = []
    dimension = SubjectDimension.sync_find_one(
        dict(code=root_dimension_code, status=STATUS_SUBJECT_DIMENSION_ACTIVE))
    if not dimension:
        raise ValueError(
            'can not find dimension by `root_dimension_code`(%s)' %
            root_dimension_code)

    stage_list = []
    #  取前一天凌晨12点之前的数据
    time_match = get_yesterday()
    stage_list.append(MatchStage({'updated_dt': {'$lt': time_match}}))
    if m_city_code_list:
        stage_list.append(MatchStage({'city_code': {'$in': m_city_code_list}}))

    query_dict = {}
    if province_code_list:
        query_dict['province_code'] = {'$in': province_code_list}
    if city_code_list:
        query_dict['city_code'] = {'$in': city_code_list}
    if gender_list:
        query_dict['gender'] = {
            '$in': [int(s_gender) for s_gender in gender_list]
        }
    if age_group_list:
        query_dict['age_group'] = {
            '$in': [int(s_age_group) for s_age_group in age_group_list]
        }
    if education_list:
        query_dict['education'] = {
            '$in': [int(s_education) for s_education in education_list]
        }

    if query_dict:
        stage_list.append(MatchStage(query_dict))

    stage_list.append(
        GroupStage('dimension.%s' % dimension.cid,
                   total={'$sum': '$total'},
                   correct={'$sum': '$correct'}))
    stage_list.append(
        LookupStage(SubjectDimension, '_id', 'cid', 'dimension_list'))
    stat_result = MemberSubjectStatistics.sync_aggregate(stage_list)
    while True:
        try:
            mds = stat_result.next()
            if mds:
                code, title, ordered = '', '', 0
                if hasattr(mds, 'dimension_list') and mds.dimension_list:
                    dimension = mds.dimension_list[0]
                    if dimension:
                        code = dimension.code
                        title = dimension.title
                        ordered = dimension.ordered
                data.append(
                    dict(code=code,
                         title=title,
                         ordered=ordered,
                         correct=mds.correct,
                         total=mds.total))
        except StopIteration:
            break
    if not data:
        early_warning_empty("start_statistics_subject_parameter_radar",
                            cache_key, locals(), '获取维度正确率雷达图统计数据为空,请检查!')
    RedisCache.set(cache_key, msgpack.packb(data))
Пример #15
0
    async def get(self):
        dark_skin = self.get_argument('dark_skin')
        dark_skin = True if dark_skin == 'True' else False
        category_cid, difficulty_cid, knowledge_cid = None, None, None
        subject_dimension_list = await SubjectDimension.find(
            dict(parent_cid=None,
                 status=STATUS_SUBJECT_DIMENSION_ACTIVE)).to_list(None)
        for subject_dimension in subject_dimension_list:
            if subject_dimension:
                if subject_dimension.code == 'CSK001':
                    category_cid = subject_dimension.cid
                if subject_dimension.code == 'CSD001':
                    difficulty_cid = subject_dimension.cid
                if subject_dimension.code == 'CDS001':
                    knowledge_cid = subject_dimension.cid
        knowledge_dimension_list = await SubjectDimension.find(
            dict(parent_cid=knowledge_cid)).sort([('ordered', ASC)]
                                                 ).to_list(None)
        category_dimension_list = await SubjectDimension.find(
            dict(parent_cid=category_cid)).sort([('ordered', ASC)]
                                                ).to_list(None)
        second_dimension_list = await SubjectDimension.find(
            dict(parent_cid={'$ne': None})).sort([('ordered', ASC)]
                                                 ).to_list(None)

        dimension_mapping = json.dumps({
            second_dimension.cid: second_dimension.parent_cid
            for second_dimension in second_dimension_list
        })

        match_stage = MatchStage(
            dict(status=STATUS_SUBJECT_ACTIVE,
                 category_use={
                     '$nin':
                     [CATEGORY_SUBJECT_BENCHMARK, CATEGORY_SUBJECT_GRADUATION]
                 }))
        group_stage = GroupStage(
            dict(category='$dimension_dict.%s' % category_cid,
                 difficulty='$dimension_dict.%s' % difficulty_cid,
                 knowledge='$dimension_dict.%s' % knowledge_cid))
        sort_stage = SortStage([('_id.difficulty', ASC),
                                ('_id.knowledge', ASC), ('_id.category', ASC)])
        subject_lookup_stage = LookupStage(
            foreign=Subject,
            let={
                'difficulty': '$_id.difficulty',
                'knowledge': '$_id.knowledge',
                'category': '$_id.category'
            },
            pipeline=[{
                '$match': {
                    '$expr': {
                        '$and': [{
                            '$eq': ['$status', STATUS_SUBJECT_ACTIVE]
                        }, {
                            '$in': [
                                '$category_use',
                                [CATEGORY_SUBJECT_GENERAL, None]
                            ]
                        }, {
                            '$eq': [
                                '$dimension_dict.%s' % difficulty_cid,
                                '$$difficulty'
                            ]
                        }, {
                            '$eq': [
                                '$dimension_dict.%s' % knowledge_cid,
                                '$$knowledge'
                            ]
                        }, {
                            '$eq': [
                                '$dimension_dict.%s' % category_cid,
                                '$$category'
                            ]
                        }]
                    }
                }
            }, {
                '$group': {
                    '_id': None,
                    'count': {
                        '$sum': 1
                    }
                }
            }],
            as_list_name='quantity_list',
        )
        difficulty_lookup_stage = LookupStage(SubjectDimension,
                                              '_id.difficulty', 'cid',
                                              'difficulty_list')
        knowledge_lookup_stage = LookupStage(SubjectDimension, '_id.knowledge',
                                             'cid', 'knowledge_list')
        category_lookup_stage = LookupStage(SubjectDimension, '_id.category',
                                            'cid', 'category_list')
        project_stage = ProjectStage(
            **{
                '_id': False,
                'm_difficulty': {
                    'cid': '$_id.difficulty',
                    'code': '$difficulty_list.code',
                    'title': '$difficulty_list.title',
                    'ordered': '$difficulty_list.ordered'
                },
                'm_knowledge': {
                    'cid': '$_id.knowledge',
                    'code': '$knowledge_list.code',
                    'title': '$knowledge_list.title',
                    'ordered': '$knowledge_list.ordered'
                },
                'm_category': {
                    'cid': '$_id.category',
                    'code': '$category_list.code',
                    'title': '$category_list.title',
                    'ordered': '$category_list.ordered'
                },
                'count': '$quantity_list.count'
            })

        subject_cursor = Subject.aggregate([
            match_stage, group_stage, sort_stage, subject_lookup_stage,
            difficulty_lookup_stage, knowledge_lookup_stage,
            category_lookup_stage, project_stage
        ])

        data: dict = await self.do_generate_data_structs(subject_cursor)

        return locals()
Пример #16
0
    async def get(self):
        race_cid = self.get_argument('race_cid', '')
        menu_list = await get_menu(self, 'config', race_cid)
        put_out_form = self.get_argument('put_out_form', '')
        red_packet_item = self.get_argument('red_packet_item', '')
        if race_cid:
            # 抽奖总览
            race = await Race.find_one({'cid': race_cid, 'record_flag': 1})
            #  找到该活动下面的所有rule_cid
            #  已经发放的红包个数
            already_put_red_packet_amount_list = await RedPacketBox.aggregate([
                MatchStage({
                    'race_cid': race_cid,
                    'draw_status': STATUS_REDPACKET_AWARDED,
                    'member_cid': {
                        '$ne': None
                    },
                    'award_cid': {
                        '$ne': None
                    },
                    'record_flag': 1
                }),
                GroupStage(None,
                           sum={'$sum': '$award_amount'},
                           quantity={'$sum': 1})
            ]).to_list(None)
            #  抽奖详情
            kw_word = self.get_argument('kw_word', '')
            #  奖项标题
            item_title = self.get_argument('item_title', '')
            stage_list = [
                LookupStage(Member, 'member_cid', 'cid', 'member_list'),
                LookupStage(RaceGameCheckPoint, 'checkpoint_cid', 'cid',
                            'checkpoint_list'),
                LookupStage(RedPacketItemSetting, 'award_cid', 'cid',
                            'setting_list'),
                LookupStage(RedPacketConf, 'award_cid', 'cid', 'conf_list'),
                ProjectStage(
                    **{
                        'member_cid': '$member_cid',
                        'nick_name': {
                            '$arrayElemAt': ['$member_list.nick_name', 0]
                        },
                        'checkpoint': {
                            '$arrayElemAt': ['$checkpoint_list.alias', 0]
                        },
                        'category': {
                            '$cond': {
                                'if': {
                                    '$ne': ['$setting_list',
                                            list()]
                                },
                                'then': '抽奖形式',
                                'else': '直接发放'
                            }
                        },
                        'detail': {
                            '$cond': {
                                'if': {
                                    '$ne': ['$setting_list',
                                            list()]
                                },
                                'then': {
                                    '$arrayElemAt': ['$setting_list.title', 0]
                                },
                                'else': {
                                    '$arrayElemAt': ['$conf_list.category', 0]
                                }
                            }
                        },
                        'award_amount': '$award_amount',
                        'draw_dt': '$draw_dt',
                        'award_cid': '$award_cid'
                    }),
            ]
            query_dict = {}
            if kw_word:
                query_dict['$or'] = [
                    {
                        'nick_name': {
                            '$regex': kw_word,
                            '$options': 'i'
                        }
                    },
                    {
                        'member_cid': {
                            '$regex': kw_word,
                            '$options': 'i'
                        }
                    },
                    {
                        'checkpoint': {
                            '$regex': kw_word,
                            '$options': 'i'
                        }
                    },
                ]
            if put_out_form:
                query_dict['category'] = put_out_form
            if red_packet_item and put_out_form != CATEGORY_REDPACKET_RULE_DICT.get(
                    CATEGORY_REDPACKET_RULE_DIRECT):
                query_dict['detail'] = red_packet_item
            query = MatchStage(query_dict)
            stage_list.append(query)
            query_match_dict = {
                "race_cid": race_cid,
                'draw_status': STATUS_REDPACKET_AWARDED,
                'member_cid': {
                    '$ne': None
                },
                'award_cid': {
                    '$ne': None
                },
                'record_flag': 1
            }
            per_page_quantity = int(self.get_argument('per_page_quantity', 10))
            to_page_num = int(self.get_argument('page', 1))
            page_url = '%s?page=$page&per_page_quantity=%s&race_cid=%s&kw_name=%s&put_out_form=%s' % (
                self.reverse_url("backoffice_race_redpkt_rule_see_result"),
                per_page_quantity, race_cid, kw_word, put_out_form)
            paging = Paging(page_url,
                            RedPacketBox,
                            current_page=to_page_num,
                            pipeline_stages=stage_list,
                            sort=['award_amount'],
                            items_per_page=per_page_quantity,
                            **query_match_dict)
            await paging.pager()

