Пример #1
0
    def __init__(self, sim, num_threads, parameters):
        Model.__init__(self, sim, num_threads, parameters)
        # Load components
        CortexExcL4 = load_component(self.parameters.l4_cortex_exc.component)
        CortexInhL4 = load_component(self.parameters.l4_cortex_inh.component)

        RetinaLGN = load_component(self.parameters.retina_lgn.component)
      
        # Build and instrument the network
        self.visual_field = VisualRegion(location_x=self.parameters.visual_field.centre[0],location_y=self.parameters.visual_field.centre[1],size_x=self.parameters.visual_field.size[0],size_y=self.parameters.visual_field.size[1])
        self.input_layer = RetinaLGN(self, self.parameters.retina_lgn.params)
        cortex_exc_l4 = CortexExcL4(self, self.parameters.l4_cortex_exc.params)
        cortex_inh_l4 = CortexInhL4(self, self.parameters.l4_cortex_inh.params)

        GaborConnector(self,self.input_layer.sheets['X_ON'],self.input_layer.sheets['X_OFF'],cortex_exc_l4,self.parameters.l4_cortex_exc.AfferentConnection,'V1AffConnection')
        GaborConnector(self,self.input_layer.sheets['X_ON'],self.input_layer.sheets['X_OFF'],cortex_inh_l4,self.parameters.l4_cortex_inh.AfferentConnection,'V1AffInhConnection')

        # initialize projections
        ModularSingleWeightProbabilisticConnector(self,'V1L4ExcL4ExcConnectionRand',cortex_exc_l4,cortex_exc_l4,self.parameters.l4_cortex_exc.L4ExcL4ExcConnectionRand).connect()
        ModularSingleWeightProbabilisticConnector(self,'V1L4ExcL4InhConnectionRand',cortex_exc_l4,cortex_inh_l4,self.parameters.l4_cortex_exc.L4ExcL4InhConnectionRand).connect()
        ModularSingleWeightProbabilisticConnector(self,'V1L4InhL4ExcConnectionRand',cortex_inh_l4,cortex_exc_l4,self.parameters.l4_cortex_inh.L4InhL4ExcConnectionRand).connect()
        ModularSingleWeightProbabilisticConnector(self,'V1L4InhL4InhConnectionRand',cortex_inh_l4,cortex_inh_l4,self.parameters.l4_cortex_inh.L4InhL4InhConnectionRand).connect()

        # initialize projections
        ModularSamplingProbabilisticConnector(self,'V1L4ExcL4ExcConnection',cortex_exc_l4,cortex_exc_l4,self.parameters.l4_cortex_exc.L4ExcL4ExcConnection).connect()
        ModularSamplingProbabilisticConnector(self,'V1L4ExcL4InhConnection',cortex_exc_l4,cortex_inh_l4,self.parameters.l4_cortex_exc.L4ExcL4InhConnection).connect()
        ModularSamplingProbabilisticConnector(self,'V1L4InhL4ExcConnection',cortex_inh_l4,cortex_exc_l4,self.parameters.l4_cortex_inh.L4InhL4ExcConnection).connect()
        ModularSamplingProbabilisticConnector(self,'V1L4InhL4InhConnection',cortex_inh_l4,cortex_inh_l4,self.parameters.l4_cortex_inh.L4InhL4InhConnection).connect()
Пример #2
0
    def __init__(self, sim, num_threads, parameters):
        Model.__init__(self, sim, num_threads, parameters)
        # Load components
        CortexExcL4 = load_component(
            self.parameters.sheets.l4_cortex_exc.component)
        CortexInhL4 = load_component(
            self.parameters.sheets.l4_cortex_inh.component)
        if not self.parameters.only_afferent and self.parameters.l23:
            CortexExcL23 = load_component(
                self.parameters.sheets.l23_cortex_exc.component)
            CortexInhL23 = load_component(
                self.parameters.sheets.l23_cortex_inh.component)

        RetinaLGN = load_component(self.parameters.sheets.retina_lgn.component)

