Пример #1
0
def binned_posterior_probability(bp_rp, apparent_mag, absolute_mag, ratios,
                                 **kwargs):

    fig = kwargs.pop("fig", None)
    if fig is None:
        fig, ax = plt.subplots(figsize=kwargs.pop("figsize", (8, 8)))
    else:
        ax = fig.axes[0]

    latex_labels = kwargs.pop("latex_labels", dict())
    band = kwargs.pop("band", None)

    kwds = dict(function="mean", ax=ax, full_output=True)
    kwds.update(kwargs)
    _, im = mpl_utils.plot_binned_statistic(bp_rp, absolute_mag, ratios,
                                            **kwds)

    ax.set_aspect(np.ptp(ax.get_xlim()) / np.ptp(ax.get_ylim()))
    ax.xaxis.set_major_locator(MaxNLocator(5))
    ax.yaxis.set_major_locator(MaxNLocator(5))
    ax.set_xlabel(r"{bp - rp}")
    # TODO: actually use the kwd["band"] entry.
    ax.set_ylabel(r"{absolute G magnitude}")
    ax.set_facecolor("#eeeeee")
    fig.tight_layout()

    return fig
Пример #2
0
def log_density_gp_expectation_value(x, y, **kwargs):

    fig, ax = plt.subplots()

    _, im = mpl_utils.plot_binned_statistic(x, y, y,
                                            function="count", ax=ax, 
                                            full_output=True, **kwargs)

    return fig
Пример #3
0
def density_rv_excess_vs_absolute_magnitude(K_est, absolute_mag, **kwargs):

    fig, ax = plt.subplots()

    x, y = (K_est, absolute_mag)

    bins = (np.logspace(0, 3.1, 201), np.linspace(-10, 10, 201))

    _, im = mpl_utils.plot_binned_statistic(
        x,
        y,
        y,
        function="count",
        ax=ax,
        full_output=True,
        interpolation="none",
        bins=bins,
        norm=LogNorm(),
        cmap="Greys",
    )
    ax.set_ylim(ax.get_ylim()[::-1])

    # TODO: create a mirrored axis or something?
    # TODO: this is all f****d up.
    # TODO: basically we want to have a log-x scale for the bins (which works)
    #       but then we can't tell the axis that the scaling is log otherwise it blows up

    # TODO: alter Equation 3 from arxiv:1711.00660 and show in figure.

    ticks = np.unique(np.log10(bins[0]).astype(int))
    ax.set_xticks(10**ticks)
    ax.set_xticklabels([r"$10^{{{0}}}$".format(_) for _ in ticks])

    # TODO, this is all f****d up
    print("this is not for publication")

    return fig
Пример #4
0
    def binned_bayes_factor(x, log_bf, **kwargs):

        fig = kwargs.pop("fig", None)
        if fig is None:
            fig, ax = plt.subplots(figsize=kwargs.pop("figsize", (8, 8)))
        else:
            ax = fig.axes[0]

        latex_labels = kwargs.pop("latex_labels", dict())

        kwds = dict(function="mean", ax=ax, full_output=True)
        kwds.update(kwargs)
        _, im = mpl_utils.plot_binned_statistic(x, log_bf, log_bf, **kwds)

        ax.set_aspect(np.ptp(ax.get_xlim()) / np.ptp(ax.get_ylim()))
        ax.xaxis.set_major_locator(MaxNLocator(5))
        ax.yaxis.set_major_locator(MaxNLocator(5))
        ax.set_xlabel(r"{x}")

        ax.set_ylabel(r"{BF}")
        ax.set_facecolor("#eeeeee")
        fig.tight_layout()

        return fig
Пример #5
0
        kwds = dict(bins=100,
                    function="mean",
                    interpolation="none",
                    full_output=True)

        for parameter_name in ("theta", "mu_single", "sigma_single",
                               "sigma_multiple"):

            p, p_var = results[
                f"models/{model_name}/gp_predictions/{parameter_name}"][()].T

            fig, axes = plt.subplots(1, 2, figsize=(8, 4))

            _, im = mpl.plot_binned_statistic(bp_rp,
                                              absolute_g_mag,
                                              p,
                                              ax=axes[0],
                                              **kwds)
            mpl.plot_binned_statistic(bp_rp,
                                      phot_g_mean_mag,
                                      p,
                                      ax=axes[1],
                                      **kwds)

            axes[0].set_ylabel('absolute g mag')
            axes[1].set_ylabel('phot g mean mag')

            for ax in axes:
                ax.set_xlabel('bp - rp')

            cbar = plt.colorbar(im)
Пример #6
0
def binned_gp_expectation_values(bp_rp,
                                 apparent_mag,
                                 absolute_mag,
                                 expectation_values,
                                 num_bins=100,
                                 function="mean",
                                 band="g",
                                 colorbar_labels=None,
                                 **kwargs):

    if not isinstance(expectation_values, tuple):
        raise TypeError("expectation_values must be a tuple")

    K = len(expectation_values)  # the number of GP expectation values to show
    L = 2  # (apparent mag, absolute mag)

    latex_labels = kwargs.pop("latex_labels", dict())
    if latex_labels is None:
        latex_labels = dict()
    get_label = lambda _, __=None: latex_labels.get(_, __ or _)

    figsize = kwargs.pop("figsize", (7.4, 7.6))
    if figsize is None:
        figsize = (L * 3, K * 3)

    fig = plt.figure(figsize=figsize)

    grid = AxesGrid(fig,
                    111,
                    nrows_ncols=(2, 2),
                    axes_pad=0.75,
                    label_mode="all",
                    share_all=False,
                    cbar_location="top",
                    cbar_mode="edge",
                    cbar_size="5%",
                    cbar_pad=0.05)

    for i in range(2):

        ax_abs, ax_app = axes_row = (grid[i], grid[i + 2])

        for ax in axes_row:
            ax.set_facecolor("#eeeeee")