            #  抽奖形式的奖项列表
            lottery_item_list = await RedPacketItemSetting.distinct(
                'title', {
                    'race_cid': race_cid,
                    'record_flag': 1
                })
        return locals()
Пример #17
0
    async def __do_get_report_data(self):
        subject_dimension_list = await SubjectDimension.aggregate([
            MatchStage({'parent_cid': None}),
            SortStage([('ordered', ASC)]),
            LookupStage(SubjectDimension, 'cid', 'parent_cid', 'sub_list')
        ]).to_list(None)

        match_dict = {}
        search_arguments = {}

        # 地方科协不会开放此权限,因此导出全部省份数据
        # m_province_code_list, m_city_code_list, _ = await do_different_administrative_division2(
        #     self.current_user.manage_region_code_list)
        # if m_province_code_list:
        #     match_dict['province_code'] = {'$in': m_province_code_list}
        # if m_city_code_list:
        #     match_dict['city_code'] = {'$in': m_city_code_list}

        # 维度信息
        dimension_dict = {}
        for dimension in subject_dimension_list:
            t_dimension = self.get_argument(dimension.cid, '')
            if t_dimension:
                dimension_dict['%s' % dimension.cid] = t_dimension
            search_arguments[dimension.cid] = t_dimension

        # 默认只显示,状态启用,并且不是基准测试或毕业测试的题目
        match_dimension = {'$and': [
            {'status': STATUS_SUBJECT_ACTIVE},
            {'category_use': {
                '$nin': [CATEGORY_SUBJECT_BENCHMARK, CATEGORY_SUBJECT_GRADUATION]}}
        ]}
        if dimension_dict:
            match_dimension['$and'].extend([{'dimension_dict.%s' % k: v} for k, v in dimension_dict.items()])

        subject_cid_list = await Subject.distinct('cid', match_dimension)
        if subject_cid_list:
            match_dict['subject_cid'] = {'$in': subject_cid_list}

        query_params = {}
        s_province = self.get_argument('province', '')
        if s_province:
            query_params['province_code'] = s_province
        search_arguments['province'] = s_province

        s_city = self.get_argument('city', '')
        if s_city:
            query_params['city_code'] = s_city
        search_arguments['city'] = s_city

        s_age_group = self.get_argument('age_group', '')
        if s_age_group:
            query_params['age_group'] = int(s_age_group)
        search_arguments['age_group'] = s_age_group

        s_gender = self.get_argument('gender', '')
        if s_gender:
            query_params['gender'] = int(s_gender)
        search_arguments['gender'] = s_gender

        s_education = self.get_argument('education', '')
        if s_education:
            query_params['education'] = int(s_education)
        search_arguments['education'] = s_education

        manage_stage = MatchStage(match_dict)
        query_stage = MatchStage(query_params)
        group_stage = GroupStage('subject_cid', t_total={'$sum': '$total'}, t_correct={'$sum': '$correct'})
        project_stage = ProjectStage(
            total='$t_total', correct='$t_correct',
            percent={
                '$cond': {
                    'if': {'$eq': ['$t_total', 0]},
                    'then': 0,
                    'else': {
                        '$divide': ['$t_correct', '$t_total']
                    }
                }
            }
        )

        s_lookup_stage = LookupStage(Subject, '_id', 'cid', 'subject_list')
        so_lookup_stage = LookupStage(SubjectOption, '_id', 'subject_cid', 'subject_option_list')

        not_null_match = MatchStage({
            'subject_list': {'$ne': []},
            'subject_option_list': {'$ne': []}
        })

        final_project = ProjectStage(**{
            'custom_code': {'$arrayElemAt': ['$subject_list.custom_code', 0]},
            'code': {'$arrayElemAt': ['$subject_list.code', 0]},
            'title': {'$arrayElemAt': ['$subject_list.title', 0]},
            'subject_list': '$subject_list',
            'subject_option_list': '$subject_option_list',
            'dimension': {'$arrayElemAt': ['$subject_list.dimension_dict', 0]},
            'total': '$total',
            'correct': '$correct',
            'percent': '$percent'
        })

        sort_list = []
        sort = self.get_argument('sort')
        if sort:
            sort = int(sort)
        else:
            sort = 1

        search_arguments['sort'] = sort
        if sort == 1:
            sort_list.append('-percent')
        elif sort == 2:
            sort_list.append('percent')
        sort_list.append('-total')

        return MemberSubjectStatistics.aggregate([
            manage_stage, query_stage, group_stage, project_stage, s_lookup_stage, so_lookup_stage, not_null_match,
            final_project
        ])
def do_create_query(max_q, m_province_code_list, m_city_code_list,
                    s_province_code_list, s_city_code_list, s_gender_list,
                    s_age_group_list, s_education_list):
    """

    :param max_q:
    :param m_province_code_list:
    :param m_city_code_list:
    :param s_province_code_list:
    :param s_city_code_list:
    :param s_gender_list:
    :param s_age_group_list:
    :param s_education_list:
    :return:
    """
    if max_q is not None:
        stage_list = []
        match_dict = {}
        if m_province_code_list:
            match_dict['province_code'] = {'$in': m_province_code_list}
        if m_city_code_list:
            match_dict['city_code'] = {'$in': m_city_code_list}

        s_and_list = []
        #  取前一天凌晨12点之前的数据
        time_match = get_yesterday()
        s_and_list.append({'updated_dt': {'$lt': time_match}})
        if s_province_code_list:
            s_and_list.append({'province_code': {'$in': s_province_code_list}})
        if s_city_code_list:
            s_and_list.append({'city_code': {'$in': s_city_code_list}})
        if s_gender_list:
            s_and_list.append({
                'gender': {
                    '$in': [int(s_gender) for s_gender in s_gender_list]
                }
            })
        if s_age_group_list:
            s_and_list.append({
                'age_group': {
                    '$in':
                    [int(s_age_group) for s_age_group in s_age_group_list]
                }
            })
        if s_education_list:
            s_and_list.append({
                'education': {
                    '$in':
                    [int(s_education) for s_education in s_education_list]
                }
            })

        if s_and_list:
            match_dict['$and'] = s_and_list
        if match_dict:
            stage_list.append(MatchStage(match_dict))

        group_dict = {}
        for i in range(max_q):
            group_dict[str(i)] = {'$sum': '$quantity_detail.%s' % i}
        if group_dict:
            stage_list.append(GroupStage(None, **group_dict))
        return stage_list
    return None
    async def post(self):
        r_dict = {'code': 0, 'pie': None, 'line': None}
        category = self.get_argument('category')
        if not category:
            ms = await MemberShareStatistics.aggregate(
                [GroupStage('category', sum={'$sum': 1})]).to_list(None)
            r_dict['pie'] = {
                'legendData':
                list(set([v for _, v in CATEGORY_MEMBER_SHARE_DICT.items()]))
            }
            seriesData = [{
                'name': CATEGORY_MEMBER_SHARE_DICT.get(m.id),
                'value': m.sum
            } for m in ms]
            key_list = [m.id for m in ms]
            res_index = ''
            fight_index = ""
            if CATEGORY_MEMBER_SHARE_EXAM_RESULT in key_list and CATEGORY_MEMBER_SHARE_FRIEND_FIGHT in key_list:
                res_index = key_list.index(CATEGORY_MEMBER_SHARE_EXAM_RESULT)
                fight_index = key_list.index(
                    CATEGORY_MEMBER_SHARE_FRIEND_FIGHT)
            elif CATEGORY_MEMBER_SHARE_EXAM_RESULT not in key_list and CATEGORY_MEMBER_SHARE_FRIEND_FIGHT in key_list:
                fight_index = key_list.index(
                    CATEGORY_MEMBER_SHARE_FRIEND_FIGHT)
                seriesData[fight_index][
                    'name'] = CATEGORY_MEMBER_SHARE_EXAM_RESULT
            if res_index != "":
                seriesData[res_index]['value'] += seriesData[fight_index][
                    'value']
                seriesData.remove(seriesData[fight_index])
            r_dict['pie']['seriesData'] = seriesData
            r_dict['code'] = 1
            return r_dict

        try:
            x_axis = self.get_argument('xAxis', '')
            condition_value = self.get_argument('condition_value', {})

            # 特殊处理 fix: http://code.wenjuan.com/WolvesAU/CRSPN/issues/13
            category = int(category)
            c_match = {'category': int(category)}
            if category == CATEGORY_MEMBER_SHARE_EXAM_RESULT:
                c_match = {
                    'category': {
                        '$in': [
                            CATEGORY_MEMBER_SHARE_EXAM_RESULT,
                            CATEGORY_MEMBER_SHARE_FRIEND_FIGHT
                        ]
                    }
                }

            ms = await MemberShareStatistics.aggregate([
                MatchStage(c_match),
                MatchStage(parse_condition(condition_value)),
                ProjectStage(
                    **{
                        'share_dt': {
                            "$dateToString": {
                                "format": "%Y-%m-%d",
                                "date": "$share_dt"
                            }
                        },
                    }),
                GroupStage('share_dt', sum={'$sum': 1}),
                SortStage([('_id', ASC)])
            ]).to_list(None)

            if not x_axis:
                x_axis_data = [m.id for m in ms]
                series_data = [m.sum for m in ms]
            else:
                x_axis_data = json.loads(x_axis)
                member_id_map = {m.id: m for m in ms}
                series_data = [
                    member_id_map[data.get('value')].sum
                    if data.get('value') in member_id_map else 0
                    for data in x_axis_data
                ]

            r_dict = {
                'code': 1,
                'line': {
                    'xAxisData': x_axis_data,
                    'seriesData': series_data
                }
            }
        except Exception:
            logger.error(traceback.format_exc())
        return r_dict
Пример #20
0
def do_statistics_subject_cross(cache_key, main_dimension_code, second_dimension_code, m_city_code_list,
                                province_code_list, city_code_list, gender_list, age_group_list,
                                education_list):
    """

    :param cache_key:
    :param main_dimension_code:
    :param second_dimension_code:
    :param m_city_code_list:
    :param province_code_list:
    :param city_code_list:
    :param gender_list:
    :param age_group_list:
    :param education_list:
    :return:
    """
    RedisCache.set(cache_key, KEY_CACHE_REPORT_DOING_NOW, 5 * 60)
    main_dimension = SubjectDimension.sync_find_one(
        dict(code=main_dimension_code, status=STATUS_SUBJECT_DIMENSION_ACTIVE))
    main_sub_dimension_list = SubjectDimension.sync_find(dict(parent_cid=main_dimension.cid)).sort(
        [('ordered', ASC)]).to_list(None)

    second_dimension = SubjectDimension.sync_find_one(
        dict(code=second_dimension_code, status=STATUS_SUBJECT_DIMENSION_ACTIVE))
    second_sub_dimension_list = SubjectDimension.sync_find(dict(parent_cid=second_dimension.cid)).sort(
        [('ordered', ASC)]).to_list(None)

    data = []
    for index, m_dimen in enumerate(main_sub_dimension_list):
        sub_data_list = []
        for s_dimen in second_sub_dimension_list:
            stage_list = []
            #  取前一天凌晨12点之前的数据
            time_match = get_yesterday()
            stage_list.append(MatchStage({'updated_dt': {'$lt': time_match}}))
            match_dict = {'dimension.%s' % main_dimension.cid: m_dimen.cid,
                          'dimension.%s' % second_dimension.cid: s_dimen.cid}
            if m_city_code_list:
                match_dict['city_code'] = {'$in': m_city_code_list}
            stage_list.append(MatchStage(match_dict))

            query_dict = {}
            if province_code_list:
                query_dict['province_code'] = {'$in': province_code_list}
            if city_code_list:
                query_dict['city_code'] = {'$in': city_code_list}
            if gender_list:
                query_dict['gender'] = {'$in': [int(s_gender) for s_gender in gender_list]}
            if age_group_list:
                query_dict['age_group'] = {'$in': [int(s_age_group) for s_age_group in age_group_list]}
            if education_list:
                query_dict['education'] = {'$in': [int(s_education) for s_education in education_list]}

