Пример #1
0
def ecp_int(cell, kpts=None):
    if rank == 0:
        comm.bcast(cell.dumps())
    else:
        cell = pgto.loads(comm.bcast(None))

    if kpts is None:
        kpts_lst = numpy.zeros((1,3))
    else:
        kpts_lst = numpy.reshape(kpts, (-1,3))

    ecpcell = gto.Mole()
    ecpcell._atm = cell._atm
    # append a fictitious s function to mimic the auxiliary index in pbc.incore.
    # ptr2last_env_idx to force PBCnr3c_fill_* function to copy the entire "env"
    ptr2last_env_idx = len(cell._env) - 1
    ecpbas = numpy.vstack([[0, 0, 1, 1, 0, ptr2last_env_idx, 0, 0],
                           cell._ecpbas]).astype(numpy.int32)
    ecpcell._bas = ecpbas
    ecpcell._env = cell._env
    # In pbc.incore _ecpbas is appended to two sets of cell._bas and the
    # fictitious s function.
    cell._env[AS_ECPBAS_OFFSET] = cell.nbas * 2 + 1
    cell._env[AS_NECPBAS] = len(cell._ecpbas)

    kptij_lst = numpy.hstack((kpts_lst,kpts_lst)).reshape(-1,2,3)
    nkpts = len(kpts_lst)
    if abs(kpts_lst).sum() < 1e-9:  # gamma_point
        dtype = numpy.double
    else:
        dtype = numpy.complex128
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    mat = numpy.zeros((nkpts,nao,nao), dtype=dtype)

    intor = cell._add_suffix('ECPscalar')
    int3c = incore.wrap_int3c(cell, ecpcell, intor, kptij_lst=kptij_lst)

    # shls_slice of auxiliary index (0,1) corresponds to the fictitious s function
    tasks = [(i, i+1, j, j+1, 0, 1) # shls_slice
             for i in range(cell.nbas) for j in range(i+1)]
    for shls_slice in mpi.work_stealing_partition(tasks):
        i0 = ao_loc[shls_slice[0]]
        i1 = ao_loc[shls_slice[1]]
        j0 = ao_loc[shls_slice[2]]
        j1 = ao_loc[shls_slice[3]]
        buf = numpy.empty((nkpts,i1-i0,j1-j0), dtype=dtype)
        mat[:,i0:i1,j0:j1] = int3c(shls_slice, buf)

    buf = mpi.reduce(mat)
    if rank == 0:
        mat = []
        for k, kpt in enumerate(kpts_lst):
            v = lib.unpack_tril(lib.pack_tril(buf[k]), lib.HERMITIAN)
            if abs(kpt).sum() < 1e-9:  # gamma_point:
                v = v.real
            mat.append(v)
        if kpts is None or numpy.shape(kpts) == (3,):
            mat = mat[0]
        return mat
Пример #2
0
def _assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap,
              log):
    t1 = (time.clock(), time.time())
    cell = mydf.cell
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    kptis = kptij_lst[:, 0]
    kptjs = kptij_lst[:, 1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    aosym_s2 = numpy.einsum('ix->i', abs(kptis - kptjs)) < 1e-9

    t2 = t1
    j3c_workers = numpy.zeros(len(j3c_jobs), dtype=int)
    #for job_id, ish0, ish1 in mpi.work_share_partition(j3c_jobs):
    for job_id, ish0, ish1 in mpi.work_stealing_partition(j3c_jobs):
        gen_int3c(job_id, ish0, ish1)
        t2 = log.alltimer_debug2('int j3c %d' % job_id, *t2)

        for k, kpt in enumerate(uniq_kpts):
            ft_fuse(job_id, k, ish0, ish1)
            t2 = log.alltimer_debug2('ft-fuse %d k %d' % (job_id, k), *t2)

        j3c_workers[job_id] = rank
    j3c_workers = mpi.allreduce(j3c_workers)
    log.debug2('j3c_workers %s', j3c_workers)
    t1 = log.timer_debug1('int3c and fuse', *t1)