        # Build and instrument the network
        self.visual_field = VisualRegion(
            location_x=self.parameters.visual_field.centre[0],
            location_y=self.parameters.visual_field.centre[1],
            size_x=self.parameters.visual_field.size[0],
            size_y=self.parameters.visual_field.size[1],
        )
        self.input_layer = RetinaLGN(self,
                                     self.parameters.sheets.retina_lgn.params)
        cortex_exc_l4 = CortexExcL4(
            self, self.parameters.sheets.l4_cortex_exc.params)
        cortex_inh_l4 = CortexInhL4(
            self, self.parameters.sheets.l4_cortex_inh.params)

        if not self.parameters.only_afferent and self.parameters.l23:
            cortex_exc_l23 = CortexExcL23(
                self, self.parameters.sheets.l23_cortex_exc.params)
            cortex_inh_l23 = CortexInhL23(
                self, self.parameters.sheets.l23_cortex_inh.params)

        # initialize afferent layer 4 projections
        GaborConnector(
            self,
            self.input_layer.sheets["X_ON"],
            self.input_layer.sheets["X_OFF"],
            cortex_exc_l4,
            self.parameters.sheets.l4_cortex_exc.AfferentConnection,
            "V1AffConnection",
        )
        GaborConnector(
            self,
            self.input_layer.sheets["X_ON"],
            self.input_layer.sheets["X_OFF"],
            cortex_inh_l4,
            self.parameters.sheets.l4_cortex_inh.AfferentConnection,
            "V1AffInhConnection",
        )

        # initialize lateral layer 4 projections
        if not self.parameters.only_afferent:

            ModularSamplingProbabilisticConnectorAnnotationSamplesCount(
                self,
                "V1L4ExcL4ExcConnection",
                cortex_exc_l4,
                cortex_exc_l4,
                self.parameters.sheets.l4_cortex_exc.L4ExcL4ExcConnection,
            ).connect()
            ModularSamplingProbabilisticConnectorAnnotationSamplesCount(
                self,
                "V1L4ExcL4InhConnection",
                cortex_exc_l4,
                cortex_inh_l4,
                self.parameters.sheets.l4_cortex_exc.L4ExcL4InhConnection,
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                "V1L4InhL4ExcConnection",
                cortex_inh_l4,
                cortex_exc_l4,
                self.parameters.sheets.l4_cortex_inh.L4InhL4ExcConnection,
            ).connect()
            ModularSamplingProbabilisticConnector(
                self,
                "V1L4InhL4InhConnection",
                cortex_inh_l4,
                cortex_inh_l4,
                self.parameters.sheets.l4_cortex_inh.L4InhL4InhConnection,
            ).connect()

            if self.parameters.l23:

                # initialize afferent layer 4 to layer 2/3 projection
                ModularSamplingProbabilisticConnector(
                    self,
                    "V1L4ExcL23ExcConnection",
                    cortex_exc_l4,
                    cortex_exc_l23,
                    self.parameters.sheets.l23_cortex_exc.
                    L4ExcL23ExcConnection,
                ).connect()
                ModularSamplingProbabilisticConnector(
                    self,
                    "V1L4ExcL23InhConnection",
                    cortex_exc_l4,
                    cortex_inh_l23,
                    self.parameters.sheets.l23_cortex_inh.
                    L4ExcL23InhConnection,
                ).connect()

                ModularSamplingProbabilisticConnector(
                    self,
                    "V1L23ExcL23ExcConnection",
                    cortex_exc_l23,
                    cortex_exc_l23,
                    self.parameters.sheets.l23_cortex_exc.
                    L23ExcL23ExcConnection,
                ).connect()
                ModularSamplingProbabilisticConnector(
                    self,
                    "V1L23ExcL23InhConnection",
                    cortex_exc_l23,
                    cortex_inh_l23,
                    self.parameters.sheets.l23_cortex_exc.
                    L23ExcL23InhConnection,
                ).connect()
                ModularSamplingProbabilisticConnector(
                    self,
                    "V1L23InhL23ExcConnection",
                    cortex_inh_l23,
                    cortex_exc_l23,
                    self.parameters.sheets.l23_cortex_inh.
                    L23InhL23ExcConnection,
                ).connect()
                ModularSamplingProbabilisticConnector(
                    self,
                    "V1L23InhL23InhConnection",
                    cortex_inh_l23,
                    cortex_inh_l23,
                    self.parameters.sheets.l23_cortex_inh.
                    L23InhL23InhConnection,
                ).connect()
                if self.parameters.feedback:
                    ModularSamplingProbabilisticConnector(
                        self,
                        "V1L23ExcL4ExcConnection",
                        cortex_exc_l23,
                        cortex_exc_l4,
                        self.parameters.sheets.l23_cortex_exc.
                        L23ExcL4ExcConnection,
                    ).connect()
                    ModularSamplingProbabilisticConnector(
                        self,
                        "V1L23ExcL4InhConnection",
                        cortex_exc_l23,
                        cortex_inh_l4,
                        self.parameters.sheets.l23_cortex_exc.
                        L23ExcL4InhConnection,
                    ).connect()
Пример #3
0
    def __init__(self, sim, num_threads, parameters):
        Model.__init__(self, sim, num_threads, parameters)
        # Load components
        LGN = load_component(self.parameters.lgn.component)
        # Instance
        self.input_layer = LGN(self, self.parameters.lgn.params)
      