            if query_dict:
                stage_list.append(MatchStage(query_dict))
            # 分组
            group_params = {
                'total': {'$sum': '$total'},
                'correct': {'$sum': '$correct'}
            }
            stage_list.append(GroupStage(None, **group_params))

            stat_result = MemberSubjectStatistics.sync_aggregate(
                stage_list).to_list(None)
            tmp_data = {
                'code': s_dimen.code,
                'title': s_dimen.title,
                'ordered': s_dimen.ordered,
                'correct': stat_result[0].correct if stat_result else 0,
                'total': stat_result[0].total if stat_result else 0
            }
            sub_data_list.append(tmp_data)
        main_data = {
            'code': str(index + 1),
            'title': m_dimen.title,
            'ordered': index + 1,
            'sub': sub_data_list
        }
        data.append(main_data)

    if data:
        data.sort(key=lambda x: x.get('ordered', 0))
    if not data:
        early_warning_empty("start_statistics_subject_parameter_cross", cache_key, locals(), '获取维度正确率统计数据为空,请检查!')
    RedisCache.set(cache_key, msgpack.packb(data))
Пример #21
0
def do_statistics_accuracy(cache_key, city_code_list, choice_time):
    """
    学习状况-正确率
    :param cache_key:
    :param city_code_list:
    :param choice_time
    :return:
    """
    RedisCache.set(cache_key, KEY_CACHE_REPORT_DOING_NOW)
    #  取前一天凌晨12点之前的数据
    time_match = get_yesterday()
    if not choice_time:
        match_stage = MatchStage({'updated_dt': {'$lt': time_match}})
    else:
        #  当天下一天凌晨的时候
        max_choice_time = choice_time.replace(hour=23, minute=59, second=59, microsecond=999)
        match_stage = MatchStage({'updated_dt': {'$gte': choice_time, '$lt': max_choice_time}})
    stage_list = [match_stage]
    if city_code_list:
        stage_list.append(MatchStage({'city_code': {'$in': city_code_list}}))

    group_stage = GroupStage('province_code', t_total={'$sum': '$total'}, t_correct={'$sum': '$correct'})
    add_fields_stage = AddFieldsStage(t_accuracy={
        '$cond':
            {
                'if': {'$eq': ['$t_total', 0]},
                'then': 0,
                'else':
                    {
                        '$divide': ['$t_correct', '$t_total']
                    }
            }
    })
    sort_stage = SortStage([('t_accuracy', DESC)])
    lookup_stage = LookupStage(AdministrativeDivision, '_id', 'post_code', 'ad_list')
    stage_list.extend([group_stage, add_fields_stage, sort_stage, lookup_stage])
    province_stat_list = MemberSubjectStatistics.sync_aggregate(stage_list)
    province_dict = {}
    while True:
        try:
            province_stat = province_stat_list.next()
            if province_stat:
                province_code = province_stat.id if province_stat.id else '000000'
                total = province_stat.t_total if province_stat.t_total else 0
                correct = province_stat.t_correct if province_stat.t_correct else 0
                title = 'undefined'
                ad_list = province_stat.ad_list
                if ad_list:
                    ad: FacadeO = ad_list[0]
                    if ad:
                        title = ad.title.replace('省', '').replace('市', '')
                province_dict[province_code] = {
                    'code': province_code,
                    'title': title,
                    'correct': correct,
                    'total': total,
                    'data': round(correct / total * 100 if total > 0 else 0, 2)
                }
        except StopIteration:
            break
    # 合并城市统计信息
    do_merge_city_stat_accuracy(province_dict, city_code_list)

    data = [v for v in province_dict.values()]
    RedisCache.set(cache_key, msgpack.packb(data))
    if not data:
        early_warning_empty("start_statistics_member_accuracy", cache_key, city_code_list, '学习近况中正确率数据为空,请检查!')
    return data
Пример #22
0
    async def do_paging_from_report_subject_statistics_middle(self, category, match_dict: dict, query_params: dict,
                                                              dimension_dict: dict, search_arguments: dict):
        """

        :param category:
        :param match_dict:
        :param query_params:
        :param dimension_dict:
        :param search_arguments:
        :return:
        """

        # 默认只显示,状态启用,并且不是基准测试或毕业测试的题目
        match_dimension = {'$and': [
            {'status': STATUS_SUBJECT_ACTIVE},
            {'category_use': {
                '$nin': [CATEGORY_SUBJECT_BENCHMARK, CATEGORY_SUBJECT_GRADUATION]}}
        ]}
        if dimension_dict:
            match_dimension['$and'].extend([{'dimension_dict.%s' % k: v} for k, v in dimension_dict.items()])

        subject_cid_list = await Subject.distinct('cid', match_dimension)
        if subject_cid_list:
            match_dict['subject_cid'] = {'$in': subject_cid_list}

        region_match = {}
        for k, v in match_dict.items():
            region_match['condition.%s' % k] = v

        query_dict = {'category': category}
        for k, v in query_params.items():
            query_dict['condition.%s' % k] = v

        if dimension_dict:
            for k, v in dimension_dict.items():
                query_dict['dimension.%s' % k] = v

        match_region = MatchStage(region_match)
        query_stage = MatchStage(query_dict)
        group_stage = GroupStage('condition.subject_cid',
                                 custom_code={'$first': '$custom_code'},
                                 code={'$first': '$code'},
                                 title={'$first': '$title'},
                                 task_dt={'$first': '$task_dt'},
                                 option_dict={'$first': '$option_dict'},
                                 dimension={'$first': '$dimension'},
                                 total={'$sum': '$total'},
                                 correct={'$sum': '$correct'}
                                 )

        final_project = ProjectStage(**{
            'custom_code': 1,
            'code': 1,
            'title': 1,
            'task_dt': 1,
            'option_dict': 1,
            'dimension': 1,
            'total': 1,
            'correct': 1,
            'percent': {
                '$cond': {
                    'if': {'$eq': ['$total', 0]},
                    'then': 0,
                    'else': {
                        '$divide': ['$correct', '$total']
                    }
                }
            }
        })

        sort_list = list()
        sort = int(self.get_argument('sort', 1))
        if sort == 1:
            sort_list.append('-percent')
        elif sort == 2:
            sort_list.append('percent')
        elif sort == 3:
            sort_list.append('-total')
        elif sort == 4:
            sort_list.append('total')
        elif sort == 5:
            sort_list.append('-code')
        elif sort == 6:
            sort_list.append('code')

        per_page_quantity = int(self.get_argument('per_page_quantity', 50))
        to_page_num = int(self.get_argument('page', 1))

        page_url = '%s?page=$page&per_page_quantity=%s' % (
            self.reverse_url("backoffice_reports_subject_analysis_list"), per_page_quantity) + '&sort=%s&' % sort + \
                   '&'.join(
                       ['='.join((key, str(search_arguments.get(key)))) for key in sorted(search_arguments.keys())])
        paging = Paging(
            page_url, ReportSubjectStatisticsMiddle, current_page=to_page_num, items_per_page=per_page_quantity,
            pipeline_stages=[match_region, query_stage, group_stage, final_project], sort=sort_list)
        await paging.pager()

        return locals()
Пример #23
0
async def get_report_data(race: Race,
                          sort_stage,
                          time_match_stage,
                          category,
                          belong_city_district_title_list=[]):
    """
    获得活动报表数据
    :param race:
    :param sort_stage:
    :param category:
    :param time_match_stage
    :param belong_city_district_title_list
    :return:
    """
    title_list = []
    accuracy_series_data_list = []
    member_count_dict = {}
    member_quantity_dict = {}
    member_accuracy_dict = {}
    if race:
        #  参与人次
        match_stage = MatchStage({'race_cid': race.cid, 'record_flag': 1})
        stage_list = [match_stage, time_match_stage]
        if belong_city_district_title_list:
            stage_list.append(
                MatchStage(
                    {'district': {
                        '$in': belong_city_district_title_list
                    }}))
        group_stage = GroupStage(category, sum={'$sum': "$total_num"})
        stage_list += [group_stage, sort_stage]
        stats = await ReportRacePeopleStatistics.aggregate(stage_list).to_list(
            None)
        series_data_list = [s.sum for s in stats]
        title_list = [s.id for s in stats if s]
        #  {'苏州': 200, '扬州': 300}
        if title_list and series_data_list:
            member_count_dict = {
                title: data
                for title, data in zip(title_list, series_data_list)
            }
            member_count_dict = delete_other(member_count_dict)
            title_list = list(member_count_dict.keys())
        #  参加人数
        group_stage = GroupStage('auth_address.%s' % category, sum={'$sum': 1})
        if belong_city_district_title_list:
            participants_stats = await RaceMapping.aggregate(stage_list=[
                match_stage, time_match_stage,
                MatchStage({
                    'auth_address.district': {
                        '$in': belong_city_district_title_list
                    }
                }), group_stage
            ]).to_list(None)
        else:
            participants_stats = await RaceMapping.aggregate(
                stage_list=[match_stage, time_match_stage, group_stage]
            ).to_list(None)
        quantity_title_list = [s.id for s in participants_stats]
        quantity_data_list = [s.sum for s in participants_stats]
        if quantity_title_list and quantity_data_list:
            member_quantity_dict = {
                title: data
                for title, data in zip(quantity_title_list, quantity_data_list)
            }
            member_quantity_dict = delete_other(member_quantity_dict)
        #  正确率
        participants_accuracy = GroupStage(
            'auth_address.%s' % category,
            total_correct={'$sum': '$total_correct'},
            total_count={'$sum': '$total_count'})
        if belong_city_district_title_list:
            accuracy_stats = await RaceMapping.aggregate(stage_list=[
                match_stage, time_match_stage,
                MatchStage({
                    'auth_address.district': {
                        '$in': belong_city_district_title_list
                    }
                }), participants_accuracy
            ]).to_list(None)
        else:
            accuracy_stats = await RaceMapping.aggregate(stage_list=[
                match_stage, time_match_stage, participants_accuracy
            ]).to_list(None)
        for s in accuracy_stats:
            if s and s.total_count == 0:
                accuracy_series_data_list.append(0)
            elif s and s.total_count != 0:
                accuracy_series_data_list.append(
                    round((s.total_correct / s.total_count) * 100, 2))
        accuracy_title_list = [s.id for s in accuracy_stats if s]
        member_accuracy_dict = {
            title: data
            for title, data in zip(accuracy_title_list,
                                   accuracy_series_data_list)
        }
        member_accuracy_dict = delete_other(member_accuracy_dict)
    return title_list, member_count_dict, member_quantity_dict, member_accuracy_dict
Пример #24
0
    async def post(self):
        race_cid = self.get_argument('race_cid', '')
        r_dict = {'code': 0, 'line': None}
        category = self.get_argument('category')
        if not category:
            return r_dict