    # Pass 2
    # Transpose 3-index tensor and save data in cderi_file
    feri = h5py.File(cderi_file, 'w')
    nauxs = [fswap['j2c/%d' % k].shape[0] for k, kpt in enumerate(uniq_kpts)]
    segsize = (max(nauxs) + mpi.pool.size - 1) // mpi.pool.size
    naux0 = rank * segsize
    for k, kptij in enumerate(kptij_lst):
        naux1 = min(nauxs[uniq_inverse[k]], naux0 + segsize)
        nrow = max(0, naux1 - naux0)
        if gamma_point(kptij):
            dtype = 'f8'
        else:
            dtype = 'c16'
        if aosym_s2[k]:
            nao_pair = nao * (nao + 1) // 2
        else:
            nao_pair = nao * nao
        feri.create_dataset('j3c/%d' % k, (nrow, nao_pair),
                            dtype,
                            maxshape=(None, nao_pair))

    def get_segs_loc(aosym):
        off0 = numpy.asarray([ao_loc[i0] for x, i0, i1 in j3c_jobs])
        off1 = numpy.asarray([ao_loc[i1] for x, i0, i1 in j3c_jobs])
        if aosym:  # s2
            dims = off1 * (off1 + 1) // 2 - off0 * (off0 + 1) // 2
        else:
            dims = (off1 - off0) * nao
        #dims = numpy.asarray([ao_loc[i1]-ao_loc[i0] for x,i0,i1 in j3c_jobs])
        dims = numpy.hstack(
            [dims[j3c_workers == w] for w in range(mpi.pool.size)])
        job_idx = numpy.hstack(
            [numpy.where(j3c_workers == w)[0] for w in range(mpi.pool.size)])
        segs_loc = numpy.append(0, numpy.cumsum(dims))
        segs_loc = [(segs_loc[j], segs_loc[j + 1])
                    for j in numpy.argsort(job_idx)]
        return segs_loc

    segs_loc_s1 = get_segs_loc(False)
    segs_loc_s2 = get_segs_loc(True)

    job_ids = numpy.where(rank == j3c_workers)[0]

    def load(k, p0, p1):
        naux1 = nauxs[uniq_inverse[k]]
        slices = [(min(i * segsize + p0, naux1), min(i * segsize + p1, naux1))
                  for i in range(mpi.pool.size)]
        segs = []
        for p0, p1 in slices:
            val = [
                fswap['j3c-chunks/%d/%d' % (job, k)][p0:p1].ravel()
                for job in job_ids
            ]
            if val:
                segs.append(numpy.hstack(val))
            else:
                segs.append(numpy.zeros(0))
        return segs

    def save(k, p0, p1, segs):
        segs = mpi.alltoall(segs)
        naux1 = nauxs[uniq_inverse[k]]
        loc0, loc1 = min(p0, naux1 - naux0), min(p1, naux1 - naux0)
        nL = loc1 - loc0
        if nL > 0:
            if aosym_s2[k]:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s2
                ])
            else:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s1
                ])
            feri['j3c/%d' % k][loc0:loc1] = segs

    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, min(8000, mydf.max_memory - mem_now))
    if numpy.all(aosym_s2):
        if gamma_point(kptij_lst):
            blksize = max(16, int(max_memory * .5e6 / 8 / nao**2))
        else:
            blksize = max(16, int(max_memory * .5e6 / 16 / nao**2))
    else:
        blksize = max(16, int(max_memory * .5e6 / 16 / nao**2 / 2))
    log.debug1('max_momory %d MB (%d in use), blksize %d', max_memory, mem_now,
               blksize)

    t2 = t1
    with lib.call_in_background(save) as async_write:
        for k, kptji in enumerate(kptij_lst):
            for p0, p1 in lib.prange(0, segsize, blksize):
                segs = load(k, p0, p1)
                async_write(k, p0, p1, segs)
                t2 = log.timer_debug1(
                    'assemble k=%d %d:%d (in %d)' % (k, p0, p1, segsize), *t2)

    if 'j2c-' in fswap:
        j2c_kpts_lists = []
        for k, kpt in enumerate(uniq_kpts):
            if ('j2c-/%d' % k) in fswap:
                adapted_ji_idx = numpy.where(uniq_inverse == k)[0]
                j2c_kpts_lists.append(adapted_ji_idx)

        for k in numpy.hstack(j2c_kpts_lists):
            val = [
                numpy.asarray(fswap['j3c-/%d/%d' % (job, k)]).ravel()
                for job in job_ids
            ]
            val = mpi.gather(numpy.hstack(val))
            if rank == 0:
                naux1 = fswap['j3c-/0/%d' % k].shape[0]
                if aosym_s2[k]:
                    v = [
                        val[i0 * naux1:i1 * naux1].reshape(naux1, -1)
                        for i0, i1 in segs_loc_s2
                    ]
                else:
                    v = [
                        val[i0 * naux1:i1 * naux1].reshape(naux1, -1)
                        for i0, i1 in segs_loc_s1
                    ]
                feri['j3c-/%d' % k] = numpy.hstack(v)