        # Build and instrument the network
        self.visual_field = VisualRegion(
            location_x=self.parameters.visual_field.centre[0],
            location_y=self.parameters.visual_field.centre[1],
            size_x=self.parameters.visual_field.size[0],
            size_y=self.parameters.visual_field.size[1]
        )

        # PROJECTIONS
        ########################################################

        # PGN
        if withPGN:
            # Load components
            PGN = load_component( self.parameters.pgn.component )
            # Instance
            pgn = PGN(self, self.parameters.pgn.params)

            # LGN-PGN
            ModularSamplingProbabilisticConnector(
                self,
                'LGN_PGN_ConnectionOn',                     # name
                self.input_layer.sheets['X_ON'],     # source
                pgn,                                        # target
                self.parameters.pgn.LGN_PGN_ConnectionOn    # params
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                'LGN_PGN_ConnectionOff',                    # name
                self.input_layer.sheets['X_OFF'],    # source
                pgn,                                        # target
                self.parameters.pgn.LGN_PGN_ConnectionOff   # params
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                'PGN_PGN_Connection',                       # name
                pgn,                                        # source
                pgn,                                        # target
                self.parameters.pgn.PGN_PGN_Connection      # params
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                'PGN_LGN_ConnectionOn',                     # name
                pgn,                                        # source
                self.input_layer.sheets['X_ON'],     # target
                self.parameters.pgn.PGN_LGN_ConnectionOn    # params
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                'PGN_LGN_ConnectionOff',                    # name
                pgn,                                        # source
                self.input_layer.sheets['X_OFF'],    # target
                self.parameters.pgn.PGN_LGN_ConnectionOff   # params
            ).connect()

        # V1
        if withV1: # CTC
            # Load components
            CortexExcL4 = load_component(self.parameters.l4_cortex_exc.component)
            CortexInhL4 = load_component(self.parameters.l4_cortex_inh.component)
            # Instance
            cortex_exc_l4 = CortexExcL4(self, self.parameters.l4_cortex_exc.params)
            cortex_inh_l4 = CortexInhL4(self, self.parameters.l4_cortex_inh.params)

            # ########################################################
            # THALAMO-CORTICAL
            # initialize afferent layer 4 projections
            GaborConnector(
                self,
                self.input_layer.sheets['X_ON'],
                self.input_layer.sheets['X_OFF'],
                cortex_exc_l4,                                      # target
                self.parameters.l4_cortex_exc.AfferentConnection,   # parameters
                'V1AffConnection'                                   # name
            )

            GaborConnector(
                self,
                self.input_layer.sheets['X_ON'],
                self.input_layer.sheets['X_OFF'],
                cortex_inh_l4,
                self.parameters.l4_cortex_inh.AfferentConnection,
                'V1AffInhConnection'
            )

            # ########################################################
            # CORTICO-CORTICAL
            # random lateral layer 4 projections
            ModularSingleWeightProbabilisticConnector(
                self,
                'V1L4ExcL4ExcConnectionRand',
                cortex_exc_l4,
                cortex_exc_l4,
                self.parameters.l4_cortex_exc.L4ExcL4ExcConnectionRand
            ).connect()

            ModularSingleWeightProbabilisticConnector(
                self,
                'V1L4ExcL4InhConnectionRand',
                cortex_exc_l4,
                cortex_inh_l4,
                self.parameters.l4_cortex_exc.L4ExcL4InhConnectionRand
            ).connect()
            
