Пример #1
0
def get_response_content(fs):
    np.set_printoptions(linewidth=200)
    out = StringIO()
    n = fs.nstates
    t = 0.001
    # sample the initial mutation rate matrix
    S = sample_symmetric_rate_matrix(n)
    v = sample_distribution(n)
    M = mrate.to_gtr_halpern_bruno(S, v)
    if not np.allclose(v, mrate.R_to_distn(M)):
        raise ValueError('stationary distribution error')
    print >> out, 't:', t
    print >> out
    print >> out, 'initial GTR matrix:'
    print >> out, M
    print >> out
    # Try to iteratively increase the relaxation time
    # by repeatedly applying Halpern-Bruno selection.
    R = M
    v_old = v
    for i in range(20):
        # print some properties of the matrix
        print >> out, v_old
        print >> out, mrate.R_to_relaxation_time(R)
        print >> out
        f = MyOpt(R, t)
        x0 = [1.0] * (n - 1)
        result = scipy.optimize.fmin(f,
                                     x0,
                                     disp=0,
                                     full_output=1,
                                     ftol=0.000001)
        xopt, fopt, niters, funcalls, warnflag = result
        if fopt > 0:
            print >> out, 'failed to increase relaxation time'
            print >> out
            break
        # compute the next stationary distribution
        v_target = X_to_distn(xopt)
        v_new = (1 - t) * v_old + t * v_target
        print >> out, v_new - v_old
        print >> out
        # compute the next rate matrix and update its stationary distribution
        R = mrate.to_gtr_halpern_bruno(R, v_new)
        if not np.allclose(v_new, mrate.R_to_distn(R)):
            raise ValueError('stationary distribution error')
        v_old = v_new
    print >> out, 'final rate matrix:'
    print >> out, R
    print >> out
    return out.getvalue()
Пример #2
0
def get_response_content(fs):
    np.set_printoptions(linewidth=200)
    out = StringIO()
    n = fs.nstates
    t = 0.001
    # sample the initial mutation rate matrix
    S = sample_symmetric_rate_matrix(n)
    v = sample_distribution(n)
    M = mrate.to_gtr_halpern_bruno(S, v)
    if not np.allclose(v, mrate.R_to_distn(M)):
        raise ValueError('stationary distribution error')
    print >> out, 't:', t
    print >> out
    print >> out, 'initial GTR matrix:'
    print >> out, M
    print >> out
    # Try to iteratively increase the relaxation time
    # by repeatedly applying Halpern-Bruno selection.
    R = M
    v_old = v
    for i in range(20):
        # print some properties of the matrix
        print >> out, v_old
        print >> out, mrate.R_to_relaxation_time(R)
        print >> out
        f = MyOpt(R, t)
        x0 = [1.0] * (n - 1)
        result = scipy.optimize.fmin(
                f, x0, disp=0, full_output=1, ftol=0.000001)
        xopt, fopt, niters, funcalls, warnflag = result
        if fopt > 0:
            print >> out, 'failed to increase relaxation time'
            print >> out
            break
        # compute the next stationary distribution
        v_target = X_to_distn(xopt)
        v_new = (1 - t) * v_old + t * v_target
        print >> out, v_new - v_old
        print >> out
        # compute the next rate matrix and update its stationary distribution
        R = mrate.to_gtr_halpern_bruno(R, v_new)
        if not np.allclose(v_new, mrate.R_to_distn(R)):
            raise ValueError('stationary distribution error')
        v_old = v_new
    print >> out, 'final rate matrix:'
    print >> out, R
    print >> out
    return out.getvalue()
Пример #3
0
 def test_small_variance(self):
     """
     a = .1
     b = .2
     c = .7
     R = np.array([
         [-(b+c), b, c],
         [a, -(a+c), c],
         [a, b, -(a+b)]])
     """
     n = 4
     v = sample_distribution(n)
     S = sample_symmetric_rate_matrix(n)