    if 'j3c-kptij' in feri: del (feri['j3c-kptij'])
    feri['j3c-kptij'] = kptij_lst
    t1 = log.alltimer_debug1('assembling j3c', *t1)
    feri.close()
Пример #3
0
def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file):
    log = logger.Logger(mydf.stdout, mydf.verbose)
    t1 = t0 = (time.clock(), time.time())

    fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell)
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    naux = auxcell.nao_nr()
    nkptij = len(kptij_lst)
    gs = mydf.gs
    Gv, Gvbase, kws = cell.get_Gv_weights(gs)
    b = cell.reciprocal_vectors()
    gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase])
    ngs = gxyz.shape[0]

    kptis = kptij_lst[:, 0]
    kptjs = kptij_lst[:, 1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    log.debug('Num uniq kpts %d', len(uniq_kpts))
    log.debug2('uniq_kpts %s', uniq_kpts)
    # j2c ~ (-kpt_ji | kpt_ji)
    j2c = fused_cell.pbc_intor('int2c2e_sph', hermi=1, kpts=uniq_kpts)
    j2ctags = []
    nauxs = []
    t1 = log.timer_debug1('2c2e', *t1)

    if h5py.is_hdf5(cderi_file):
        feri = h5py.File(cderi_file)
    else:
        feri = h5py.File(cderi_file, 'w')
    for k, kpt in enumerate(uniq_kpts):
        aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T
        coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs))
        kLR = (aoaux.real * coulG).T
        kLI = (aoaux.imag * coulG).T
        if not kLR.flags.c_contiguous: kLR = lib.transpose(kLR.T)
        if not kLI.flags.c_contiguous: kLI = lib.transpose(kLI.T)
        aoaux = None

        kLR1 = numpy.asarray(kLR[:, naux:], order='C')
        kLI1 = numpy.asarray(kLI[:, naux:], order='C')
        if is_zero(kpt):  # kpti == kptj
            for p0, p1 in mydf.mpi_prange(0, ngs):
                j2cR = lib.ddot(kLR1[p0:p1].T, kLR[p0:p1])
                j2cR = lib.ddot(kLI1[p0:p1].T, kLI[p0:p1], 1, j2cR, 1)
                j2c[k][naux:] -= mpi.allreduce(j2cR)
                j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T
        else:
            for p0, p1 in mydf.mpi_prange(0, ngs):
                j2cR, j2cI = zdotCN(kLR1[p0:p1].T, kLI1[p0:p1].T, kLR[p0:p1],
                                    kLI[p0:p1])
                j2cR = mpi.allreduce(j2cR)
                j2cI = mpi.allreduce(j2cI)
                j2c[k][naux:] -= j2cR + j2cI * 1j
                j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T.conj()
        j2c[k] = fuse(fuse(j2c[k]).T).T
        try:
            feri['j2c/%d' % k] = scipy.linalg.cholesky(j2c[k], lower=True)
            j2ctags.append('CD')
            nauxs.append(naux)
        except scipy.linalg.LinAlgError as e:
            #msg =('===================================\n'
            #      'J-metric not positive definite.\n'
            #      'It is likely that gs is not enough.\n'
            #      '===================================')
            #log.error(msg)
            #raise scipy.linalg.LinAlgError('\n'.join([e.message, msg]))
            w, v = scipy.linalg.eigh(j2c)
            log.debug2('metric linear dependency for kpt %s', uniq_kptji_id)
            log.debug2('cond = %.4g, drop %d bfns', w[0] / w[-1],
                       numpy.count_nonzero(w < LINEAR_DEP_THR))
            v = v[:, w > LINEAR_DEP_THR].T.conj()
            v /= numpy.sqrt(w[w > LINEAR_DEP_THR]).reshape(-1, 1)
            feri['j2c/%d' % k] = v
            j2ctags.append('eig')
            nauxs.append(v.shape[0])
        kLR = kLI = kLR1 = kLI1 = coulG = None
    j2c = None

    aosym_s2 = numpy.einsum('ix->i', abs(kptis - kptjs)) < 1e-9
    j_only = numpy.all(aosym_s2)
    if gamma_point(kptij_lst):
        dtype = 'f8'
    else:
        dtype = 'c16'
    vbar = mydf.auxbar(fused_cell)
    vbar = fuse(vbar)
    ovlp = cell.pbc_intor('int1e_ovlp_sph', hermi=1, kpts=kptjs[aosym_s2])
    ovlp = [lib.pack_tril(s) for s in ovlp]
    t1 = log.timer_debug1('aoaux and int2c', *t1)