        try:
            category = int(category)
            condition = self.get_argument('condition_value')
            x_axis = self.get_argument('xAxis', '')
            race = await Race.find_one({'cid': race_cid, 'record_flag': 1})
            checkpoint_list = await RaceGameCheckPoint.find({
                'race_cid': race_cid,
                'record_flag': 1
            }).to_list(None)
            last_checkpoint_cid = ''
            sort_stage = SortStage([('_id', ASC)])
            if checkpoint_list:
                last_checkpoint_cid = checkpoint_list[-1].cid
            if not race.city_code:
                # 省级活动, 按照市来区分
                group_stage = GroupStage('auth_address.city', sum={'$sum': 1})
                match_stage = MatchStage({
                    'race_cid': race_cid,
                    'record_flag': 1
                })
                group_partake_accuracy = GroupStage(
                    'auth_address.city',
                    total_correct={'$sum': '$total_correct'},
                    total_count={'$sum': '$total_count'})
                important_player_group_stage = GroupStage('category',
                                                          sum={'$sum': 1})
                important_player_accuracy = GroupStage(
                    'category',
                    total_correct={'$sum': '$total_correct'},
                    total_count={'$sum': '$total_count'})
                important_match_stage = MatchStage({
                    'category': {
                        '$ne': 0
                    },
                    'race_cid': race_cid,
                    'record_flag': 1
                })
                check_point_lookup = LookupStage(
                    MemberCheckPointHistory,
                    let={'primary_cid': '$member_cid'},
                    as_list_name='history_list',
                    pipeline=[{
                        '$match': {
                            '$expr': {
                                '$and': [{
                                    '$eq': ['$member_cid', '$$primary_cid']
                                }, {
                                    '$eq': ['$status', 1]
                                }, {
                                    '$eq':
                                    ['$check_point_cid', last_checkpoint_cid]
                                }]
                            }
                        }
                    }, {
                        '$match': {
                            'history_list': {
                                '$ne': []
                            }
                        }
                    }])
                match_checkpoint_stage = MatchStage(
                    {'history_list': {
                        '$ne': []
                    }})
            else:
                #  市级活动, 按照区来分组
                group_stage = GroupStage('auth_address.district',
                                         sum={'$sum': 1})
                match_stage = MatchStage({
                    'race_cid': race_cid,
                    'record_flag': 1
                })
                group_partake_accuracy = GroupStage(
                    'auth_address.district',
                    total_correct={'$sum': '$total_correct'},
                    total_count={'$sum': '$total_count'})
                important_player_group_stage = GroupStage('category',
                                                          sum={'$sum': 1})
                important_player_accuracy = GroupStage(
                    'category',
                    total_correct={'$sum': '$total_correct'},
                    total_count={'$sum': '$total_count'})
                important_match_stage = MatchStage({
                    'category': {
                        '$ne': 0
                    },
                    'race_cid': race_cid,
                    'record_flag': 1
                })
                check_point_lookup = LookupStage(
                    MemberCheckPointHistory,
                    let={'primary_cid': '$member_cid'},
                    as_list_name='history_list',
                    pipeline=[
                        {
                            '$match': {
                                '$expr': {
                                    '$and': [{
                                        '$eq':
                                        ['$member_cid', '$$primary_cid']
                                    }, {
                                        '$eq': ['$status', 1]
                                    }, {
                                        '$eq': [
                                            '$check_point_cid',
                                            last_checkpoint_cid
                                        ]
                                    }]
                                }
                            }
                        },
                    ])
                match_checkpoint_stage = MatchStage(
                    {'history_list': {
                        '$ne': []
                    }})
            if category == CATEGORY__RACE_AREA_PLAYER_QUANTITY:
                #  各区参与人数
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(condition)), match_stage,
                    group_stage, sort_stage
                ]).to_list(None)
                series_data = [s.sum for s in stats]
                if not x_axis:
                    x_axis_data = [s.id for s in stats if s]
                    x_axis_data, series_data = replace_race_other_area(
                        x_axis_data, series_data, is_sort=True)
                else:
                    x_axis_data = json.loads(x_axis)
                    series_data = await deal_with_series_data(
                        stats, x_axis_data, series_data)
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'bar': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data
                    }
                }
            if category == CATEGORY__RACE_AREA_PLAYER_ACCURACY:
                # 各区参与正确率
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(condition)), match_stage,
                    group_partake_accuracy, sort_stage
                ]).to_list(None)

                # series_data = [(s.total_correct / s.total_count) * 100 for s in stats if s and s.total_count != 0]
                series_data = []
                for s in stats:
                    if s and s.total_count == 0:
                        series_data.append(0)
                    elif s and s.total_count != 0:
                        series_data.append(
                            (s.total_correct / s.total_count) * 100)
                if not x_axis:
                    x_axis_data = [s.id for s in stats if s]
                    x_axis_data, series_data = replace_race_other_area(
                        x_axis_data, series_data)
                else:
                    x_axis_data = json.loads(x_axis)
                    if len(series_data) != len(x_axis_data):
                        series_data = [0 for _ in range(len(x_axis_data))]
                        for s in stats:
                            if s.id in x_axis_data and s.total_count != 0:
                                index = x_axis_data.index(s.id)
                                series_data[index] = (s.total_correct /
                                                      s.total_count) * 100
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'line': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data
                    }
                }
            if category == CATEGORY_RACE_AREA_CLEARANCE_QUANTITY:
                """
                各区通关人数
                """
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(
                        condition)), match_stage, check_point_lookup,
                    match_checkpoint_stage, group_stage, sort_stage
                ]).to_list(None)
                series_data = [s.sum for s in stats if s]
                if not x_axis:
                    x_axis_data = [s.id for s in stats if s]
                    x_axis_data, series_data = replace_race_other_area(
                        x_axis_data, series_data, is_sort=True)
                else:
                    x_axis_data = json.loads(x_axis)
                    series_data = await deal_with_series_data(
                        stats, x_axis_data, series_data)
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'bar': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data
                    }
                }
            if category == CATEGORY_RACE_AREA_IMPORTANT_QUANTITY:
                """
                重点人群参与人数
                """
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(
                        condition)), important_match_stage,
                    important_player_group_stage, sort_stage
                ]).to_list(None)
                series_data = [s.sum for s in stats if s]
                if not x_axis:
                    x_axis_data = [s.id for s in stats if s]
                    none_index = ''
                    if None in x_axis_data:
                        none_index = x_axis_data.index(None)
                    if (none_index or none_index == 0) and series_data:
                        x_axis_data[none_index] = '其他'
                        x_axis_data[none_index], x_axis_data[-1] = x_axis_data[
                            -1], x_axis_data[none_index]
                        series_data[none_index], series_data[-1] = series_data[
                            -1], series_data[none_index]
                    for index, x_axis in enumerate(x_axis_data):
                        if x_axis not in ['其他', None]:
                            x_axis_data[index] = CATEGORY_MEMBER_DICT[x_axis]
                else:
                    x_axis_data = json.loads(x_axis)
                    series_data = await deal_with_important_people(
                        stats, x_axis_data, series_data)
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'bar': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data
                    }
                }
            if category == CATEGORY_RACE_AREA_IMPORTANT_PLAYER_ACCURACY:
                #  重点人群正确率
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(
                        condition)), important_match_stage,
                    important_player_accuracy, sort_stage
                ]).to_list(None)

                series_data = [(s.total_correct / s.total_count) * 100
                               for s in stats if s and s.total_count != 0]
                if not x_axis:
                    x_axis_data = [s.id for s in stats if s]
                    none_index = ''
                    if None in x_axis_data:
                        none_index = x_axis_data.index(None)
                    if (none_index or none_index == 0) and series_data:
                        x_axis_data[none_index] = '其他'
                        x_axis_data[none_index], x_axis_data[-1] = x_axis_data[
                            -1], x_axis_data[none_index]
                        series_data[none_index], series_data[-1] = series_data[
                            -1], series_data[none_index]
                    for index, x_axis in enumerate(x_axis_data):
                        if x_axis not in ['其他', None]:
                            x_axis_data[index] = CATEGORY_MEMBER_DICT[x_axis]

                else:
                    x_axis_data = json.loads(x_axis)
                    if len(series_data) != len(x_axis_data):
                        series_data = [0 for _ in range(len(x_axis_data))]
                        for s in stats:
                            if CATEGORY_MEMBER_DICT[
                                    s.
                                    id] in x_axis_data and s.total_count != 0:
                                index = x_axis_data.index(
                                    CATEGORY_MEMBER_DICT[s.id])
                                series_data[index] = (s.total_correct /
                                                      s.total_count) * 100
                if len(x_axis_data) == 1 and None in x_axis_data:
                    x_axis_data = ['其他']
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'line': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data
                    }
                }
        except Exception:
            logger.error(traceback.format_exc())
        return r_dict
Пример #25
0
def do_merge_city_stat_accuracy(province_dict: dict, city_code_list=None):
    """
    合并省份统计信息
    :param province_dict:
    :param city_code_list:
    :return:
    """
    if province_dict:
        match_query = {'province_code': {'$in': [code for code in province_dict.keys()]}}
        if city_code_list:
            match_query['city_code'] = {'$in': city_code_list}
        else:
            match_query['city_code'] = {'$ne': None}
        match_stage = MatchStage(match_query)
        group_stage = GroupStage('city_code', t_total={'$sum': '$total'}, t_correct={'$sum': '$correct'},
                                 province_code={'$first': '$province_code'})
        add_fields_stage = AddFieldsStage(t_accuracy={
            '$cond':
                {
                    'if': {'$eq': ['$t_total', 0]},
                    'then': 0,
                    'else':
                        {
                            '$divide': ['$t_correct', '$t_total']
                        }
                }
        })
        sort_stage = SortStage([('t_accuracy', DESC)])
        p_lookup_stage = LookupStage(AdministrativeDivision, 'province_code', 'post_code', 'province_list')
        c_lookup_stage = LookupStage(AdministrativeDivision, '_id', 'post_code', 'city_list')
        city_stat_list = MemberSubjectStatistics.sync_aggregate(
            [match_stage, group_stage, add_fields_stage, sort_stage, p_lookup_stage, c_lookup_stage])
        t_province_dict = {}
        while True:
            try:
                city_stat = city_stat_list.next()
                if not city_stat:
                    continue
                city_list = city_stat.city_list
                total = city_stat.t_total if city_stat.t_total else 0
                correct = city_stat.t_correct if city_stat.t_correct else 0
                if not city_list:
                    continue
                city: FacadeO = city_list[0]
                if not (city and city.parent_code):
                    continue

                p_stat = province_dict.get(city.parent_code)
                if p_stat:
                    if p_stat.get('city_list') is None:
                        p_stat['city_list'] = []
                    p_stat['city_list'].append({
                        'code': city_stat.id,
                        'title': city.title,
                        'correct': correct,
                        'total': total,
                        'data': round(correct / total * 100 if total > 0 else 0, 2)
                    })
                else:
                    province_list = city_stat.province_list
                    if province_list:
                        province: FacadeO = province_list[0]
                        if province:
                            if t_province_dict.get(province.post_code) is None:
                                t_province_dict[province.post_code] = {
                                    'code': province.post_code,
                                    'title': province.title.replace('省', '').replace('市', ''),
                                    'correct': 0,
                                    'total': 0
                                }
                            t_province_dict[province.post_code]['correct'] += correct
                            t_province_dict[province.post_code]['total'] += total
                            t_province_dict['data'] = round(t_province_dict[province.post_code]['correct'] /
                                                            t_province_dict[province.post_code][
                                                                'total'] * 100 if
                                                            t_province_dict[province.post_code][
                                                                'total'] > 0 else 0, 2)