     R = mrate.to_gtr_halpern_bruno(S, v)
     t = 0.0000001
     total_rate = mrate.Q_to_expected_rate(R)
     var = get_ml_variance(R, t)
     print 'time:', t
     print 'variance:', var
     print 'total rate:', total_rate
     print 'variance per time:', var / t
     print 'reciprocal of total rate:', 1 / total_rate
     print 'total rate times time:', total_rate * t
     print '(reciprocal of total rate) times time:', t / total_rate
     print
Пример #4
0
 def test_small_variance(self):
     """
     a = .1
     b = .2
     c = .7
     R = np.array([
         [-(b+c), b, c],
         [a, -(a+c), c],
         [a, b, -(a+b)]])
     """
     n = 4
     v = sample_distribution(n)
     S = sample_symmetric_rate_matrix(n)
     R = mrate.to_gtr_halpern_bruno(S, v)
     t = 0.0000001
     total_rate = mrate.Q_to_expected_rate(R)
     var = get_ml_variance(R, t)
     print 'time:', t
     print 'variance:', var
     print 'total rate:', total_rate
     print 'variance per time:', var / t
     print 'reciprocal of total rate:', 1 / total_rate
     print 'total rate times time:', total_rate * t
     print '(reciprocal of total rate) times time:', t / total_rate
     print
Пример #5
0
def get_response_content(fs):
    out = StringIO()
    np.set_printoptions(linewidth=200)
    # get the user defined variables
    n = fs.nstates
    # sample a random reversible CTMC rate matrix
    v = divtime.sample_distribution(n)
    S = divtime.sample_symmetric_rate_matrix(n)
    R = mrate.to_gtr_halpern_bruno(S, v)
    distn = mrate.R_to_distn(R)
    spectrum = scipy.linalg.eigvalsh(mrate.symmetrized(R))
    print >> out, "random reversible CTMC rate matrix:"
    print >> out, R
    print >> out
    print >> out, "stationary distribution:"
    print >> out, distn
    print >> out
    print >> out, "spectrum:"
    print >> out, spectrum
    print >> out
    Q = aggregate(R)
    distn = mrate.R_to_distn(Q)
    spectrum = scipy.linalg.eigvalsh(mrate.symmetrized(Q))
    print >> out, "aggregated rate matrix:"
    print >> out, Q
    print >> out
    print >> out, "stationary distribution:"
    print >> out, distn
    print >> out
    print >> out, "spectrum:"
    print >> out, spectrum
    print >> out
    return out.getvalue()
Пример #6
0
 def __call__(self, X):
     """
     @param X: a vector to be converted into a finite distribution
     """
     v_target = X_to_distn(X)
     v_new = (1 - self.t) * self.v + self.t * v_target
     R = mrate.to_gtr_halpern_bruno(self.M, v_new)
     if not np.allclose(v_new, mrate.R_to_distn(R)):
         raise ValueError('stationary distribution error')
     r_sel = mrate.R_to_relaxation_time(R)
     # we want to minimize this
     return self.r_mut - r_sel
Пример #7
0
 def __call__(self, X):
     """
     @param X: a vector to be converted into a finite distribution
     """
     v_target = X_to_distn(X)
     v_new = (1 - self.t) * self.v + self.t * v_target
     R = mrate.to_gtr_halpern_bruno(self.M, v_new)
     if not np.allclose(v_new, mrate.R_to_distn(R)):
         raise ValueError('stationary distribution error')
     r_sel = mrate.R_to_relaxation_time(R)
     # we want to minimize this
     return self.r_mut - r_sel
Пример #8
0
 def __call__(self):
     """
     @return: True if a counterexample is found
     """
     n = self.nstates
     # sample a fairly generic GTR mutation rate matrix
     S = sample_symmetric_rate_matrix(n)
     v = sample_distribution(n)
     M = mrate.to_gtr_halpern_bruno(S, v)
     # look at the fiedler-like eigenvector of the mutation rate matrix
     r_recip, fiedler = mrate._R_to_eigenpair(M)
     r_mut = 1 / r_recip
     value_min, state_min = min((fiedler[i], i) for i in range(n))
     value_max, state_max = max((fiedler[i], i) for i in range(n))
     # move the stationary distribution towards a 50/50 distribution
     v_target = np.zeros(n)