    # Estimates the buffer size based on the last contraction in G-space.
    # This contraction requires to hold nkptj copies of (naux,?) array
    # simultaneously in memory.
    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, mydf.max_memory - mem_now)
    nkptj_max = max((uniq_inverse == x).sum() for x in set(uniq_inverse))
    buflen = max(
        int(
            min(max_memory * .5e6 / 16 / naux / (nkptj_max + 2) / nao,
                nao / 3 / mpi.pool.size)), 1)
    chunks = (buflen, nao)

    j3c_jobs = grids2d_int3c_jobs(cell, auxcell, kptij_lst, chunks, j_only)
    log.debug1('max_memory = %d MB (%d in use)  chunks %s', max_memory,
               mem_now, chunks)
    log.debug2('j3c_jobs %s', j3c_jobs)

    if j_only:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e_sph', 's2', 1, kptij_lst)
    else:
        int3c = wrap_int3c(cell, fused_cell, 'int3c2e_sph', 's1', 1, kptij_lst)
        idxb = numpy.tril_indices(nao)
        idxb = (idxb[0] * nao + idxb[1]).astype('i')
    aux_loc = fused_cell.ao_loc_nr('ssc' in 'int3c2e_sph')

    def gen_int3c(auxcell, job_id, ish0, ish1):
        dataname = 'j3c-chunks/%d' % job_id
        if dataname in feri:
            del (feri[dataname])

        i0 = ao_loc[ish0]
        i1 = ao_loc[ish1]
        dii = i1 * (i1 + 1) // 2 - i0 * (i0 + 1) // 2
        dij = (i1 - i0) * nao
        if j_only:
            buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dii + dii)))
        else:
            buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dij + dij)))
        auxranges = balance_segs(aux_loc[1:] - aux_loc[:-1], buflen)
        buflen = max([x[2] for x in auxranges])
        buf = numpy.empty(nkptij * dij * buflen, dtype=dtype)
        buf1 = numpy.empty(dij * buflen, dtype=dtype)

        naux = aux_loc[-1]
        for kpt_id, kptij in enumerate(kptij_lst):
            key = '%s/%d' % (dataname, kpt_id)
            if aosym_s2[kpt_id]:
                shape = (naux, dii)
            else:
                shape = (naux, dij)
            if gamma_point(kptij):
                feri.create_dataset(key, shape, 'f8')
            else:
                feri.create_dataset(key, shape, 'c16')

        naux0 = 0
        for istep, auxrange in enumerate(auxranges):
            log.alldebug2("aux_e2 job_id %d step %d", job_id, istep)
            sh0, sh1, nrow = auxrange
            sub_slice = (ish0, ish1, 0, cell.nbas, sh0, sh1)
            if j_only:
                mat = numpy.ndarray((nkptij, dii, nrow),
                                    dtype=dtype,
                                    buffer=buf)
            else:
                mat = numpy.ndarray((nkptij, dij, nrow),
                                    dtype=dtype,
                                    buffer=buf)
            mat = int3c(sub_slice, mat)

            for k, kptij in enumerate(kptij_lst):
                h5dat = feri['%s/%d' % (dataname, k)]
                v = lib.transpose(mat[k], out=buf1)
                if not j_only and aosym_s2[k]:
                    idy = idxb[i0 * (i0 + 1) // 2:i1 *
                               (i1 + 1) // 2] - i0 * nao
                    out = numpy.ndarray((nrow, dii),
                                        dtype=v.dtype,
                                        buffer=mat[k])
                    v = numpy.take(v, idy, axis=1, out=out)
                if gamma_point(kptij):
                    h5dat[naux0:naux0 + nrow] = v.real
                else:
                    h5dat[naux0:naux0 + nrow] = v
            naux0 += nrow

    def ft_fuse(job_id, uniq_kptji_id, sh0, sh1):
        kpt = uniq_kpts[uniq_kptji_id]  # kpt = kptj - kpti
        adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0]
        adapted_kptjs = kptjs[adapted_ji_idx]
        nkptj = len(adapted_kptjs)

        shls_slice = (auxcell.nbas, fused_cell.nbas)
        Gaux = ft_ao.ft_ao(fused_cell, Gv, shls_slice, b, gxyz, Gvbase, kpt)
        Gaux *= mydf.weighted_coulG(kpt, False, gs).reshape(-1, 1)
        kLR = Gaux.real.copy('C')
        kLI = Gaux.imag.copy('C')
        j2c = numpy.asarray(feri['j2c/%d' % uniq_kptji_id])
        j2ctag = j2ctags[uniq_kptji_id]
        naux0 = j2c.shape[0]

