Пример #1
0
def make_kappa_maps(cat, nside, zs_list, ds_list, localsize, nbar):
    """ Make kappa maps at a list of ds
        Return kappa, Nm in shape of (n_ds, localsize), kappabar in shape of (n_ds,)
        The maps are distributed in memory, and localsize is the size of
        map on this rank.
    """

    dl = (abs(cat['Position'] **2).sum(axis=-1)) ** 0.5
    chunks = dl.chunks
    ra = cat['RA']
    dec = cat['DEC']
    zl = (1 / cat['Aemit'] - 1)
    
    ipix = da.apply_gufunc(lambda ra, dec, nside:
                           healpix.ang2pix(nside, numpy.radians(90-dec), numpy.radians(ra)),
                        '(),()->()', ra, dec, nside=nside)

    npix = healpix.nside2npix(nside)

    ipix = ipix.compute()
    dl = dl.persist()
 
    cat.comm.barrier()

    if cat.comm.rank == 0:
        cat.logger.info("ipix and dl are persisted")

    area = (4 * numpy.pi / npix) * dl**2

    Om = cat.attrs['OmegaM'][0]

    kappa_list = []
    kappabar_list = []
    Nm_list = []
    for zs, ds in zip(zs_list, ds_list):
        LensKernel = da.apply_gufunc(lambda dl, zl, Om, ds: wlen(Om, dl, zl, ds), 
                                     "(), ()-> ()",
                                     dl, zl, Om=Om, ds=ds)

        weights = (LensKernel / (area * nbar))
        weights = weights.compute()

        cat.comm.barrier()

        if cat.comm.rank == 0:
            cat.logger.info("source plane %g weights are persisted" % zs)
        Wmap, Nmap = weighted_map(ipix, npix, weights, localsize, cat.comm)

        cat.comm.barrier()
        if cat.comm.rank == 0:
            cat.logger.info("source plane %g maps generated" % zs)

        # compute kappa bar
        # this is a simple integral, but we do not know dl, dz relation
        # so do it with values from a subsample of particles
        every = (cat.csize // 100000)
        
        kappa1 = Wmap
        if every == 0: every = 1

        # use GatherArray, because it is faster than comm.gather at this scale
        # (> 4000 ranks on CrayMPI)
        ssdl = GatherArray(dl[::every].compute(), cat.comm)
        ssLensKernel = GatherArray(LensKernel[::every].compute(), cat.comm)

        if cat.comm.rank == 0:
            arg = ssdl.argsort()
            ssdl = ssdl[arg]
            ssLensKernel = ssLensKernel[arg]
            
            kappa1bar = numpy.trapz(ssLensKernel, ssdl)
        else:
            kappa1bar = None
        kappa1bar = cat.comm.bcast(kappa1bar)

        cat.comm.barrier()
        if cat.comm.rank == 0:
            cat.logger.info("source plane %g bar computed " % zs)
        kappa_list.append(kappa1)
        kappabar_list.append(kappa1bar)
        Nm_list.append(Nmap)
    """
    # estimate nbar
    dlmin = dl.min()
    dlmax = dl.max()
        
    volume = (Nmap > 0).sum() / len(Nmap) * 4  / 3 * numpy.pi * (dlmax**3 - dlmin ** 3)
    """
    # returns number rather than delta, since we do not know fsky here.
    #Nmap = Nmap / cat.csize * cat.comm.allreduce((Nmap > 0).sum()) # to overdensity.
    return numpy.array(kappa_list), numpy.array(kappabar_list), numpy.array(Nm_list)
Пример #2
0
def main(ns):
    if ns.zlmax is None:
        ns.zlmax = max(ns.zs)

    zs_list = ns.zs
    ###### JL hardcode zs_list
    #zs_list = numpy.arange(ns.zs, 2.21, 0.1)
    zs_list = ns.zs

    zlmin = ns.zlmin
    zlmax = zs_list[-1]#ns.zlmax

    # no need to be accurate here
    ds_list = Planck15.comoving_distance(zs_list)

    path = ns.source

    cat = BigFileCatalog(path, dataset=ns.dataset)

    kappa = 0
    Nm = 0
    kappabar = 0

    npix = healpix.nside2npix(ns.nside)
    localsize = npix * (cat.comm.rank + 1) // cat.comm.size - npix * (cat.comm.rank) // cat.comm.size
    nbar = (cat.attrs['NC'] ** 3  / cat.attrs['BoxSize'] ** 3 * cat.attrs['ParticleFraction'])[0]
 #   print('DEBUG BoxSize', cat.attrs['BoxSize'])
    