     v_target[state_min] = 0.5
     v_target[state_max] = 0.5
     v_new = (1 - self.t) * v + self.t * v_target
     R = mrate.to_gtr_halpern_bruno(M, v_new)
     r_sel = mrate.R_to_relaxation_time(R)
     # the mutation-selection balance should have longer relaxation time
     #if r_sel < r_mut:
     #if True:
     if maxind(np.abs(fiedler / v)) != maxind(np.abs(fiedler / np.sqrt(v))):
         self.M = M
         self.fiedler = fiedler
         self.r_mut = r_mut
         self.r_sel = r_sel
         self.v = v
         self.v_new = v_new
         self.v_target = v_target
         self.opt_target = self._get_opt_target()
         return True
     else:
         return False
Пример #9
0
 def __call__(self):
     """
     @return: True if a counterexample is found
     """
     n = self.nstates
     # sample a fairly generic GTR mutation rate matrix
     S = sample_symmetric_rate_matrix(n)
     v = sample_distribution(n)
     M = mrate.to_gtr_halpern_bruno(S, v)
     # look at the fiedler-like eigenvector of the mutation rate matrix
     r_recip, fiedler = mrate._R_to_eigenpair(M)
     r_mut = 1 / r_recip
     value_min, state_min = min((fiedler[i], i) for i in range(n))
     value_max, state_max = max((fiedler[i], i) for i in range(n))
     # move the stationary distribution towards a 50/50 distribution
     v_target = np.zeros(n)
     v_target[state_min] = 0.5
     v_target[state_max] = 0.5
     v_new = (1 - self.t) * v + self.t * v_target
     R = mrate.to_gtr_halpern_bruno(M, v_new)
     r_sel = mrate.R_to_relaxation_time(R)
     # the mutation-selection balance should have longer relaxation time
     #if r_sel < r_mut:
     #if True:
     if maxind(np.abs(fiedler / v)) != maxind(np.abs(fiedler / np.sqrt(v))):
         self.M = M
         self.fiedler = fiedler
         self.r_mut = r_mut
         self.r_sel = r_sel
         self.v = v
         self.v_new = v_new
         self.v_target = v_target
         self.opt_target = self._get_opt_target()
         return True
     else:
         return False
Пример #10
0
 def test_large_variance(self):
     n = 4
     v = sample_distribution(n)
     S = sample_symmetric_rate_matrix(n)
     R = mrate.to_gtr_halpern_bruno(S, v)
     """
     a = .1
     b = .2
     c = .7
     R = np.array([
         [-(b+c), b, c],
         [a, -(a+c), c],
         [a, b, -(a+b)]])
     """
     t = 2.0
     dt = 0.0000001
     rtime = mrate.R_to_relaxation_time(R)
     var_a = get_ml_variance(R, t)
     var_b = get_ml_variance(R, t + dt)
     var_slope = (var_b - var_a) / dt
     deriv_ratio = get_p_id_deriv_ratio(R, t)
     clever_ratio = get_ml_variance_ratio(R, t)
     print 'time:', t
     print 'variance:', var_a
     print 'variance slope:', var_slope
     print 'var_slope / var_a:', var_slope / var_a
     print 'var_slope / var_a [clever]:', clever_ratio
     print 'log variance:', math.log(var_a)
     print 'relaxation time:', rtime
     print '2 / relaxation_time:', 2 / rtime
     print "p_id(t)'' / p_id(t)':", deriv_ratio
     print
     print '--- new attempt ---'
     print 'mutual information:', ctmcmi.get_mutual_information(R, t)
     print 'reciprocal of MI:', 1.0 / ctmcmi.get_mutual_information(R, t)
     print 'asymptotic variance:', get_asymptotic_variance(R, t)
     print 'asymptotic variance (ver. 2):', get_asymptotic_variance_b(R, t)
     print 'asymptotic variance (ver. 3):', get_asymptotic_variance_c(R, t)
     print 'AV approx (ver. 4):', get_asymptotic_variance_d(R, t)
     print 'AV approx (ver. 5):', get_asymptotic_variance_e(R, t)
     print
     print '--- another thing ---'
     fi_slow = get_fisher_info_known_distn(R, v, t)
     fi_fast = get_fisher_info_known_distn_fast(R, v, t)
     print 'slow asymptotic variance:', 1 / fi_slow
     print 'fast asymptotic variance:', 1 / fi_fast
     print
Пример #11
0