        if is_zero(kpt):
            aosym = 's2'
        else:
            aosym = 's1'

        j3cR = [None] * nkptj
        j3cI = [None] * nkptj
        i0 = ao_loc[sh0]
        i1 = ao_loc[sh1]
        for k, idx in enumerate(adapted_ji_idx):
            key = 'j3c-chunks/%d/%d' % (job_id, idx)
            v = numpy.asarray(feri[key])
            if is_zero(kpt):
                for i, c in enumerate(vbar):
                    if c != 0:
                        v[i] -= c * ovlp[k][i0 * (i0 + 1) // 2:i1 *
                                            (i1 + 1) // 2].ravel()
            j3cR[k] = numpy.asarray(v.real, order='C')
            if v.dtype == numpy.complex128:
                j3cI[k] = numpy.asarray(v.imag, order='C')
            v = None

        ncol = j3cR[0].shape[1]
        Gblksize = max(16, int(max_memory * 1e6 / 16 / ncol /
                               (nkptj + 1)))  # +1 for pqkRbuf/pqkIbuf
        Gblksize = min(Gblksize, ngs, 16384)
        pqkRbuf = numpy.empty(ncol * Gblksize)
        pqkIbuf = numpy.empty(ncol * Gblksize)
        buf = numpy.empty(nkptj * ncol * Gblksize, dtype=numpy.complex128)
        log.alldebug2('    blksize (%d,%d)', Gblksize, ncol)

        shls_slice = (sh0, sh1, 0, cell.nbas)
        for p0, p1 in lib.prange(0, ngs, Gblksize):
            dat = ft_ao._ft_aopair_kpts(cell,
                                        Gv[p0:p1],
                                        shls_slice,
                                        aosym,
                                        b,
                                        gxyz[p0:p1],
                                        Gvbase,
                                        kpt,
                                        adapted_kptjs,
                                        out=buf)
            nG = p1 - p0
            for k, ji in enumerate(adapted_ji_idx):
                aoao = dat[k].reshape(nG, ncol)
                pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf)
                pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf)
                pqkR[:] = aoao.real.T
                pqkI[:] = aoao.imag.T

                lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1)
                lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1)
                if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])):
                    lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1)
                    lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1)

        for k, idx in enumerate(adapted_ji_idx):
            if is_zero(kpt) and gamma_point(adapted_kptjs[k]):
                v = fuse(j3cR[k])
            else:
                v = fuse(j3cR[k] + j3cI[k] * 1j)
            if j2ctag == 'CD':
                v = scipy.linalg.solve_triangular(j2c,
                                                  v,
                                                  lower=True,
                                                  overwrite_b=True)
            else:
                v = lib.dot(j2c, v)
            feri['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = v

    t2 = t1
    j3c_workers = numpy.zeros(len(j3c_jobs), dtype=int)
    #for job_id, ish0, ish1 in mpi.work_share_partition(j3c_jobs):
    for job_id, ish0, ish1 in mpi.work_stealing_partition(j3c_jobs):
        gen_int3c(fused_cell, job_id, ish0, ish1)
        t2 = log.alltimer_debug2('int j3c %d' % job_id, *t2)

        for k, kpt in enumerate(uniq_kpts):
            ft_fuse(job_id, k, ish0, ish1)
            t2 = log.alltimer_debug2('ft-fuse %d k %d' % (job_id, k), *t2)

        j3c_workers[job_id] = rank
    j3c_workers = mpi.allreduce(j3c_workers)
    log.debug2('j3c_workers %s', j3c_workers)
    j2c = kLRs = kLIs = ovlp = vbar = fuse = gen_int3c = ft_fuse = None
    t1 = log.timer_debug1('int3c and fuse', *t1)

    def get_segs_loc(aosym):
        off0 = numpy.asarray([ao_loc[i0] for x, i0, i1 in j3c_jobs])
        off1 = numpy.asarray([ao_loc[i1] for x, i0, i1 in j3c_jobs])
        if aosym:  # s2
            dims = off1 * (off1 + 1) // 2 - off0 * (off0 + 1) // 2
        else:
            dims = (off1 - off0) * nao
        #dims = numpy.asarray([ao_loc[i1]-ao_loc[i0] for x,i0,i1 in j3c_jobs])
        dims = numpy.hstack(
            [dims[j3c_workers == w] for w in range(mpi.pool.size)])
        job_idx = numpy.hstack(
            [numpy.where(j3c_workers == w)[0] for w in range(mpi.pool.size)])
        segs_loc = numpy.append(0, numpy.cumsum(dims))
        segs_loc = [(segs_loc[j], segs_loc[j + 1])
                    for j in numpy.argsort(job_idx)]
        return segs_loc