    Nsteps = int(numpy.round((zlmax - zlmin) / ns.zstep))
    if Nsteps < 2 : Nsteps = 2

    z = numpy.linspace(zlmax, zlmin, Nsteps+1, endpoint=True)

    if cat.comm.rank == 0:
        cat.logger.info("Splitting data redshift bins %s" % str(z))

    kappa_all = numpy.zeros((Nsteps, len(zs_list), localsize))
    for i, (z1, z2) in enumerate(zip(z[:-1], z[1:])):
        import gc
        gc.collect()
        if cat.comm.rank == 0:
            cat.logger.info("nbar = %g, zlmin = %g, zlmax = %g zs = %s" % (nbar, z2, z1, zs_list))

        slice = read_range(cat, 1/(1 + z1), 1 / (1 + z2))

        if slice.csize == 0: continue
        if cat.comm.rank == 0:
            cat.logger.info("read %d particles" % slice.csize)

        kappa1, kappa1bar, Nm1  = make_kappa_maps(slice, ns.nside, zs_list, ds_list, localsize, nbar)

        kappa = kappa + kappa1

        kappa_all[i] = kappa1
        
        Nm = Nm + Nm1
        kappabar = kappabar + kappa1bar

    cat.comm.barrier()

    if cat.comm.rank == 0:
        # use bigfile because it allows concurrent write to different datasets.
        cat.logger.info("writing to %s", ns.output)


    # array to get all map slices
    if cat.comm.rank == 0:
        kappa1_all = numpy.zeros((Nsteps, int(12*ns.nside**2)))
                                  
    for i, (zs, ds) in enumerate(zip(zs_list, ds_list)):
        std = numpy.std(cat.comm.allgather(len(kappa[i])))
        mean = numpy.mean(cat.comm.allgather(len(kappa[i])))
        if cat.comm.rank == 0:
            cat.logger.info("started gathering source plane %s, size-var = %g, size-bar = %g" % (zs, std, mean))

        kappa1 = GatherArray(kappa[i], cat.comm)
        Nm1 = GatherArray(Nm[i], cat.comm)

        # get slices of kappa map
        for j in range(Nsteps):
            kappa1_allj = GatherArray(kappa_all[j,i], cat.comm)
            if cat.comm.rank == 0:
                kappa1_all[j] = kappa1_allj
                
        if cat.comm.rank == 0:
            cat.logger.info("done gathering source plane %s" % zs)

        if cat.comm.rank == 0:
            fname = ns.output + "/WL-%02.2f-N%04d" % (zs, ns.nside)
            cat.logger.info("started writing source plane %s" % zs)

            with bigfile.File(fname, create=True) as ff:
                print('DEBUG', kappa1_all.shape, len(kappa1_all), numpy.dtype((kappa1_all.dtype, kappa1_all.shape[1:])))
                ds1 = ff.create_from_array("kappa", kappa1, Nfile=1)
                ds2 = ff.create_from_array("Nm", Nm1, Nfile=1)
                #ds3 = ff.create_from_array("kappa_all", kappa1_all.T, Nfile=1)#, memorylimit=1024*1024*1024)

                for d in ds1, ds2:#, ds3:
                    d.attrs['kappabar'] = kappabar[i]
                    d.attrs['nside'] = ns.nside
                    d.attrs['zlmin'] = zlmin
                    d.attrs['zlmax'] = zlmax
                    d.attrs['zstep'] = ns.zstep
                    d.attrs['zs'] = zs
                    d.attrs['ds'] = ds
                    d.attrs['nbar'] = nbar