 def test_large_variance(self):
     n = 4
     v = sample_distribution(n)
     S = sample_symmetric_rate_matrix(n)
     R = mrate.to_gtr_halpern_bruno(S, v)
     """
     a = .1
     b = .2
     c = .7
     R = np.array([
         [-(b+c), b, c],
         [a, -(a+c), c],
         [a, b, -(a+b)]])
     """
     t = 2.0
     dt = 0.0000001
     rtime = mrate.R_to_relaxation_time(R)
     var_a = get_ml_variance(R, t)
     var_b = get_ml_variance(R, t+dt)
     var_slope = (var_b - var_a) / dt
     deriv_ratio = get_p_id_deriv_ratio(R, t)
     clever_ratio = get_ml_variance_ratio(R, t)
     print 'time:', t
     print 'variance:', var_a
     print 'variance slope:', var_slope
     print 'var_slope / var_a:', var_slope / var_a
     print 'var_slope / var_a [clever]:', clever_ratio
     print 'log variance:', math.log(var_a)
     print 'relaxation time:', rtime
     print '2 / relaxation_time:', 2 / rtime
     print "p_id(t)'' / p_id(t)':", deriv_ratio
     print
     print '--- new attempt ---'
     print 'mutual information:', ctmcmi.get_mutual_information(R, t)
     print 'reciprocal of MI:', 1.0 / ctmcmi.get_mutual_information(R, t)
     print 'asymptotic variance:', get_asymptotic_variance(R, t)
     print 'asymptotic variance (ver. 2):', get_asymptotic_variance_b(R, t)
     print 'asymptotic variance (ver. 3):', get_asymptotic_variance_c(R, t)
     print 'AV approx (ver. 4):', get_asymptotic_variance_d(R, t)
     print 'AV approx (ver. 5):', get_asymptotic_variance_e(R, t)
     print
     print '--- another thing ---'
     fi_slow = get_fisher_info_known_distn(R, v, t)
     fi_fast = get_fisher_info_known_distn_fast(R, v, t)
     print 'slow asymptotic variance:', 1 / fi_slow
     print 'fast asymptotic variance:', 1 / fi_fast
     print
Пример #12
0
def get_response_content(fs):
    out = StringIO()
    np.set_printoptions(linewidth=200)
    # define the barbell mutation rate matrix
    M, p = get_barbell_rate_matrix(fs.p_mid)
    nstates = len(p)
    print >> out, 'barbell mutation matrix:'
    print >> out, M
    print >> out
    print >> out, 'all of these should be zero for detailed balance:'
    for i in range(nstates):
        for j in range(nstates):
            print >> out, p[i] * M[i, j] - p[j]*M[j, i]
    print >> out
    print >> out, 'expected rate of the barbell mutation matrix:'
    print >> out, mrate.Q_to_expected_rate(M)
    print >> out
    p_target = np.array([1/3., 1/3., 1/3.])
    print >> out, 'target stationary distribution:'
    print >> out, p_target
    print >> out
    Q = mrate.to_gtr_halpern_bruno(M, p_target)
    print >> out, 'mutation-selection balance rate matrix:'
    print >> out, Q
    print >> out
    v = mrate.R_to_distn(Q)
    print >> out, 'computed stationary distribution:'
    print >> out, v
    print >> out
    print >> out, 'expected rate of the mutation-selection balance rate matrix:'
    print >> out, mrate.Q_to_expected_rate(Q)
    print >> out
    print >> out, 'all of these should be zero for detailed balance:'
    for i in range(nstates):
        for j in range(nstates):
            print >> out, v[i] * Q[i, j] - v[j]*Q[j, i]
    print >> out
    return out.getvalue()
Пример #13
0
def get_response_content(fs):
    out = StringIO()
    np.set_printoptions(linewidth=200)
    # define the barbell mutation rate matrix
    M, p = get_barbell_rate_matrix(fs.p_mid)
    nstates = len(p)
    print >> out, 'barbell mutation matrix:'
    print >> out, M
    print >> out
    print >> out, 'all of these should be zero for detailed balance:'
    for i in range(nstates):
        for j in range(nstates):
            print >> out, p[i] * M[i, j] - p[j] * M[j, i]
    print >> out
    print >> out, 'expected rate of the barbell mutation matrix:'
    print >> out, mrate.Q_to_expected_rate(M)
    print >> out
    p_target = np.array([1 / 3., 1 / 3., 1 / 3.])