    segs_loc_s1 = get_segs_loc(False)
    segs_loc_s2 = get_segs_loc(True)

    if 'j3c' in feri: del (feri['j3c'])
    segsize = (max(nauxs) + mpi.pool.size - 1) // mpi.pool.size
    naux0 = rank * segsize
    for k, kptij in enumerate(kptij_lst):
        naux1 = min(nauxs[uniq_inverse[k]], naux0 + segsize)
        nrow = max(0, naux1 - naux0)
        if gamma_point(kptij):
            dtype = 'f8'
        else:
            dtype = 'c16'
        if aosym_s2[k]:
            nao_pair = nao * (nao + 1) // 2
        else:
            nao_pair = nao * nao
        feri.create_dataset('j3c/%d' % k, (nrow, nao_pair),
                            dtype,
                            maxshape=(None, nao_pair))

    def load(k, p0, p1):
        naux1 = nauxs[uniq_inverse[k]]
        slices = [(min(i * segsize + p0, naux1), min(i * segsize + p1, naux1))
                  for i in range(mpi.pool.size)]
        segs = []
        for p0, p1 in slices:
            val = []
            for job_id, worker in enumerate(j3c_workers):
                if rank == worker:
                    key = 'j3c-chunks/%d/%d' % (job_id, k)
                    val.append(feri[key][p0:p1].ravel())
            if val:
                segs.append(numpy.hstack(val))
            else:
                segs.append(numpy.zeros(0))
        return segs

    def save(k, p0, p1, segs):
        segs = mpi.alltoall(segs)
        naux1 = nauxs[uniq_inverse[k]]
        loc0, loc1 = min(p0, naux1 - naux0), min(p1, naux1 - naux0)
        nL = loc1 - loc0
        if nL > 0:
            if aosym_s2[k]:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s2
                ])
            else:
                segs = numpy.hstack([
                    segs[i0 * nL:i1 * nL].reshape(nL, -1)
                    for i0, i1 in segs_loc_s1
                ])
            feri['j3c/%d' % k][loc0:loc1] = segs

    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, min(8000, mydf.max_memory - mem_now))
    if numpy.all(aosym_s2):
        if gamma_point(kptij_lst):
            blksize = max(16, int(max_memory * .5e6 / 8 / nao**2))
        else:
            blksize = max(16, int(max_memory * .5e6 / 16 / nao**2))
    else:
        blksize = max(16, int(max_memory * .5e6 / 16 / nao**2 / 2))
    log.debug1('max_momory %d MB (%d in use), blksize %d', max_memory, mem_now,
               blksize)

    t2 = t1
    with lib.call_in_background(save) as async_write:
        for k, kptji in enumerate(kptij_lst):
            for p0, p1 in lib.prange(0, segsize, blksize):
                segs = load(k, p0, p1)
                async_write(k, p0, p1, segs)
                t2 = log.timer_debug1(
                    'assemble k=%d %d:%d (in %d)' % (k, p0, p1, segsize), *t2)

    if 'j3c-chunks' in feri: del (feri['j3c-chunks'])
    if 'j3c-kptij' in feri: del (feri['j3c-kptij'])
    feri['j3c-kptij'] = kptij_lst
    t1 = log.alltimer_debug1('assembling j3c', *t1)
    feri.close()
Пример #4
0
def _eval_jk(mf, dm, hermi, gen_jobs):
    cpu0 = (logger.process_clock(), logger.perf_counter())
    mol = mf.mol
    ao_loc = mol.ao_loc_nr()
    nao = ao_loc[-1]

    bas_groups = _partition_bas(mol)
    jobs = gen_jobs(len(bas_groups), hermi)
    njobs = len(jobs)
    logger.debug1(mf, 'njobs %d', njobs)

