Пример #1
0
def test_lqr_linear_unbounded():
    npr.seed(1)

    n_batch = 2
    n_state, n_ctrl = 3, 4
    n_sc = n_state + n_ctrl
    T = 5
    C = npr.randn(T, n_batch, n_sc, n_sc)
    C = np.matmul(C.transpose(0, 1, 3, 2), C)
    c = npr.randn(T, n_batch, n_sc)
    alpha = 0.2
    R = np.tile(np.eye(n_state)+alpha*np.random.randn(n_state, n_state),
                (T, n_batch, 1, 1))
    S = np.tile(np.random.randn(n_state, n_ctrl), (T, n_batch, 1, 1))
    F = np.concatenate((R, S), axis=3)
    f = np.tile(npr.randn(n_state), (T, n_batch, 1))
    x_init = npr.randn(n_batch, n_state)
    # u_lower = -100.*npr.random((T, n_batch, n_ctrl))
    # u_upper = 100.*npr.random((T, n_batch, n_ctrl))
    u_lower = -1e4*np.ones((T, n_batch, n_ctrl))
    u_upper = 1e4*np.ones((T, n_batch, n_ctrl))

    tau_cp, objs_cp = lqr_cp(
        C[:,0], c[:,0], F[:,0], f[:,0], x_init[0], T, n_state, n_ctrl,
        None, None
    )
    tau_cp = tau_cp.T
    x_cp = tau_cp[:,:n_state]
    u_cp = tau_cp[:,n_state:]

    C, c, R, S, F, f, x_init, u_lower, u_upper = [
        Variable(torch.Tensor(x).double()) if x is not None else None
        for x in [C, c, R, S, F, f, x_init, u_lower, u_upper]
    ]

    dynamics = AffineDynamics(R[0,0], S[0,0], f[0,0])

    u_lqr = None
    x_lqr, u_lqr, objs_lqr = mpc.MPC(
        n_state, n_ctrl, T, u_lower, u_upper, u_lqr,
        lqr_iter=10,
        backprop=False,
        verbose=1,
        exit_unconverged=True,
    )(x_init, QuadCost(C, c), dynamics)
    tau_lqr = torch.cat((x_lqr, u_lqr), 2)
    tau_lqr = util.get_data_maybe(tau_lqr)
    npt.assert_allclose(tau_cp, tau_lqr[:,0].numpy(), rtol=1e-3)

    u_lqr = None
    x_lqr, u_lqr, objs_lqr = mpc.MPC(
        n_state, n_ctrl, T, None, None, u_lqr,
        lqr_iter=10,
        backprop=False,
        exit_unconverged=False,
    )(x_init, QuadCost(C, c), dynamics)
    tau_lqr = torch.cat((x_lqr, u_lqr), 2)
    tau_lqr = util.get_data_maybe(tau_lqr)
    npt.assert_allclose(tau_cp, tau_lqr[:,0].numpy(), rtol=1e-3)
Пример #2
0
    def get_frame(self, state):
        """ Get a frame to use in generating a video of the results """
        state = util.get_data_maybe(state.view(-1))
        assert len(state) == 5

        # Parse the current states from the state tensor
        x, dx, cos_th, sin_th, dth = torch.unbind(state)
        gravity, masscart, masspole, length = torch.unbind(self.params)

        th = np.arctan2(sin_th, cos_th)
        th_x = sin_th * length * 2
        th_y = cos_th * length * 2

        fig, ax = plt.subplots(figsize=(6, 4), dpi=300)
        plt.axis(
            'equal'
        )  # This will make the distances represented on the axes equal

        # Add a rectangle representing the cart
        cart = mpatches.Rectangle((x - 0.2, 0 - 0.1), 0.4, 0.2, zorder=3)
        ax.add_patch(cart)

        # Then, plot the pole
        ax.plot((x, x + th_x), (0, th_y), color='k', zorder=10)

        ax.set_xlim((-3., 3.))
        ax.set_ylim((-2., 2.))

        return fig, ax
Пример #3
0
    def forward_numpy(C, c, x_init, u_lower, u_upper, fc0b):
        _C, _c, _x_init, _u_lower, _u_upper, fc0b = [
            Variable(torch.Tensor(x).double(), requires_grad=True)
            if x is not None else None
            for x in [C, c, x_init, u_lower, u_upper, fc0b]
        ]

        dynamics.fcs[0].bias.data[:] = fc0b.data
        # dynamics.A.data[:] = fc0b.view(n_state, n_state).data
        u_init = None
        x_lqr, u_lqr, objs_lqr = mpc.MPC(
            n_state,
            n_ctrl,
            T,
            _u_lower,
            _u_upper,
            u_init,
            lqr_iter=40,
            verbose=-1,
            exit_unconverged=True,
            backprop=False,
            max_linesearch_iter=1,
            slew_rate_penalty=1.0,
        )(_x_init, QuadCost(_C, _c), dynamics)
        return util.get_data_maybe(u_lqr.view(-1)).numpy()
def test_lqr_linear_bounded_delta():
    npr.seed(1)