    print >> out, 'target stationary distribution:'
    print >> out, p_target
    print >> out
    Q = mrate.to_gtr_halpern_bruno(M, p_target)
    print >> out, 'mutation-selection balance rate matrix:'
    print >> out, Q
    print >> out
    v = mrate.R_to_distn(Q)
    print >> out, 'computed stationary distribution:'
    print >> out, v
    print >> out
    print >> out, 'expected rate of the mutation-selection balance rate matrix:'
    print >> out, mrate.Q_to_expected_rate(Q)
    print >> out
    print >> out, 'all of these should be zero for detailed balance:'
    for i in range(nstates):
        for j in range(nstates):
            print >> out, v[i] * Q[i, j] - v[j] * Q[j, i]
    print >> out
    return out.getvalue()
Пример #14
0
def sample_row():
    n = 4
    # sample the exchangeability
    S = np.zeros((n, n))
    S[1, 0] = random.expovariate(1)
    S[2, 0] = random.expovariate(1)
    S[2, 1] = random.expovariate(1)
    S[3, 0] = random.expovariate(1)
    S[3, 1] = random.expovariate(1)
    S[3, 2] = random.expovariate(1)
    # sample the mutation stationary distribution
    mdistn = np.array([random.expovariate(1) for i in range(n)])
    mdistn /= np.sum(mdistn)
    # sample the mutation selection balance stationary distribution
    bdistn = np.array([random.expovariate(1) for i in range(n)])
    bdistn /= np.sum(bdistn)
    # sample the time
    t = random.expovariate(1)
    # sample the info type
    infotype = random.choice(('infotype.mi', 'infotype.fi'))
    # Compute some intermediate variables
    # from which the summary statistics and the label are computed.
    S = S + S.T
    M = S * mdistn
    M -= np.diag(np.sum(M, axis=1))
    R = mrate.to_gtr_halpern_bruno(M, bdistn)
    shannon_ent_mut = -sum(p * log(p) for p in mdistn)
    shannon_ent_bal = -sum(p * log(p) for p in bdistn)
    logical_ent_mut = 1.0 - sum(p * p for p in mdistn)
    logical_ent_bal = 1.0 - sum(p * p for p in bdistn)
    expected_rate_mut = mrate.Q_to_expected_rate(M)
    expected_rate_bal = mrate.Q_to_expected_rate(R)
    spectral_rate_mut = 1 / mrate.R_to_relaxation_time(M)
    spectral_rate_bal = 1 / mrate.R_to_relaxation_time(R)
    mi_mut = ctmcmi.get_mutual_information(M, t)
    mi_bal = ctmcmi.get_mutual_information(R, t)
    fi_mut = divtime.get_fisher_information(M, t)
    fi_bal = divtime.get_fisher_information(R, t)
    # compute the summary statistics
    summary_entries = [
        shannon_ent_bal - shannon_ent_mut,
        logical_ent_bal - logical_ent_mut,
        log(shannon_ent_bal) - log(shannon_ent_mut),
        log(logical_ent_bal) - log(logical_ent_mut),
        expected_rate_bal - expected_rate_mut,
        spectral_rate_bal - spectral_rate_mut,
        log(expected_rate_bal) - log(expected_rate_mut),
        log(spectral_rate_bal) - log(spectral_rate_mut),
        mi_bal - mi_mut,
        fi_bal - fi_mut,
        math.log(mi_bal) - math.log(mi_mut),
        math.log(fi_bal) - math.log(fi_mut),
    ]
    # get the definition entries
    definition_entries = [
        S[1, 0],
        S[2, 0],
        S[2, 1],
        S[3, 0],
        S[3, 1],
        S[3, 2],
        mdistn[0],
        mdistn[1],
        mdistn[2],
        mdistn[3],
        bdistn[0],
        bdistn[1],
        bdistn[2],
        bdistn[3],
        infotype,
        t,
    ]
    # define the label
    if infotype == 'infotype.mi' and mi_mut > mi_bal:
        label = 'mut.is.better'
    elif infotype == 'infotype.mi' and mi_mut < mi_bal:
        label = 'bal.is.better'
    elif infotype == 'infotype.fi' and fi_mut > fi_bal:
        label = 'mut.is.better'
    elif infotype == 'infotype.fi' and fi_mut < fi_bal:
        label = 'bal.is.better'
    else:
        label = 'indistinguishable'
    # return the row
    return definition_entries + summary_entries + [label]
Пример #15
0
def get_input_matrices(fs):
    """
    @return: M, R
    """