                            if t_province_dict[province.post_code].get('city_list') is None:
                                t_province_dict[province.post_code]['city_list'] = []
                            t_province_dict[province.post_code]['city_list'].append({
                                'code': city_stat.id,
                                'title': city.title,
                                'correct': correct,
                                'total': total,
                                'data': round(correct / total * 100 if total > 0 else 0, 2)
                            })
            except StopIteration:
                break

        if t_province_dict:
            province_dict.update(t_province_dict)
Пример #26
0
    async def post(self):
        race_cid = self.get_argument('race_cid', '')
        r_dict = {'code': 0, 'line': None}
        category = self.get_argument('category')
        if not category:
            return r_dict
        member_cid_list = await RaceMapping.distinct(
            'member_cid', {
                'race_cid': race_cid,
                'company_cid': '3A6E1E81BD02EA321FEAB121D6DCCFDD'
            })
        num = 0
        for member_cid in member_cid_list:
            history = await MemberCheckPointHistory.find_one({
                'member_cid':
                member_cid,
                'status':
                1,
                'check_point_cid':
                '6F9E3F448F5673CBA7CC7D419F287EF7'
            })
            if history:
                num += 1
        try:
            category = int(category)
            checkpoint_list = await RaceGameCheckPoint.find({
                'race_cid': race_cid,
                'record_flag': 1
            }).to_list(None)
            last_checkpoint_cid = ''
            if checkpoint_list:
                last_checkpoint_cid = checkpoint_list[-1].cid
            condition = self.get_argument('condition_value')
            x_axis = self.get_argument('xAxis', '')
            #  根据公司cid来分组
            company_group_stage = GroupStage('company_cid', sum={'$sum': 1})
            sort_stage = SortStage([('_id', ASC)])
            match_stage = MatchStage({'race_cid': race_cid, 'record_flag': 1})
            company_accuracy_group_stage = GroupStage(
                'company_cid',
                total_correct={'$sum': '$total_correct'},
                total_count={'$sum': '$total_count'})

            check_point_lookup = LookupStage(
                MemberCheckPointHistory,
                let={'primary_cid': '$member_cid'},
                as_list_name='history_list',
                pipeline=[
                    {
                        '$match': {
                            '$expr': {
                                '$and': [{
                                    '$eq': ['$member_cid', '$$primary_cid']
                                }, {
                                    '$eq': ['$status', 1]
                                }, {
                                    '$eq':
                                    ['$check_point_cid', last_checkpoint_cid]
                                }]
                            }
                        }
                    },
                ])
            match_checkpoint_stage = MatchStage({'history_list': {'$ne': []}})
            if category == CATEGORY__RACE_COMPANY_PLAYER_QUANTITY:
                #  各公司的参与人数
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(condition)),
                    match_stage,
                    company_group_stage,
                    sort_stage,
                ]).to_list(None)
                x_axis_data = []
                series_data = [s.sum for s in stats]
                if not x_axis and stats:
                    company_cid_list = [s.id for s in stats if s]
                    #  把公司cid改成公司标题
                    for company_cid in company_cid_list:
                        if company_cid:
                            company = await Company.find_one({
                                'cid': company_cid,
                                'record_flag': 1
                            })
                            x_axis_data.append(company.title)
                        else:
                            x_axis_data.append(None)
                    x_axis_data, series_data = replace_race_other_area(
                        x_axis_data, series_data)
                else:
                    x_axis_data = json.loads(x_axis)
                    if len(series_data) != len(x_axis_data):
                        series_data = [0 for _ in range(len(x_axis_data))]
                        for s in stats:
                            company = await Company.find_one({
                                'cid': s.id,
                                'record_flag': 1
                            })
                            title = company.title
                            if title in x_axis_data:
                                index = x_axis_data.index(title)
                                series_data[index] = s.sum
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'bar': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data,
                    }
                }
            if category == CATEGORY__RACE_COMPANY_PLAYER_ACCURACY:
                # 各公司的正确率
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(condition)), match_stage,
                    company_accuracy_group_stage, sort_stage
                ]).to_list(None)
                x_axis_data = []
                series_data = [(s.total_correct / s.total_count) * 100
                               for s in stats if s and s.total_count != 0]
                if not x_axis:
                    company_cid_list = [s.id for s in stats if s]
                    #  把公司cid改成公司标题
                    for company_cid in company_cid_list:
                        if company_cid:
                            company = await Company.find_one({
                                'cid': company_cid,
                                'record_flag': 1
                            })
                            x_axis_data.append(company.title)
                        else:
                            x_axis_data.append(None)
                    x_axis_data, series_data = replace_race_other_area(
                        x_axis_data, series_data)
                else:
                    x_axis_data = json.loads(x_axis)
                    if len(series_data) != len(x_axis_data):
                        series_data = [0 for _ in range(len(x_axis_data))]
                        for s in stats:
                            company = await Company.find_one({
                                'cid': s.id,
                                'record_flag': 1
                            })
                            title = company.title
                            if title in x_axis_data and s.total_count != 0:
                                index = x_axis_data.index(title)
                                series_data[index] = (s.total_correct /
                                                      s.total_count) * 100
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'line': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data
                    }
                }
            if category == CATEGORY_RACE_COMPANY_CLEARANCE_QUANTITY:
                """
                各公司的通关人数
                """
                stats = await RaceMapping.aggregate(stage_list=[
                    MatchStage(parse_race_condition(
                        condition)), match_stage, check_point_lookup,
                    match_checkpoint_stage, company_group_stage, sort_stage
                ]).to_list(None)
                series_data = [s.sum for s in stats if s]
                if not x_axis:
                    x_axis_data = []
                    if not x_axis and stats:
                        company_cid_list = [s.id for s in stats if s]
                        #  把公司cid改成公司标题
                        for company_cid in company_cid_list:
                            if company_cid:
                                company = await Company.find_one({
                                    'cid':
                                    company_cid,
                                    'record_flag':
                                    1
                                })
                                x_axis_data.append(company.title)
                            else:
                                x_axis_data.append(None)
                    x_axis_data, series_data = replace_race_other_area(
                        x_axis_data, series_data)
                else:
                    x_axis_data = json.loads(x_axis)
                    if len(series_data) != len(x_axis_data):
                        series_data = [0 for _ in range(len(x_axis_data))]
                        for s in stats:
                            company = await Company.find_one({
                                'cid': s.id,
                                'record_flag': 1
                            })
                            title = company.title
                            if title in x_axis_data:
                                index = x_axis_data.index(title)
                                series_data[index] = s.sum
                if not x_axis_data:
                    x_axis_data = ['暂无数据']
                r_dict = {
                    'code': 1,
                    'bar': {
                        'xAxisData': x_axis_data,
                        'seriesData': series_data
                    }
                }
        except Exception:
            logger.error(traceback.format_exc())
        return r_dict
Пример #27
0
def get_stages(group_dict=None, skip_num=None):
    """

    :param group_dict:
    :param skip_num:
    :return:
    """
    if not group_dict or skip_num is None:
        logger.error('there is not group_dict(%s) or skip_num(%s)' %
                     (group_dict, skip_num))
        raise ValueError()

    inactive_subject_cids = Subject.sync_distinct(
        'cid', {
            '$or': [{
                'status': STATUS_SUBJECT_INACTIVE
            }, {
                'category_use': {
                    '$in':
                    [CATEGORY_SUBJECT_BENCHMARK, CATEGORY_SUBJECT_GRADUATION]
                }
            }]
        })

    inactive_sbj = MatchStage({'subject_cid': {'$nin': inactive_subject_cids}})

    group_stage = GroupStage(group_dict,
                             t_total={'$sum': '$total'},
                             t_correct={'$sum': '$correct'},
                             created_dt={'$max': '$created_dt'})
    sort_stage = SortStage([('t_total', DESC), ('t_correct', DESC),
                            ('created_dt', ASC)])

    project_stage = ProjectStage(total='$t_total',
                                 correct='$t_correct',
                                 percent={
                                     '$cond': {
                                         'if': {
                                             '$eq': ['$t_total', 0]
                                         },
                                         'then': 0,
                                         'else': {
                                             '$divide':
                                             ['$t_correct', '$t_total']
                                         }
                                     }
                                 })
    s_lookup_stage = LookupStage(Subject,
                                 as_list_name='subject_list',
                                 let={'subject_id': "$_id.subject_cid"},
                                 pipeline=[{
                                     '$match': {
                                         '$expr': {
                                             '$and': [{
                                                 '$eq':
                                                 ['$cid', '$$subject_id']
                                             }]
                                         }
                                     }
                                 }])
    so_lookup_stage = LookupStage(
        SubjectOption,
        as_list_name='subject_option_list',
        let={'subject_id': "$_id.subject_cid"},
        pipeline=[{
            '$match': {
                '$expr': {
                    '$and': [{
                        '$eq': ['$subject_cid', '$$subject_id']
                    }]
                }
            }
        }, {
            '$sort': {
                'code': ASC
            }
        }])
    match_stage = MatchStage({
        'subject_list': {
            '$ne': []
        },
        'subject_option_list': {
            '$ne': []
        }
    })
    project_stage2 = ProjectStage(
        **{
            'custom_code': {
                '$arrayElemAt': ['$subject_list.custom_code', 0]
            },
            'code': {
                '$arrayElemAt': ['$subject_list.code', 0]
            },
            'title': {
                '$arrayElemAt': ['$subject_list.title', 0]
            },
            'option_list': '$subject_option_list',
            'dimension': {
                '$arrayElemAt': ['$subject_list.dimension_dict', 0]
            },
            'total': '$total',
            'correct': '$correct'
        })
    skip_stage = SkipStage(skip_num)
    limit_stage = LimitStage(10000)

    return [
        inactive_sbj, group_stage, sort_stage, skip_stage, limit_stage,
        project_stage, s_lookup_stage, so_lookup_stage, match_stage,
        project_stage2
    ]
Пример #28
0
    async def do_paging_from_member_subject_statistics(self, match_dict, query_params, dimension_dict,
                                                       search_arguments):
        """

        :param match_dict:
        :param query_params:
        :param dimension_dict:
        :param search_arguments:
        :return:
        """
        subject_dimension_list = await SubjectDimension.aggregate([
            MatchStage({'parent_cid': None}),
            SortStage([('ordered', ASC)]),
            LookupStage(SubjectDimension, 'cid', 'parent_cid', 'sub_list')
        ]).to_list(None)

        match_dict = {}
        search_arguments = {}

        # 地方科协不会开放此权限,因此显示全部省份数据
        # m_province_code_list, m_city_code_list, _ = await do_different_administrative_division2(
        #     self.current_user.manage_region_code_list)
        # if m_province_code_list:
        #     match_dict['province_code'] = {'$in': m_province_code_list}
        # if m_city_code_list:
        #     match_dict['city_code'] = {'$in': m_city_code_list}

        # 维度信息
        dimension_dict = {}
        for dimension in subject_dimension_list:
            t_dimension = self.get_argument(dimension.cid, '')
            if t_dimension:
                dimension_dict['%s' % dimension.cid] = t_dimension
            search_arguments[dimension.cid] = t_dimension