    # Each job has multiple recipes.
    n_recipes = len(jobs[0][1:])
    dm = numpy.asarray(dm).reshape(-1, nao, nao)
    n_dm = dm.shape[0]
    vk = numpy.zeros((n_recipes, n_dm, nao, nao))

    if mf.opt is None:
        vhfopt = mf.init_direct_scf(mol)
    else:
        vhfopt = mf.opt
    # Assign the entire dm_cond to vhfopt.
    # The prescreen function CVHFnrs8_prescreen will index q_cond and dm_cond
    # over the entire basis.  "set_dm" in function jk.get_jk/direct_bindm only
    # creates a subblock of dm_cond which is not compatible with
    # CVHFnrs8_prescreen.
    vhfopt.set_dm(dm, mol._atm, mol._bas, mol._env)
    # Then skip the "set_dm" initialization in function jk.get_jk/direct_bindm.
    vhfopt._dmcondname = None

    logger.timer_debug1(mf, 'get_jk initialization', *cpu0)
    for job_id in mpi.work_stealing_partition(range(njobs)):
        group_ids = jobs[job_id][0]
        recipes = jobs[job_id][1:]

        shls_slice = lib.flatten([bas_groups[i] for i in group_ids])
        loc = ao_loc[shls_slice].reshape(4, 2)

        dm_blks = []
        for i_dm in range(n_dm):
            for ir, recipe in enumerate(recipes):
                for i, rec in enumerate(recipe):
                    p0, p1 = loc[rec[0]]
                    q0, q1 = loc[rec[1]]
                    dm_blks.append(dm[i_dm, p0:p1, q0:q1])
        scripts = [
            'ijkl,%s%s->%s%s' % tuple(['ijkl'[x] for x in rec])
            for recipe in recipes for rec in recipe
        ] * n_dm

        kparts = jk.get_jk(mol,
                           dm_blks,
                           scripts,
                           shls_slice=shls_slice,
                           vhfopt=vhfopt)

        for i_dm in range(n_dm):
            for ir, recipe in enumerate(recipes):
                for i, rec in enumerate(recipe):
                    p0, p1 = loc[rec[2]]
                    q0, q1 = loc[rec[3]]
                    vk[ir, i_dm, p0:p1, q0:q1] += kparts[i]
                # Pop the results of one recipe
                kparts = kparts[i + 1:]

    vk = mpi.reduce(vk)
    if rank == 0:
        if hermi:
            for i in range(n_recipes):
                for j in range(n_dm):
                    lib.hermi_triu(vk[i, j], hermi, inplace=True)
    else:
        # Zero out vk on workers. If reduce(get_jk()) is called twice,
        # non-zero vk on workers can cause error.
        vk[:] = 0
    logger.timer(mf, 'get_jk', *cpu0)
    return vk
Пример #5
0
def _assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap, log):
    t1 = (time.clock(), time.time())
    cell = mydf.cell
    ao_loc = cell.ao_loc_nr()
    nao = ao_loc[-1]
    kptis = kptij_lst[:,0]
    kptjs = kptij_lst[:,1]
    kpt_ji = kptjs - kptis
    uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji)
    aosym_s2 = numpy.einsum('ix->i', abs(kptis-kptjs)) < 1e-9

    t2 = t1
    j3c_workers = numpy.zeros(len(j3c_jobs), dtype=int)
    #for job_id, ish0, ish1 in mpi.work_share_partition(j3c_jobs):
    for job_id, ish0, ish1 in mpi.work_stealing_partition(j3c_jobs):
        gen_int3c(job_id, ish0, ish1)
        t2 = log.alltimer_debug2('int j3c %d' % job_id, *t2)

        for k, kpt in enumerate(uniq_kpts):
            ft_fuse(job_id, k, ish0, ish1)
            t2 = log.alltimer_debug2('ft-fuse %d k %d' % (job_id, k), *t2)

        j3c_workers[job_id] = rank
    j3c_workers = mpi.allreduce(j3c_workers)
    log.debug2('j3c_workers %s', j3c_workers)
    t1 = log.timer_debug1('int3c and fuse', *t1)

    # Pass 2
    # Transpose 3-index tensor and save data in cderi_file
    feri = h5py.File(cderi_file, 'w')
    nauxs = [fswap['j2c/%d'%k].shape[0] for k, kpt in enumerate(uniq_kpts)]
    segsize = (max(nauxs)+mpi.pool.size-1) // mpi.pool.size
    naux0 = rank * segsize
    for k, kptij in enumerate(kptij_lst):
        naux1 = min(nauxs[uniq_inverse[k]], naux0+segsize)
        nrow = max(0, naux1-naux0)
        if gamma_point(kptij):
            dtype = 'f8'
        else:
            dtype = 'c16'
        if aosym_s2[k]:
            nao_pair = nao * (nao+1) // 2
        else:
            nao_pair = nao * nao
        feri.create_dataset('j3c/%d'%k, (nrow,nao_pair), dtype, maxshape=(None,nao_pair))