        cat.comm.barrier()
        if cat.comm.rank == 0:
            # use bigfile because it allows concurrent write to different datasets.
            cat.logger.info("source plane at %g written. " % zs)
Пример #3
0
def main(ns):
    if ns.zlmax is None:
        ns.zlmax = max(ns.zs)

    zs_list = ns.zs

    zlmin = ns.zlmin
    zlmax = ns.zlmax

    # no need to be accurate here
    ds_list = Planck15.comoving_distance(zs_list)

    path = ns.source
    #'/global/cscratch1/sd/yfeng1/m3127/desi/1536-9201-40eae2464/lightcone/usmesh/'

    cat = BigFileCatalog(path, dataset=ns.dataset)

    kappa = 0
    Nm = 0
    kappabar = 0

    npix = healpix.nside2npix(ns.nside)
    localsize = npix * (cat.comm.rank + 1) // cat.comm.size - npix * (
        cat.comm.rank) // cat.comm.size
    nbar = (cat.attrs['NC']**3 / cat.attrs['BoxSize']**3 *
            cat.attrs['ParticleFraction'])[0]

    Nsteps = int(numpy.round((zlmax - zlmin) / ns.zstep))
    if Nsteps < 2: Nsteps = 2
    z = numpy.linspace(zlmax, zlmin, Nsteps, endpoint=True)

    if cat.comm.rank == 0:
        cat.logger.info("Splitting data redshift bins %s" % str(z))

    for z1, z2 in zip(z[:-1], z[1:]):
        import gc
        gc.collect()
        if cat.comm.rank == 0:
            cat.logger.info("nbar = %g, zlmin = %g, zlmax = %g zs = %s" %
                            (nbar, z2, z1, zs_list))

        slice = read_range(cat, 1 / (1 + z1), 1 / (1 + z2))

        if slice.csize == 0: continue
        if cat.comm.rank == 0:
            cat.logger.info("read %d particles" % slice.csize)

        kappa1, kappa1bar, Nm1 = make_kappa_maps(slice, ns.nside, zs_list,
                                                 ds_list, localsize, nbar)

        kappa = kappa + kappa1
        Nm = Nm + Nm1
        kappabar = kappabar + kappa1bar

    cat.comm.barrier()

    if cat.comm.rank == 0:
        # use bigfile because it allows concurrent write to different datasets.
        cat.logger.info("writing to %s", ns.output)

    for i, (zs, ds) in enumerate(zip(zs_list, ds_list)):
        std = numpy.std(cat.comm.allgather(len(kappa[i])))
        mean = numpy.mean(cat.comm.allgather(len(kappa[i])))
        if cat.comm.rank == 0:
            cat.logger.info(
                "started gathering source plane %s, size-var = %g, size-bar = %g"
                % (zs, std, mean))

        kappa1 = GatherArray(kappa[i], cat.comm)
        Nm1 = GatherArray(Nm[i], cat.comm)

        if cat.comm.rank == 0:
            cat.logger.info("done gathering source plane %s" % zs)

        if cat.comm.rank == 0:
            fname = ns.output + "/WL-%02.2f-N%04d" % (zs, ns.nside)
            cat.logger.info("started writing source plane %s" % zs)

            with bigfile.File(fname, create=True) as ff:

                ds1 = ff.create_from_array("kappa", kappa1, Nfile=1)
                ds2 = ff.create_from_array("Nm", Nm1, Nfile=1)

                for d in ds1, ds2:
                    d.attrs['kappabar'] = kappabar[i]
                    d.attrs['nside'] = ns.nside
                    d.attrs['zlmin'] = zlmin
                    d.attrs['zlmax'] = zlmax
                    d.attrs['zs'] = zs
                    d.attrs['ds'] = ds
                    d.attrs['nbar'] = nbar

        cat.comm.barrier()
        if cat.comm.rank == 0:
            # use bigfile because it allows concurrent write to different datasets.
            cat.logger.info("source plane at %g written. " % zs)