        # 默认只显示,状态启用,并且不是基准测试或毕业测试的题目
        match_dimension = {'$and': [
            {'status': STATUS_SUBJECT_ACTIVE},
            {'category_use': {
                '$nin': [CATEGORY_SUBJECT_BENCHMARK, CATEGORY_SUBJECT_GRADUATION]}}
        ]}
        if dimension_dict:
            match_dimension['$and'].extend([{'dimension_dict.%s' % k: v} for k, v in dimension_dict.items()])

        subject_cid_list = await Subject.distinct('cid', match_dimension)
        if subject_cid_list:
            match_dict['subject_cid'] = {'$in': subject_cid_list}

        query_params = {}
        s_province = self.get_argument('province', '')
        if s_province:
            query_params['province_code'] = s_province
        search_arguments['province'] = s_province

        s_city = self.get_argument('city', '')
        if s_city:
            query_params['city_code'] = s_city
        search_arguments['city'] = s_city

        s_age_group = self.get_argument('age_group', '')
        if s_age_group:
            query_params['age_group'] = int(s_age_group)
        search_arguments['age_group'] = s_age_group

        s_gender = self.get_argument('gender', '')
        if s_gender:
            query_params['gender'] = int(s_gender)
        search_arguments['gender'] = s_gender

        s_education = self.get_argument('education', '')
        if s_education:
            query_params['education'] = int(s_education)
        search_arguments['education'] = s_education

        manage_stage = MatchStage(match_dict)
        query_stage = MatchStage(query_params)
        group_stage = GroupStage('subject_cid', t_total={'$sum': '$total'}, t_correct={'$sum': '$correct'})
        project_stage = ProjectStage(
            total='$t_total', correct='$t_correct',
            percent={
                '$cond': {
                    'if': {'$eq': ['$t_total', 0]},
                    'then': 0,
                    'else': {
                        '$divide': ['$t_correct', '$t_total']
                    }
                }
            }
        )

        s_lookup_stage = LookupStage(Subject, '_id', 'cid', 'subject_list')
        so_lookup_stage = LookupStage(SubjectOption, '_id', 'subject_cid', 'subject_option_list')

        not_null_match = MatchStage({
            'subject_list': {'$ne': []},
            'subject_option_list': {'$ne': []}
        })

        final_project = ProjectStage(**{
            'custom_code': {'$arrayElemAt': ['$subject_list.custom_code', 0]},
            'code': {'$arrayElemAt': ['$subject_list.code', 0]},
            'title': {'$arrayElemAt': ['$subject_list.title', 0]},
            'subject_list': '$subject_list',
            'subject_option_list': '$subject_option_list',
            'dimension': {'$arrayElemAt': ['$subject_list.dimension_dict', 0]},
            'total': '$total',
            'correct': '$correct',
            'percent': '$percent'
        })

        sort_list = []
        sort = self.get_argument('sort')
        if sort:
            sort = int(sort)
        else:
            sort = 1

        search_arguments['sort'] = sort
        if sort == 1:
            sort_list.append('-percent')
        elif sort == 2:
            sort_list.append('percent')
        elif sort == 3:
            sort_list.append('-total')
        elif sort == 4:
            sort_list.append('total')
        elif sort == 5:
            sort_list.append('-code')
        elif sort == 6:
            sort_list.append('code')
        # 分页 START
        per_page_quantity = int(self.get_argument('per_page_quantity', 50))
        to_page_num = int(self.get_argument('page', 1))

        page_url = '%s?page=$page&per_page_quantity=%s' % (
            self.reverse_url("backoffice_reports_subject_analysis_list"),
            per_page_quantity) + '&sort=%s&' % sort + '&'.join(
            ['='.join((key, str(search_arguments.get(key)))) for key in sorted(search_arguments.keys())])
        paging = Paging(
            page_url, MemberSubjectStatistics, current_page=to_page_num, items_per_page=per_page_quantity,
            pipeline_stages=[manage_stage, query_stage, group_stage, project_stage, s_lookup_stage, so_lookup_stage,
                             not_null_match, final_project],
            sort=sort_list)
        await paging.pager()
        for temp_item in paging.page_items:
            option_dict = dict()
            if not temp_item.subject_option_list:
                pass
            else:
                for opt in temp_item.subject_option_list:
                    option_dict[opt.sort] = {'title': opt.title, 'correct': opt.correct}

            setattr(temp_item, 'option_dict', option_dict)

        return locals()
    async def post(self):
        """
        :return:
        """
        time = datetime.datetime.now()
        export_time = datetime2str(time, date_format='%Y-%m-%d %H:%M:%S')
        order = self.get_argument('order', '')
        chart_name = self.get_argument('chart_name', '')
        #  答题活跃度的数据
        data_dict = self.get_argument('data', '')
        data_list = []
        condition_title_list = []
        #  没有筛选条件的总体活跃度
        if data_dict:
            data_dict = json.loads(data_dict)
            condition_title_list = list(data_dict.keys())
            data_list = list(data_dict.values())
            #  有筛选条件的数据
            if '总体活跃度' in condition_title_list:
                position = condition_title_list.index('总体活跃度')
            else:
                position = data_list.index(max(sum(data_list)))
            if len(data_list) > position:
                condition_title_list.remove(condition_title_list[position])
        # 可管理的省份名称
        manage_region_title_list = []
        manage_region_code_list = self.current_user.manage_region_code_list
        if manage_region_code_list:
            for manage_region_code in manage_region_code_list:
                manage_region_province = await AdministrativeDivision.find_one(
                    {
                        'code': manage_region_code,
                        'record_flag': 1,
                        'parent_code': None
                    })
                if manage_region_province:
                    manage_region_title_list.append(
                        manage_region_province.title)
                else:
                    manage_region_city = await AdministrativeDivision.find_one(
                        {
                            'code': manage_region_code,
                            'record_flag': 1
                        })
                    province = await manage_region_city.parent
                    manage_region_title_list.append(province.title)
        try:
            output = BytesIO()
            workbook = Workbook(output, {'in_memory': True})
            title_format = workbook.add_format({
                'font_size': 12,
                'bold': '1',
                'valign': 'vcenter',
                'align': 'center',
                'font_name': 'Microsoft YaHei',
                'border': 1
            })
            data_format = workbook.add_format({
                'valign': 'vcenter',
                'align': 'left',
                'font_name': 'Microsoft YaHei',
                'border': 1
            })
            data_center_format = workbook.add_format({
                'valign': 'vcenter',
                'align': 'center',
                'font_name': 'Microsoft YaHei',
                'border': 1
            })
            if order == "1" and chart_name:
                pass
            #  公民科学素质学习答题趋势统计
            if order == '2' and chart_name:
                answer_tendency_date = self.get_argument(
                    'answer_tendency_date', '')
                answer_tendency_data = self.get_argument(
                    'answer_tendency_data', '')
                answer_tendency_data = json.loads(answer_tendency_data)
                answer_tendency_date = json.loads(answer_tendency_date)
                answer_tendency_date = deal_with_data(answer_tendency_date)
                if answer_tendency_date and answer_tendency_data:
                    worksheet = workbook.add_worksheet(name=chart_name)
                    worksheet.merge_range(1,
                                          2,
                                          1,
                                          5,
                                          '导出时间' + export_time,
                                          cell_format=title_format)
                    worksheet.merge_range(0,
                                          0,
                                          0,
                                          2,
                                          chart_name,
                                          cell_format=title_format)
                    worksheet.merge_range(1,
                                          0,
                                          1,
                                          1,
                                          '筛选条件',
                                          cell_format=title_format)
                    worksheet.merge_range(2,
                                          0,
                                          3,
                                          1,
                                          '总体答题次数',
                                          cell_format=title_format)
                    worksheet.write_string(2, 2, '日期', cell_format=data_format)
                    worksheet.write_string(3,
                                           2,
                                           '答题次数',
                                           cell_format=data_format)
                    answer_tendency_title = list(answer_tendency_data.keys())
                    answer_data_list = list(answer_tendency_data.values())
                    #  有筛选条件的数据
                    if '总体答题次数' in answer_tendency_title:
                        position = answer_tendency_title.index('总体答题次数')
                    else:
                        position = answer_data_list.index(
                            max(sum(answer_data_list)))
                    if len(answer_data_list) > position:
                        answer_tendency_title.remove(
                            answer_tendency_title[position])
                    for index, date in enumerate(answer_tendency_date):
                        worksheet.write_string(2, 3 + index, date)
                        if '总体答题次数' in list(answer_tendency_data.keys()):
                            worksheet.write_string(
                                3,
                                3 + index,
                                str(answer_tendency_data['总体答题次数'][index]),
                                cell_format=data_center_format)
                        else:
                            max_data_list = max(sum(answer_data_list))
                            worksheet.write_string(
                                3,
                                2 + order,
                                max_data_list[index - 1],
                                cell_format=data_center_format)
                    if answer_tendency_title:
                        #  有筛选条件得数据写入到excel
                        for index, condition_title in enumerate(
                                answer_tendency_title):
                            worksheet.merge_range(2 * (index + 2) + index + 1,
                                                  0,
                                                  2 * (index + 2) + 2 + index,
                                                  1,
                                                  condition_title,
                                                  cell_format=title_format)
                            worksheet.write_string(2 * (index + 2) + index + 1,
                                                   2,
                                                   '日期',
                                                   cell_format=data_format)
                            worksheet.write_string(2 * (index + 2) + index + 2,
                                                   2,
                                                   '答题次数',
                                                   cell_format=data_format)
                            for condition_index, data in enumerate(
                                    answer_tendency_data[condition_title]):
                                worksheet.write_string(2 * (index + 2) +
                                                       index + 2,
                                                       2 + condition_index + 1,
                                                       str(data),
                                                       cell_format=data_format)
                                worksheet.write_string(
                                    2 * (index + 2) + index + 1,
                                    2 + condition_index + 1,
                                    answer_tendency_date[condition_index],
                                    cell_format=data_format)
            if order == '3' and chart_name and data_dict:
                #  活跃度的导出excel
                worksheet = workbook.add_worksheet(name=chart_name)
                for order in range(1, 31):
                    worksheet.write_string(2,
                                           2 + order,
                                           str(order),
                                           cell_format=data_center_format)
                    if '总体活跃度' in list(data_dict.keys()):
                        worksheet.write_string(3,
                                               2 + order,
                                               data_dict['总体活跃度'][order - 1] +
                                               '%',
                                               cell_format=data_center_format)
                    else:
                        max_data_list = max(sum(data_list))
                        worksheet.write_string(3,
                                               2 + order,
                                               max_data_list[order - 1] + '%',
                                               cell_format=data_center_format)
                worksheet.merge_range(1,
                                      2,
                                      1,
                                      5,
                                      '导出时间' + export_time,
                                      cell_format=title_format)
                worksheet.merge_range(0,
                                      0,
                                      0,
                                      2,
                                      chart_name,
                                      cell_format=title_format)
                worksheet.merge_range(1,
                                      0,
                                      1,
                                      1,
                                      '筛选条件',
                                      cell_format=title_format)
                worksheet.merge_range(2,
                                      0,
                                      3,
                                      1,
                                      '总体活跃度(%)',
                                      cell_format=title_format)
                worksheet.write_string(2, 2, '活跃天数', cell_format=data_format)
                worksheet.write_string(3, 2, '活跃度(%)', cell_format=data_format)
                if condition_title_list:
                    #  有筛选条件得数据写入到excel
                    for index, condition_title in enumerate(
                            condition_title_list):
                        worksheet.merge_range(2 * (index + 2) + index + 1,
                                              0,
                                              2 * (index + 2) + 2 + index,
                                              1,
                                              condition_title,
                                              cell_format=title_format)
                        worksheet.write_string(2 * (index + 2) + index + 1,
                                               2,
                                               '活跃天数',
                                               cell_format=data_format)
                        for order in range(1, 31):
                            worksheet.write_string(2 * (index + 2) + index + 1,
                                                   2 + order,
                                                   str(order),
                                                   cell_format=data_format)
                        worksheet.write_string(2 * (index + 2) + index + 2,
                                               2,
                                               '活跃度(%)',
                                               cell_format=data_format)
                        for condition_index, data in enumerate(
                                data_dict[condition_title]):
                            worksheet.write_string(2 * (index + 2) + index + 2,
                                                   2 + condition_index + 1,
                                                   data,
                                                   cell_format=data_format)
            #  每日参与top5的导出数据
            if order == '4' and chart_name:
                #  每日参与top_5的数据
                stat_category = self.get_argument('stat_category', '')
                top_five_data_list = self.get_argument('top_five_data', '')
                if top_five_data_list:
                    top_five_data_list = json.loads(top_five_data_list)
                date_list = self.get_argument('date', '')
                if date_list:
                    date_list = json.loads(date_list)
                date_list = deal_with_data(date_list)
                if stat_category and top_five_data_list and date_list:
                    data_series_dict, province_and_city_dict = deal_with_data_excel(
                        date_list, top_five_data_list)
                    #  {'江苏': ['南京', '苏州‘], '浙江':['杭州']}
                    total_data_dict = {}
                    #  某个省下面的所有的市 报表中有数据的市
                    city_title_list = []
                    #  报表中省的列表
                    province_title_list = []
                    #  省和市的列表
                    total_title = []
                    show_name_list = []
                    show_data_list = []
                    #  需要添加undefined的省份
                    need_append_undifend_province_list = []
                    for top_five_data in top_five_data_list:
                        temple_data = []
                        temple_name = []
                        for index, data in enumerate(top_five_data):
                            total_title.append(data['name'])
                            if data['name'] and data['value']:
                                temple_name.append(
                                    {date_list[index]: data['name']})
                                temple_data.append(
                                    {date_list[index]: data['value']})
                        show_name_list.append(temple_name)
                        show_data_list.append(temple_data)
                    total_title = [title for title in total_title if title]
                    for total in total_title:
                        if ' ' in total:
                            province_title_list.append(total.split(' ')[0])
                            city_title_list.append(total.split(' ')[1])
                            if total.split(' ')[1] == 'undefined':
                                need_append_undifend_province_list.append(
                                    total.split(' ')[0])
                    province_title_list = list(set(province_title_list))
                    city_title_list = list(
                        set([city for city in city_title_list if city]))
                    for province_title in province_title_list:
                        total_data_dict[province_title] = city_title_list
                        province = await AdministrativeDivision.find_one({
                            'title':
                            province_title,
                            'parent_code':
                            None
                        })
                        if province:
                            belong_provice_city_title_list = await AdministrativeDivision.distinct(
                                'title', {'parent_code': province.code})
                            total_data_dict[province_title] = list(
                                set(city_title_list)
                                & set(belong_provice_city_title_list))
                            total_data_dict[province_title] = list(
                                set(city_title_list)
                                & set(belong_provice_city_title_list))
                    #  各个省的市的个数
                    length_list = []
                    for index, city_title in enumerate(
                            list(total_data_dict.values())):
                        if list(total_data_dict.keys()
                                )[index] in need_append_undifend_province_list:
                            total_data_dict.get(
                                list(total_data_dict.keys())[index]).append(
                                    'undefined')
                    for index, city_title in enumerate(
                            list(total_data_dict.values())):
                        if city_title:
                            length_list.append(len(city_title))
                    province_length = sum(length_list) + len(
                        list(total_data_dict.values()))
                    if province_length == 0:
                        province_length = 10
                    worksheet = workbook.add_worksheet(name=chart_name + '(' +
                                                       stat_category + ')')
                    worksheet.merge_range(0,
                                          0,
                                          province_length,
                                          0,
                                          '每日参与' + stat_category,
                                          cell_format=data_format)
                    worksheet.merge_range(1,
                                          1,
                                          province_length,
                                          1,
                                          '导出时间: ' + export_time,
                                          cell_format=data_format)
                    worksheet.merge_range(0,
                                          2,
                                          0,
                                          4,
                                          '日期',
                                          cell_format=data_center_format)
                    for index, date in enumerate(date_list):
                        worksheet.write_string(0,
                                               5 + index,
                                               date,
                                               cell_format=data_format)
                    worksheet.merge_range(1,
                                          2,
                                          province_length,
                                          2,
                                          '省份',
                                          cell_format=data_center_format)
                    city_map = {}
                    province_map = {}
                    if total_data_dict:
                        choice_city_title_list = list(total_data_dict.values())
                        for index, data in enumerate(choice_city_title_list):
                            if index == 0:
                                worksheet.merge_range(
                                    1,
                                    3,
                                    1 + len(data),
                                    3,
                                    list(total_data_dict.keys())[index],
                                    cell_format=data_center_format)
                            else:
                                worksheet.merge_range(
                                    1 + sum(length_list[:index]) + index,
                                    3,
                                    sum(length_list[:index + 1]) + index + 1,
                                    3,
                                    list(total_data_dict.keys())[index],
                                    cell_format=data_center_format)