    # get the positive strict lower triangular part of the S matrix
    L = []
    for i, line in enumerate(fs.lowtri):
        values = line.split()
        if len(values) != i + 1:
            raise ValueError('expected %d values on line "%s"' % (i + 1, line))
        vs = [float(v) for v in values]
        if any(x < 0 for x in vs):
            raise ValueError('exchangeabilities must be nonnegative')
        L.append(vs)
    # get the mut and mutsel weights
    mut_weights = [float(v) for v in fs.mutweights]
    mutsel_weights = [float(v) for v in fs.mutselweights]
    if any(x <= 0 for x in mut_weights + mutsel_weights):
        raise ValueError('stationary weights must be positive')
    # normalize weights to distributions
    mut_distn = [v / sum(mut_weights) for v in mut_weights]
    mutsel_distn = [v / sum(mutsel_weights) for v in mutsel_weights]
    # get the exchangeability matrix
    nstates = len(L) + 1
    S = np.zeros((nstates, nstates))
    for i, row in enumerate(L):
        for j, v in enumerate(row):
            S[i + 1, j] = v
            S[j, i + 1] = v
    # check the state space sizes implied by the inputs
    if len(set(len(x) for x in (S, mut_weights, mutsel_weights))) != 1:
        raise ValueError('the inputs do not agree on the state space size')
    # check for sufficient number of states
    if nstates < 2:
        raise ValueError('at least two states are required')
    # check reducibility of the exchangeability
    if not MatrixUtil.is_symmetric_irreducible(S):
        raise ValueError('exchangeability is not irreducible')
    # get the mutation rate matrix
    M = S * mut_distn * fs.mutscale
    M -= np.diag(np.sum(M, axis=1))
    # check sign symmetry and irreducibility
    if not MatrixUtil.is_symmetric_irreducible(np.sign(M)):
        raise ValueError(
            'mutation rate matrix is not sign symmetric irreducible')
    # get the mutation selection balance rate matrix
    R = mrate.to_gtr_halpern_bruno(M, mutsel_distn)
    # check sign symmetry and irreducibility
    if not MatrixUtil.is_symmetric_irreducible(np.sign(R)):
        raise ValueError('mut-sel balance rate matrix '
                         'is not sign symmetric irreducible')
    # check the stationary distributions
    mut_distn_observed = mrate.R_to_distn(M)
    if not np.allclose(mut_distn_observed, mut_distn):
        raise ValueError(
            'internal mut stationary distribution computation error')
    mutsel_distn_observed = mrate.R_to_distn(R)
    if not np.allclose(mutsel_distn_observed, mutsel_distn):
        raise ValueError(
            'internal mut-sel stationary distribution computation error')
    # return the values
    return M, R
Пример #16
0
def get_response_content(fs):
    out = StringIO()
    np.set_printoptions(linewidth=200)
    # get the user defined variables
    n = fs.nstates
    t = fs.divtime
    #h = fs.delta
    # sample a random rate matrix
    v = divtime.sample_distribution(n)
    S = divtime.sample_symmetric_rate_matrix(n)
    R = mrate.to_gtr_halpern_bruno(S, v)
    # get some properties of the rate matrix
    distn = mrate.R_to_distn(R)
    spectrum = np.linalg.eigvalsh(mrate.symmetrized(R))
    #spectrum, U = np.linalg.eigh(mrate.symmetrized(R))
    #spectrum = np.linalg.eigvals(R)
    # report some information about the mutual information curve
    mi = ctmcmi.get_mutual_information(R, t)
    mi_diff = ctmcmi.get_mutual_information_diff(R, t)
    mi_diff_b = ctmcmi.get_mutual_information_diff_b(R, t)
    mi_diff_c = ctmcmi.get_mutual_information_diff_c(R, t)
    print >> out, 'arbitrary large-ish divergence time:'
    print >> out, t
    print >> out
    print >> out, 'randomly sampled reversible rate matrix:'
    print >> out, R
    print >> out
    print >> out, 'stationary distribution:'
    print >> out, distn
    print >> out
    print >> out, 'spectrum of the rate matrix:'
    print >> out, spectrum
