Пример #1
0
 def builder(self, *params):
     try:
         return ModelFromJsonTF(None, json_str=self._json(*params))
     except:
         str_param = ','.join('{0}={1!r}'.format(k, v)
                              for k, v in self._args(*params).items())
         print("Failed to build model with params: {}".format(str_param))
         return None
Пример #2
0
         per_process_gpu_memory_fraction=0.1,  #was 0.0
         allow_growth=True,
         visible_device_list=device[-1] if 'gpu' in device else '')
     if hide_device:
         gpu_options = K.tf.GPUOptions(
             per_process_gpu_memory_fraction=0.0,
             allow_growth=True,
         )
     K.set_session(
         K.tf.Session(
             config=K.tf.ConfigProto(allow_soft_placement=True,
                                     log_device_placement=False,
                                     gpu_options=gpu_options)))
 if args.tf:
     model_builder = ModelFromJsonTF(comm,
                                     args.model_json,
                                     device_name=device,
                                     weights=args.model_weights)
     print("Process {0} using device {1}".format(
         comm.Get_rank(), model_builder.device))
 else:
     model_builder = ModelFromJson(comm,
                                   args.model_json,
                                   weights=args.model_weights)
     print("Process {0} using device {1}".format(
         comm.Get_rank(), device))
     os.environ[
         'THEANO_FLAGS'] = "profile=%s,device=%s,floatX=float32" % (
             args.profile, device.replace('gpu', 'cuda'))
     # GPU ops need to be executed synchronously in order for profiling to make sense
 if args.profile:
     os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
Пример #3
0
 def builder(self, *params):
     args = dict(zip([p.name for p in self.parameters], params))
     model_json = self.model_fn(**args)
     return ModelFromJsonTF(None, json_str=model_json)