                            if index == 0:
                                for city_index, city in enumerate(data):
                                    if city == 'undefined':
                                        city = '_'
                                    worksheet.write_string(
                                        1,
                                        4,
                                        list(total_data_dict.keys())[index],
                                        cell_format=data_center_format)
                                    worksheet.write_string(
                                        2 + city_index,
                                        4,
                                        city,
                                        cell_format=data_center_format)
                                    worksheet.write_string(
                                        1, 5, '6666', cell_format=data_format)
                                    city_map[city] = 2 + city_index
                                    province_map[list(
                                        total_data_dict.keys())[index]] = 1
                                    Position(city, 2 + city_index, 4)
                                    Position(
                                        list(total_data_dict.keys())[index], 1,
                                        4)
                            else:
                                for city_index, city in enumerate(data):
                                    if city == 'undefined':
                                        city = '_'
                                    worksheet.write_string(
                                        sum(length_list[:index]) + index + 1,
                                        4,
                                        list(total_data_dict.keys())[index],
                                        cell_format=data_center_format)
                                    worksheet.write_string(
                                        sum(length_list[:index]) + index + 2 +
                                        city_index,
                                        4,
                                        city,
                                        cell_format=data_center_format)
                                    city_map[city] = sum(
                                        length_list[:index]
                                    ) + 2 + index + city_index
                                    province_map[list(
                                        total_data_dict.keys())[index]] = sum(
                                            length_list[:index]) + index + 1
                                    Position(
                                        city,
                                        sum(length_list[:index]) + 2 + index +
                                        city_index, 4)
                                    Position(
                                        list(total_data_dict.keys())[index],
                                        sum(length_list[:index]) + index + 1,
                                        4)
                        for index, data in enumerate(choice_city_title_list):
                            if index == 0:
                                for key, value in data_series_dict.items():
                                    if key.split(' ')[0] == 'undefined':
                                        position = Position(
                                            key.split(' ')[0], city_map['_'],
                                            4)
                                    else:
                                        position = Position(
                                            key.split(' ')[0],
                                            city_map[key.split(' ')[0]], 4)
                                    if position:
                                        order = date_list.index(
                                            key.split(' ')[1])
                                        worksheet.write_number(
                                            position.row, 5 + order,
                                            int(value))
                            else:
                                for key, value in data_series_dict.items():
                                    if key.split(' ')[0] == 'undefined':
                                        position = Position(
                                            key.split(' ')[0], city_map['_'],
                                            4)
                                    else:
                                        position = Position(
                                            key.split(' ')[0],
                                            city_map[key.split(' ')[0]], 4)
                                    if position:
                                        order = date_list.index(
                                            key.split(' ')[1])
                                        worksheet.write_number(
                                            position.row, 5 + order,
                                            int(value))

                        for order, date in enumerate(date_list):
                            for index, value in enumerate(
                                    list(province_map.values())):
                                if index != len(list(
                                        province_map.values())) - 1:
                                    first = value + 2
                                    end = list(province_map.values())[index +
                                                                      1]
                                else:
                                    first = list(
                                        province_map.values())[index] + 2
                                    end = province_length + 1
                                col = 5 + order
                                col = convert(col)
                                first = col + str(first)
                                end = col + str(end)
                                worksheet.write_formula(
                                    value, 5 + order,
                                    '=SUM(' + first + ':' + end + ')')
            #  学习近况的导出数据
            if order == '1' and chart_name:
                #  取前一天凌晨12点之前的数据
                time_match = get_yesterday()
                time_match_stage = MatchStage(
                    {'updated_dt': {
                        '$lt': time_match
                    }})
                province_code_list, city_code_list, _ = await do_different_administrative_division2(
                    self.current_user.manage_region_code_list)
                month_stage_list = []
                member_stage_list = []
                accuracy_stage_list = []
                if province_code_list:
                    month_stage_list.append(
                        MatchStage(
                            {'province_code': {
                                '$in': province_code_list
                            }}))
                    member_stage_list.append(
                        MatchStage(
                            {'province_code': {
                                '$in': province_code_list
                            }}))
                    accuracy_stage_list.append(
                        MatchStage(
                            {'province_code': {
                                '$in': province_code_list
                            }}))
                if city_code_list:
                    month_stage_list.append(
                        MatchStage({'city_code': {
                            '$in': city_code_list
                        }}))
                    member_stage_list.append(
                        MatchStage({'city_code': {
                            '$in': city_code_list
                        }}))
                    accuracy_stage_list.append(
                        MatchStage({'city_code': {
                            '$in': city_code_list
                        }}))
                add_fields_stage = AddFieldsStage(
                    t_accuracy={
                        '$cond': {
                            'if': {
                                '$eq': ['$t_total', 0]
                            },
                            'then': 0,
                            'else': {
                                '$divide': ['$t_correct', '$t_total']
                            }
                        }
                    })
                member_stage_list.append(
                    MatchStage({'status': STATUS_USER_ACTIVE}))

                month_group_stage = GroupStage(
                    {
                        'province_code': '$province_code',
                        'created_dt': {
                            "$dateToString": {
                                "format": "%Y-%m",
                                "date": "$created_dt"
                            }
                        }
                    },
                    sum={'$sum': '$learn_times'})
                lookup_stage = LookupStage(AdministrativeDivision, '_id',
                                           'post_code', 'ad_list')
                member_group_stage = GroupStage(
                    {
                        'province_code': '$province_code',
                        'created_dt': {
                            "$dateToString": {
                                "format": "%Y-%m",
                                "date": "$created_dt"
                            }
                        }
                    },
                    sum={'$sum': 1})
                accuracy_group_stage = GroupStage(
                    {
                        'province_code': '$province_code',
                        'created_dt': {
                            "$dateToString": {
                                "format": "%Y-%m",
                                "date": "$created_dt"
                            }
                        }
                    },
                    t_total={'$sum': '$total'},
                    t_correct={'$sum': '$correct'})
                group_stage = GroupStage('province_code',
                                         t_total={'$sum': '$total'},
                                         t_correct={'$sum': '$correct'})
                month_sort_stage = SortStage([('_id.created_dt', ASC)])
                #  次数
                month_stage_list.extend([
                    time_match_stage, month_group_stage, lookup_stage,
                    month_sort_stage
                ])
                #  人数
                member_stage_list.extend([
                    time_match_stage, member_group_stage, lookup_stage,
                    month_sort_stage
                ])
                accuracy_province_stage_list = copy.deepcopy(
                    accuracy_stage_list)
                accuracy_province_stage_list.extend([
                    time_match_stage, group_stage, lookup_stage,
                    add_fields_stage, month_sort_stage
                ])
                #  省和月份共同筛选的正确率
                accuracy_stage_list.extend([
                    time_match_stage, accuracy_group_stage, lookup_stage,
                    add_fields_stage, month_sort_stage
                ])
                #  只有省的正确率
                month_province_list = MemberLearningDayStatistics.aggregate(
                    month_stage_list)