    n_batch = 2
    n_state, n_ctrl, T = 3, 4, 5
    n_sc = n_state + n_ctrl
    C = npr.randn(T, n_batch, n_sc, n_sc)
    C = np.matmul(C.transpose(0, 1, 3, 2), C)
    c = npr.randn(T, n_batch, n_sc)
    alpha = 0.2
    R = np.tile(
        np.eye(n_state) + alpha * np.random.randn(n_state, n_state),
        (T, n_batch, 1, 1))
    S = 0.01 * np.tile(np.random.randn(n_state, n_ctrl), (T, n_batch, 1, 1))
    F = np.concatenate((R, S), axis=3)
    f = np.tile(npr.randn(n_state), (T, n_batch, 1))
    x_init = npr.randn(n_batch, n_state)
    u_lower = -npr.random((T, n_batch, n_ctrl))
    u_upper = npr.random((T, n_batch, n_ctrl))

    tau_cp, objs_cp = lqr_cp(
        C[:, 0],
        c[:, 0],
        F[:, 0],
        f[:, 0],
        x_init[0],
        T,
        n_state,
        n_ctrl,
        u_lower[:, 0],
        u_upper[:, 0],
    )
    tau_cp = tau_cp.T
    x_cp = tau_cp[:, :n_state]
    u_cp = tau_cp[:, n_state:]

    C, c, R, S, F, f, x_init, u_lower, u_upper = [
        Variable(torch.Tensor(x).double()) if x is not None else None
        for x in [C, c, R, S, F, f, x_init, u_lower, u_upper]
    ]
    dynamics = AffineDynamics(R[0, 0], S[0, 0], f[0, 0])

    delta_u = 0.1
    x_lqr, u_lqr, objs_lqr = mpc.MPC(
        n_state,
        n_ctrl,
        T,
        x_init,
        u_lower,
        u_upper,
        lqr_iter=1,
        verbose=1,
        delta_u=delta_u,
        backprop=False,
        exit_unconverged=False,
    )(C, c, dynamics)

    u_lqr = util.get_data_maybe(u_lqr)
    assert torch.abs(u_lqr).max() <= delta_u
Пример #5
0
 def get_frame(self, state):
     state = util.get_data_maybe(state.view(-1))
     assert len(state) == 5
     x, dx, cos_th, sin_th, dth = torch.unbind(state)
     gravity, masscart, masspole, length = torch.unbind(self.params)
     th = np.arctan2(sin_th, cos_th)
     th_x = sin_th * length * 2
     th_y = cos_th * length * 2
     fig, ax = plt.subplots(figsize=(6, 6))
     ax.plot((x, x + th_x), (0, th_y), color='k')
     ax.set_xlim((-5., 5.))
     ax.set_ylim((-2., 2.))
     return fig, ax
Пример #6
0
    def get_frame(self, x):
        x = util.get_data_maybe(x.view(-1))
        assert len(x) == 3
        g, m, l = torch.unbind(self.params)
        l = l.data[0]

        cos_th, sin_th, dth = torch.unbind(x)
        th = np.arctan2(sin_th, cos_th)
        x = sin_th * l
        y = cos_th * l
        fig, ax = plt.subplots(figsize=(6, 6))
        ax.plot((0, x), (0, y), color='k')
        ax.set_xlim((-l * 1.2, l * 1.2))
        ax.set_ylim((-l * 1.2, l * 1.2))
        return fig, ax
Пример #7
0
    def forward_numpy(C, c, x_init, u_lower, u_upper, F):
        _C, _c, _x_init, _u_lower, _u_upper, F = [
            Variable(torch.Tensor(x).double()) if x is not None else None
            for x in [C, c, x_init, u_lower, u_upper, F]
        ]

        u_init = None
        x_lqr, u_lqr, objs_lqr = mpc.MPC(
            n_state, n_ctrl, T, _u_lower, _u_upper, u_init,
            lqr_iter=40,
            verbose=1,
            exit_unconverged=True,
            backprop=False,
            max_linesearch_iter=2,
        )(_x_init, QuadCost(_C, _c), LinDx(F))
        return util.get_data_maybe(u_lqr.view(-1)).numpy()
Пример #8
0
    def get_frame(self, x, ax=None):
        x = util.get_data_maybe(x.view(-1))
        assert len(x) == 3
        l = self.params[2].item()

        cos_th, sin_th, dth = torch.unbind(x)
        th = np.arctan2(sin_th, cos_th)
        x = sin_th * l
        y = cos_th * l

        if ax is None:
            fig, ax = plt.subplots(figsize=(6, 6))
        else:
            fig = ax.get_figure()

        ax.plot((0, x), (0, y), color='k')
        ax.set_xlim((-l * 1.2, l * 1.2))
        ax.set_ylim((-l * 1.2, l * 1.2))
        return fig, ax
Пример #9
0
 def get_frame(self, state):
     """ Get a frame to use in generating a video of the results """
     state = util.get_data_maybe(state.view(-1))
     
     # Check that we got the right number of states
     assert len(state) == 2
     
     # Parse the current states from the state tensor
     x, x_dot = torch.unbind(state)
     
     fig, ax = plt.subplots(figsize=(6, 4), dpi=300)
     plt.axis('equal') # This will make the distances represented on the axes equal
     
     # Add a rectangle representing the mass
     cart = mpatches.Rectangle((x - 0.2, 0 - 0.1), 0.4, 0.2, zorder=3)
     ax.add_patch(cart)
     
     ax.set_xlim((-3., 3.))
     ax.set_ylim((-2., 2.))
     
     return fig, ax