            ModularSingleWeightProbabilisticConnector(
                self,
                'V1L4InhL4ExcConnectionRand',
                cortex_inh_l4,
                cortex_exc_l4,
                self.parameters.l4_cortex_inh.L4InhL4ExcConnectionRand
            ).connect()
            
            ModularSingleWeightProbabilisticConnector(
                self,
                'V1L4InhL4InhConnectionRand',
                cortex_inh_l4,
                cortex_inh_l4,
                self.parameters.l4_cortex_inh.L4InhL4InhConnectionRand
            ).connect()

            # lateral layer 4 projections
            ModularSamplingProbabilisticConnector(
                self,
                'V1L4ExcL4ExcConnection',
                cortex_exc_l4,
                cortex_exc_l4,
                self.parameters.l4_cortex_exc.L4ExcL4ExcConnection
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                'V1L4ExcL4InhConnection',
                cortex_exc_l4,
                cortex_inh_l4,
                self.parameters.l4_cortex_exc.L4ExcL4InhConnection
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                'V1L4InhL4ExcConnection',
                cortex_inh_l4,
                cortex_exc_l4,
                self.parameters.l4_cortex_inh.L4InhL4ExcConnection
            ).connect()

            ModularSamplingProbabilisticConnector(
                self,
                'V1L4InhL4InhConnection',
                cortex_inh_l4,
                cortex_inh_l4,
                self.parameters.l4_cortex_inh.L4InhL4InhConnection
            ).connect()

            ########################################################
            # CORTICO-THALAMIC
            if withFeedback_CxLGN:
                ModularSamplingProbabilisticConnector(
                    self,
                    'V1EffConnectionOn',
                    cortex_exc_l4,
                    self.input_layer.sheets['X_ON'],
                    self.parameters.l4_cortex_exc.EfferentConnection_LGN
                ).connect()

                ModularSamplingProbabilisticConnector(
                    self,
                    'V1EffConnectionOff',
                    cortex_exc_l4,
                    self.input_layer.sheets['X_OFF'],
                    self.parameters.l4_cortex_exc.EfferentConnection_LGN
                ).connect()

                # GaborConnector(
                #     self,
                #     self.input_layer.sheets['X_ON'],
                #     self.input_layer.sheets['X_OFF'],
                #     cortex_exc_l4,                                      # source
                #     self.parameters.l4_cortex_exc.EfferentConnection,   # parameters
                #     'V1EffConnection'                                   # name
                # )


            if withFeedback_CxPGN and withPGN:
                ModularSamplingProbabilisticConnector(
                    self,
                    'V1EffConnectionPGN',
                    cortex_exc_l4,
                    pgn,
                    self.parameters.l4_cortex_exc.EfferentConnection_PGN
                ).connect()
Пример #4
0
    def __init__(self, sim, num_threads, parameters):
        Model.__init__(self, sim, num_threads, parameters)
        # Load components
        CortexExcL4 = load_component(
            self.parameters.sheets.l4_cortex_exc.component)
        CortexInhL4 = load_component(
            self.parameters.sheets.l4_cortex_inh.component)

        if not self.parameters.only_afferent and self.parameters.l23:
            CortexExcL23 = load_component(
                self.parameters.sheets.l23_cortex_exc.component)
            CortexInhL23 = load_component(
                self.parameters.sheets.l23_cortex_inh.component)

        RetinaLGN = load_component(self.parameters.sheets.retina_lgn.component)

        # Build and instrument the network
        self.visual_field = VisualRegion(
            location_x=self.parameters.visual_field.centre[0],
            location_y=self.parameters.visual_field.centre[1],
            size_x=self.parameters.visual_field.size[0],
            size_y=self.parameters.visual_field.size[1])

        self.input_layer = RetinaLGN(
            self, self.parameters.sheets.retina_lgn.params
        )  # 'pyNN.spiNNaker' has no attribute 'StepCurrentSource'

        cortex_exc_l4 = CortexExcL4(
            self, self.parameters.sheets.l4_cortex_exc.params
        )  # spiNNaker has no attribute EIF_cond_exp_isfa_ista ->Iz

        cortex_inh_l4 = CortexInhL4(
            self, self.parameters.sheets.l4_cortex_inh.params)

        if not self.parameters.only_afferent and self.parameters.l23:
            cortex_exc_l23 = CortexExcL23(
                self, self.parameters.sheets.l23_cortex_exc.params)
            cortex_inh_l23 = CortexInhL23(
                self, self.parameters.sheets.l23_cortex_inh.params)