        _, im = mpl_utils.plot_binned_statistic(bp_rp,
                                                apparent_mag,
                                                expectation_values[i],
                                                function=function,
                                                ax=ax_app,
                                                full_output=True,
                                                **kwargs)

        _, im = mpl_utils.plot_binned_statistic(bp_rp,
                                                absolute_mag,
                                                expectation_values[i],
                                                function=function,
                                                ax=ax_abs,
                                                full_output=True,
                                                **kwargs)

        for ax in axes_row:

            ax.set_aspect(np.ptp(ax.get_xlim()) / np.ptp(ax.get_ylim()))

            ax.xaxis.set_major_locator(MaxNLocator(3))
            ax.yaxis.set_major_locator(MaxNLocator(6))

            ax.set_xlabel(get_label("bp_rp", "bp - rp"))

        ax_abs.set_ylabel(
            get_label(f"absolute_{band}_mag", f"absolute {band} mag"))
        ax_app.set_ylabel(
            get_label(f"apparent_{band}_mag", f"apparent {band} mag"))

        caxes = (grid.cbar_axes[0], grid.cbar_axes[1])
        cax = caxes[i]
        cax.colorbar(im)

        cax.toggle_label(True)
        cax.axis[cax.orientation].set_label(
            get_label(colorbar_labels[i], colorbar_labels[i]))

        for cax in grid.cbar_axes:
            if cax not in caxes:
                cax.set_visible(False)

    fig.tight_layout()
    fig.subplots_adjust(top=0.925)

    return fig
Пример #7
0
                        minimum_points=model_config["kdtree_minimum_points"],
                        maximum_points=model_config["kdtree_maximum_points"])

        # Optimize the non-parametric model for those sources.
        npm_results = np.zeros((M, 5))
        done = np.zeros(M, dtype=bool)

        if plot_mixture_model_figures:

            kwds = dict(function="count",
                        bins=250,
                        cmap="Greys",
                        norm=LogNorm())
            mpl.plot_binned_statistic(X[:, 0],
                                      X[:, 1],
                                      X[:, 1],
                                      ax=axes[0],
                                      **kwds)
            mpl.plot_binned_statistic(X[:, 0],
                                      X[:, 2],
                                      X[:, 2],
                                      ax=axes[1],
                                      **kwds)

            for ax in axes[:2]:
                ax.set_aspect(np.ptp(ax.get_xlim()) / np.ptp(ax.get_ylim()))

        mu_multiple_scalar = model_config["mu_multiple_scalar"]

        # TODO: put scalar to the config file.
        def optimize_mixture_model(index, inits=None, debug=False):
Пример #8
0
            H_inv = (1.0/H).flatten()
            keep = np.where(np.isfinite(H_inv))[0]

            p = H_inv[keep] / np.sum(H_inv[keep])

            indices = np.random.choice(keep, M, replace=False, p=p.flatten())
            chosen_bin_numbers = np.array(np.unravel_index(indices, H.shape)).T

            npm_indices = np.zeros(M, dtype=int)
            for i, bin_number in enumerate(tqdm.tqdm(chosen_bin_numbers)):
                in_bin = np.all(bin_numbers.T == np.atleast_2d(bin_number), axis=1)
                npm_indices[i] = np.random.choice(np.where(in_bin)[0], 1)


            fig1 = mpl.plot_binned_statistic(X[npm_indices, 0], X[npm_indices, 1], X[npm_indices, 1],
                                           function="count")
            fig2 = mpl.plot_binned_statistic(X[npm_indices, 0], X[npm_indices, 1], X[npm_indices, 1],
                                           function="count")

        else:
            raise NotImplementedError("unrecognised coreset method")



        for i, label_name in enumerate(all_label_names[1:]):
            v = X[npm_indices, i]
            print(f"{label_name} min: {np.min(v)}  max: {np.max(v)}")
        
        logger.info(f"Building K-D tree with N = {X.shape[0]}, D = {X.shape[1]}...")
        kdt, scales, offsets = npm.build_kdtree(X,
                relative_scales=model_config["kdtree_relative_scales"])
Пример #9
0
                                                       bins=num_bins)
    bins = (xedges, yedges)

    plot_binned_statistic_kwds = dict(function="median", vmin=0, vmax=1,
                                      cmap=DEFAULT_SEQUENTIAL_CMAP, mask=None,
                                      subsample=subsample, min_entries_per_bin=3,
                                      bins=bins)

    fig, axes = plt.subplots(1, K, figsize=(3 * K, 3))

    for i, (ax, ylabel, zlabel, title) \
    in enumerate(zip(axes, ylabels, zlabels, titles)):

        plot_binned_statistic(
            velociraptor[xlabel],
            velociraptor[ylabel],
            velociraptor[zlabel],
            ax=ax, ylabel=latex_labels.get(ylabel, ylabel),
            **plot_binned_statistic_kwds)

        ax.set_xlabel(latex_labels.get(xlabel, xlabel))

        ax.xaxis.set_major_locator(MaxNLocator(5))
        ax.yaxis.set_major_locator(MaxNLocator(5))

        ax.set_xlim(xlims)
        ax.set_ylim(ylims)

        ax.set_title(title)


    cbar = plt.colorbar(ax.images[0], ax=list(axes))#=axes[-1])