                member_province_list = Member.aggregate(member_stage_list)
                accuracy_province_list = MemberSubjectStatistics.aggregate(
                    accuracy_stage_list)
                total_accuracy = MemberSubjectStatistics.aggregate(
                    accuracy_province_stage_list)
                month_province_dict = {}
                member_province_dict = {}
                accuracy_province_dict = {}
                date_list = []
                province_title_list = []
                province_map = {}
                member_date_list = []
                accuracy_date_list = []
                # 次数
                while await month_province_list.fetch_next:
                    month_province = month_province_list.next_object()
                    if month_province:
                        province_dt = month_province.id if month_province.id else '000000'
                        province = await AdministrativeDivision.find_one({
                            'code':
                            province_dt.get('province_code'),
                            'record_flag':
                            1,
                            'parent_code':
                            None
                        })
                        if province_dt.get('created_dt') not in date_list:
                            date_list.append(province_dt.get('created_dt'))
                        province_title = ''
                        if province:
                            province_title = province.title
                        province_title_list.append(province_title)
                        province_title_list = list(set(province_title_list))
                        dt = province_dt.get('created_dt')
                        month_province_dict[province_title + ' ' +
                                            dt] = month_province.sum
                #  人数
                while await member_province_list.fetch_next:
                    member_province = member_province_list.next_object()
                    if member_province:
                        member_province_id = member_province.id if member_province.id else ''
                        province = await AdministrativeDivision.find_one({
                            'code':
                            member_province_id.get('province_code'),
                            'record_flag':
                            1,
                            'parent_code':
                            None
                        })
                        province_title = ''
                        if province:
                            province_title = province.title
                        dt = member_province_id.get('created_dt')
                        if member_province_id.get(
                                'created_dt') not in member_date_list:
                            member_date_list.append(
                                member_province_id.get('created_dt'))
                        member_province_dict[province_title + ' ' +
                                             dt] = member_province.sum
                #  正确率
                while await accuracy_province_list.fetch_next:
                    accuracy_province = accuracy_province_list.next_object()
                    if accuracy_province:
                        accuracy_province_id = accuracy_province.id if accuracy_province.id else ''
                        province = await AdministrativeDivision.find_one({
                            'code':
                            accuracy_province_id.get('province_code'),
                            'record_flag':
                            1,
                            'parent_code':
                            None
                        })
                        province_title = ''
                        if province:
                            province_title = province.title
                        dt = accuracy_province_id.get('created_dt')
                        if accuracy_province_id.get(
                                'created_dt') not in accuracy_date_list:
                            accuracy_date_list.append(
                                accuracy_province_id.get('created_dt'))
                        if accuracy_province.t_total == 0:
                            accuracy_province_dict[province_title + ' ' +
                                                   dt] = 0
                        else:
                            accuracy_province_dict[
                                province_title + ' ' +
                                dt] = (accuracy_province.t_correct /
                                       accuracy_province.t_total) * 100
                province_dict = {}
                #  总的题目
                total_quantity_list = []
                #  总的答对题目
                correct_quantity_list = []
                #  总的正确率
                while await total_accuracy.fetch_next:
                    province_stat = total_accuracy.next_object()
                    if province_stat:
                        province_code = province_stat.id if province_stat.id else '000000'
                        total = province_stat.t_total if province_stat.t_total else 0
                        correct = province_stat.t_correct if province_stat.t_correct else 0
                        province = await AdministrativeDivision.find_one({
                            'code':
                            province_code,
                            'record_flag':
                            1,
                            'parent_code':
                            None
                        })
                        province_title = ''
                        if province:
                            province_title = province.title
                        province_dict[province_title] = round(
                            correct / total * 100 if total > 0 else 0, 2)
                        total_quantity_list.append(total)
                        correct_quantity_list.append(correct)
                #  次数的sheet
                print(date_list)
                worksheet = workbook.add_worksheet(name='次数')
                worksheet.merge_range(0,
                                      0,
                                      0,
                                      len(date_list) + 1,
                                      '公民参与科学素质学习状况',
                                      cell_format=title_format)
                worksheet.write_string(1,
                                       0,
                                       '已累计次数',
                                       cell_format=data_center_format)
                worksheet.merge_range(1,
                                      2,
                                      1,
                                      len(date_list) + 1,
                                      '导出时间:' + export_time,
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      0,
                                      3,
                                      0,
                                      '省份',
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      1,
                                      3,
                                      1,
                                      '人数汇总(人)',
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      2,
                                      2,
                                      6,
                                      '每月新增人数(人)',
                                      cell_format=data_center_format)
                insert_excel(date_list, worksheet, data_center_format,
                             province_title_list, province_map,
                             month_province_dict)
                #  人数的sheet
                worksheet = workbook.add_worksheet(name='人数')
                worksheet.merge_range(0,
                                      0,
                                      0,
                                      len(member_date_list) + 1,
                                      '公民参与科学素质学习状况',
                                      cell_format=title_format)
                worksheet.write_string(1,
                                       0,
                                       '已累计人数',
                                       cell_format=data_center_format)
                worksheet.merge_range(1,
                                      2,
                                      1,
                                      len(member_date_list) + 1,
                                      '导出时间:' + export_time,
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      0,
                                      3,
                                      0,
                                      '省份',
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      1,
                                      3,
                                      1,
                                      '人数汇总(人/次)',
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      2,
                                      2,
                                      6,
                                      '每月新增人数(人/次)',
                                      cell_format=data_center_format)
                insert_excel(member_date_list, worksheet, data_center_format,
                             province_title_list, province_map,
                             member_province_dict)
                #  正确率的sheet
                worksheet = workbook.add_worksheet(name='正确率')
                total_province_accuracy = round(
                    sum(correct_quantity_list) / sum(total_quantity_list) *
                    100, 2)
                worksheet.merge_range(0,
                                      0,
                                      0,
                                      len(date_list) + 1,
                                      '公民参与科学素质学习状况',
                                      cell_format=title_format)
                worksheet.merge_range(1,
                                      0,
                                      1,
                                      1,
                                      '总体正确率' + str(total_province_accuracy) +
                                      '%',
                                      cell_format=data_center_format)
                worksheet.merge_range(1,
                                      2,
                                      1,
                                      len(date_list) + 1,
                                      '导出时间:' + export_time,
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      0,
                                      3,
                                      0,
                                      '省份',
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      1,
                                      3,
                                      1,
                                      '正确率',
                                      cell_format=data_center_format)
                worksheet.merge_range(2,
                                      2,
                                      2,
                                      6,
                                      '每月正确率波动(%)',
                                      cell_format=data_center_format)
                for index, date in enumerate(accuracy_date_list):
                    worksheet.write_string(3,
                                           2 + index,
                                           date,
                                           cell_format=data_center_format)
                for index, province_title in enumerate(province_title_list):
                    worksheet.write_string(4 + index,
                                           0,
                                           province_title,
                                           cell_format=data_center_format)
                    worksheet.write_string(4 + index,
                                           1,
                                           str(province_dict[province_title]),
                                           cell_format=data_center_format)
                    province_map[province_title] = 4 + index
                for month_province, value in accuracy_province_dict.items():
                    value = round(value, 2)
                    position = Position(
                        month_province.split(' ')[0],
                        province_map[month_province.split(' ')[0]], 0)
                    order = accuracy_date_list.index(
                        month_province.split(' ')[1])
                    worksheet.write_string(position.row, 2 + order, str(value))
            workbook.close()
            self.set_header(
                'Content-Type',
                'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
            )
            self.set_header(
                'Content-Disposition',
                "attachment;filename*=utf-8''{}.xlsx".format(
                    quote(chart_name.encode('utf-8'))))
            self.write(output.getvalue())
            self.finish()
        except Exception:
            logger.error(traceback.format_exc())
Пример #30
0
    async def post(self):
        r_dict = {'code': 0, 'line': None}
        category = self.get_argument('category')
        if not category:
            return r_dict

        try:
            category = int(category)
            condition = self.get_argument('condition_value')
            x_axis = self.get_argument('xAxis', '')

            stats = None  # 统计结果

            if category == CATEGORY_MEMBER_LEARN_SUBJECT_WRONG:
                stats = await SubjectWrongViewedStatistics.aggregate(
                    stage_list=[
                        MatchStage(parse_condition(condition)),
                        GroupStage('count', sum={'$sum': 1}),
                        SortStage([('_id', ASC)]),
                        LimitStage(6)
                    ]).to_list(None)

            if category == CATEGORY_MEMBER_LEARN_SUBJECT_RESOLVING_VIEWED:
                stats = await SubjectResolvingViewedStatistics.aggregate(
                    stage_list=[
                        MatchStage(parse_condition(condition)),
                        GroupStage('member_cid', sum={'$sum': 1}),
                        GroupStage('sum', sum={'$sum': 1}),
                        SortStage([('_id', ASC)]),
                        LimitStage(6)
                    ]).to_list(None)

            if category == CATEGORY_MEMBER_LEARN_SUBJECT_RESOLVING_TREND:
                stats = await SubjectResolvingViewedStatistics.aggregate(
                    stage_list=[
                        MatchStage(parse_condition(condition)),
                        MatchStage({'wrong_count': {
                            '$gt': 0
                        }}),
                        GroupStage('wrong_count', sum={'$sum': 1}),
                        SortStage([('_id', ASC)]),
                        LimitStage(6)
                    ]).to_list(None)

            if category == CATEGORY_MEMBER_LEARN_SUBJECT_PERSONAL_CENTER:
                stats = await PersonalCenterViewedStatistics.aggregate(
                    stage_list=[
                        MatchStage(parse_condition(condition)),
                        GroupStage('count', sum={'$sum': 1}),
                        SortStage([('_id', ASC)]),
                        LimitStage(6)
                    ]).to_list(None)

            member_count = sum([s.sum for s in stats])
            if not x_axis:
                x_axis_data = [s.id for s in stats]
                if member_count == 0:
                    series_data = [0] * len(x_axis_data)
                else:
                    series_data = [s.sum / member_count * 100 for s in stats]
            else:
                x_axis_data = json.loads(x_axis)
                stat_id_map = {s.id: s for s in stats}
                if member_count == 0:
                    series_data = [0] * len(x_axis_data)
                else:

                    series_data = [
                        stat_id_map[data.get('value')].sum / member_count *
                        100 if data.get('value') in stat_id_map else 0
                        for data in x_axis_data
                    ]

            r_dict = {
                'code': 1,
                'line': {
                    'xAxisData': x_axis_data,
                    'seriesData': series_data
                }
            }
        except Exception:
            logger.error(traceback.format_exc())
        return r_dict