        # initialize afferent layer 4 projections
        GaborConnector(self, self.input_layer.sheets['X_ON'],
                       self.input_layer.sheets['X_OFF'], cortex_exc_l4,
                       self.parameters.sheets.l4_cortex_exc.AfferentConnection,
                       'V1AffConnection')
        GaborConnector(self, self.input_layer.sheets['X_ON'],
                       self.input_layer.sheets['X_OFF'], cortex_inh_l4,
                       self.parameters.sheets.l4_cortex_inh.AfferentConnection,
                       'V1AffInhConnection')

        # initialize lateral layer 4 projections
        if not self.parameters.only_afferent:

            ModularSamplingProbabilisticConnectorAnnotationSamplesCount(
                self, 'V1L4ExcL4ExcConnection', cortex_exc_l4, cortex_exc_l4,
                self.parameters.sheets.l4_cortex_exc.L4ExcL4ExcConnection
            ).connect()
            ModularSamplingProbabilisticConnectorAnnotationSamplesCount(
                self, 'V1L4ExcL4InhConnection', cortex_exc_l4, cortex_inh_l4,
                self.parameters.sheets.l4_cortex_exc.L4ExcL4InhConnection
            ).connect()

            ModularSamplingProbabilisticConnector(
                self, 'V1L4InhL4ExcConnection', cortex_inh_l4, cortex_exc_l4,
                self.parameters.sheets.l4_cortex_inh.L4InhL4ExcConnection
            ).connect()
            ModularSamplingProbabilisticConnector(
                self, 'V1L4InhL4InhConnection', cortex_inh_l4, cortex_inh_l4,
                self.parameters.sheets.l4_cortex_inh.L4InhL4InhConnection
            ).connect()

            if self.parameters.l23:
                # if False:
                # initialize afferent layer 4 to layer 2/3 projection
                ModularSamplingProbabilisticConnector(
                    self, 'V1L4ExcL23ExcConnection', cortex_exc_l4,
                    cortex_exc_l23, self.parameters.sheets.l23_cortex_exc.
                    L4ExcL23ExcConnection).connect()
                ModularSamplingProbabilisticConnector(
                    self, 'V1L4ExcL23InhConnection', cortex_exc_l4,
                    cortex_inh_l23, self.parameters.sheets.l23_cortex_inh.
                    L4ExcL23InhConnection).connect()

                ModularSamplingProbabilisticConnector(
                    self, 'V1L23ExcL23ExcConnection', cortex_exc_l23,
                    cortex_exc_l23, self.parameters.sheets.l23_cortex_exc.
                    L23ExcL23ExcConnection).connect()
                ModularSamplingProbabilisticConnector(
                    self, 'V1L23ExcL23InhConnection', cortex_exc_l23,
                    cortex_inh_l23, self.parameters.sheets.l23_cortex_exc.
                    L23ExcL23InhConnection).connect()
                ModularSamplingProbabilisticConnector(
                    self, 'V1L23InhL23ExcConnection', cortex_inh_l23,
                    cortex_exc_l23, self.parameters.sheets.l23_cortex_inh.
                    L23InhL23ExcConnection).connect()
                ModularSamplingProbabilisticConnector(
                    self, 'V1L23InhL23InhConnection', cortex_inh_l23,
                    cortex_inh_l23, self.parameters.sheets.l23_cortex_inh.
                    L23InhL23InhConnection).connect()
                if self.parameters.feedback:
                    ModularSamplingProbabilisticConnector(
                        self, 'V1L23ExcL4ExcConnection', cortex_exc_l23,
                        cortex_exc_l4, self.parameters.sheets.l23_cortex_exc.
                        L23ExcL4ExcConnection).connect()
                    ModularSamplingProbabilisticConnector(
                        self, 'V1L23ExcL4InhConnection', cortex_exc_l23,
                        cortex_inh_l4, self.parameters.sheets.l23_cortex_exc.
                        L23ExcL4InhConnection).connect()