    def get_segs_loc(aosym):
        off0 = numpy.asarray([ao_loc[i0] for x,i0,i1 in j3c_jobs])
        off1 = numpy.asarray([ao_loc[i1] for x,i0,i1 in j3c_jobs])
        if aosym:  # s2
            dims = off1*(off1+1)//2 - off0*(off0+1)//2
        else:
            dims = (off1-off0) * nao
        #dims = numpy.asarray([ao_loc[i1]-ao_loc[i0] for x,i0,i1 in j3c_jobs])
        dims = numpy.hstack([dims[j3c_workers==w] for w in range(mpi.pool.size)])
        job_idx = numpy.hstack([numpy.where(j3c_workers==w)[0]
                                for w in range(mpi.pool.size)])
        segs_loc = numpy.append(0, numpy.cumsum(dims))
        segs_loc = [(segs_loc[j], segs_loc[j+1]) for j in numpy.argsort(job_idx)]
        return segs_loc
    segs_loc_s1 = get_segs_loc(False)
    segs_loc_s2 = get_segs_loc(True)

    job_ids = numpy.where(rank == j3c_workers)[0]
    def load(k, p0, p1):
        naux1 = nauxs[uniq_inverse[k]]
        slices = [(min(i*segsize+p0,naux1), min(i*segsize+p1,naux1))
                  for i in range(mpi.pool.size)]
        segs = []
        for p0, p1 in slices:
            val = [fswap['j3c-chunks/%d/%d' % (job, k)][p0:p1].ravel()
                   for job in job_ids]
            if val:
                segs.append(numpy.hstack(val))
            else:
                segs.append(numpy.zeros(0))
        return segs

    def save(k, p0, p1, segs):
        segs = mpi.alltoall(segs)
        naux1 = nauxs[uniq_inverse[k]]
        loc0, loc1 = min(p0, naux1-naux0), min(p1, naux1-naux0)
        nL = loc1 - loc0
        if nL > 0:
            if aosym_s2[k]:
                segs = numpy.hstack([segs[i0*nL:i1*nL].reshape(nL,-1)
                                     for i0,i1 in segs_loc_s2])
            else:
                segs = numpy.hstack([segs[i0*nL:i1*nL].reshape(nL,-1)
                                     for i0,i1 in segs_loc_s1])
            feri['j3c/%d'%k][loc0:loc1] = segs

    mem_now = max(comm.allgather(lib.current_memory()[0]))
    max_memory = max(2000, min(8000, mydf.max_memory - mem_now))
    if numpy.all(aosym_s2):
        if gamma_point(kptij_lst):
            blksize = max(16, int(max_memory*.5e6/8/nao**2))
        else:
            blksize = max(16, int(max_memory*.5e6/16/nao**2))
    else:
        blksize = max(16, int(max_memory*.5e6/16/nao**2/2))
    log.debug1('max_momory %d MB (%d in use), blksize %d',
               max_memory, mem_now, blksize)

    t2 = t1
    with lib.call_in_background(save) as async_write:
        for k, kptji in enumerate(kptij_lst):
            for p0, p1 in lib.prange(0, segsize, blksize):
                segs = load(k, p0, p1)
                async_write(k, p0, p1, segs)
                t2 = log.timer_debug1('assemble k=%d %d:%d (in %d)' %
                                      (k, p0, p1, segsize), *t2)

    if 'j2c-' in fswap:
        j2c_kpts_lists = []
        for k, kpt in enumerate(uniq_kpts):
            if ('j2c-/%d' % k) in fswap:
                adapted_ji_idx = numpy.where(uniq_inverse == k)[0]
                j2c_kpts_lists.append(adapted_ji_idx)

        for k in numpy.hstack(j2c_kpts_lists):
            val = [numpy.asarray(fswap['j3c-/%d/%d' % (job, k)]).ravel()
                   for job in job_ids]
            val = mpi.gather(numpy.hstack(val))
            if rank == 0:
                naux1 = fswap['j3c-/0/%d'%k].shape[0]
                if aosym_s2[k]:
                    v = [val[i0*naux1:i1*naux1].reshape(naux1,-1)
                         for i0,i1 in segs_loc_s2]
                else:
                    v = [val[i0*naux1:i1*naux1].reshape(naux1,-1)
                         for i0,i1 in segs_loc_s1]
                feri['j3c-/%d'%k] = numpy.hstack(v)

    if 'j3c-kptij' in feri: del(feri['j3c-kptij'])
    feri['j3c-kptij'] = kptij_lst
    t1 = log.alltimer_debug1('assembling j3c', *t1)
    feri.close()