    print >> out
    print >> out, 'mutual information at t = %f:' % t
    print >> out, mi
    print >> out
    print >> out, 'mutual information at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_b(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_approx(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_approx_b(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f (ver. 3):' % t
    print >> out, ctmcmi.cute_MI_alternate(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f (ver. 4):' % t
    print >> out, ctmcmi.get_mutual_information_approx_c(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_small_approx(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_small_approx_b(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f (ver. 3):' % t
    print >> out, ctmcmi.get_mutual_information_small_approx_c(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f (ver. 4):' % t
    print >> out, ctmcmi.get_mutual_information_small_approx_d(R, t)
    print >> out
    print >> out, 'mutual information diff at t = %f:' % t
    print >> out, mi_diff
    print >> out
    print >> out, 'mutual information diff at t = %f (ver. 2):' % t
    print >> out, mi_diff_b
    print >> out
    print >> out, 'mutual information diff at t = %f (ver. 3):' % t
    print >> out, mi_diff_c
    print >> out
    print >> out, 'large t approximation of MI diff at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx(R, t)
    print >> out
    print >> out, 'large t approximation of MI diff at t = %f: (ver. 2)' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx_b(R, t)
    print >> out
    print >> out, 'large t approximation of MI diff at t = %f: (ver. 4)' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx_c(R, t)
    print >> out
    print >> out, 'log of mutual information at t = %f:' % t
    print >> out, math.log(mi)
    print >> out
    #print >> out, 'estimated derivative',
    #print >> out, 'of log of mutual information at t = %f:' % t
    #print >> out, (math.log(mi_c) - math.log(mi_a)) / (2*h)
    #print >> out
    print >> out, 'estimated derivative of log of MI',
    print >> out, 'at t = %f:' % t
    print >> out, mi_diff / mi
    print >> out
    print >> out, 'large t approximation of derivative of log of MI',
    print >> out, 'at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx(R,
            t) / ctmcmi.get_mutual_information_approx(R, t)
    print >> out
    print >> out, 'large t approximation of derivative of log of MI',
    print >> out, 'at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx_b(R,
            t) / ctmcmi.get_mutual_information_approx_b(R, t)
    print >> out
    print >> out, 'twice the relevant eigenvalue:'
    print >> out, 2 * spectrum[-2]
    print >> out
    print >> out
    #print >> out, 'estimated derivative',
    #print >> out, 'of mutual information at t = %f:' % t
    #print >> out, (mi_c - mi_a) / (2*h)
    #print >> out
    #print >> out, '(estimated derivative of mutual information) /',
    #print >> out, '(mutual information) at t = %f:' % t
    #print >> out, (mi_c - mi_a) / (2*h*mi_b)
    #print >> out
    return out.getvalue()
Пример #17
0
def get_response_content(fs):
    out = StringIO()
    np.set_printoptions(linewidth=200)
    # get the user defined variables
    n = fs.nstates
    t = fs.divtime
    #h = fs.delta
    # sample a random rate matrix
    v = divtime.sample_distribution(n)
    S = divtime.sample_symmetric_rate_matrix(n)
    R = mrate.to_gtr_halpern_bruno(S, v)
    # get some properties of the rate matrix
    distn = mrate.R_to_distn(R)
    spectrum = np.linalg.eigvalsh(mrate.symmetrized(R))
    #spectrum, U = np.linalg.eigh(mrate.symmetrized(R))
    #spectrum = np.linalg.eigvals(R)
    # report some information about the mutual information curve
    mi = ctmcmi.get_mutual_information(R, t)
    mi_diff = ctmcmi.get_mutual_information_diff(R, t)
    mi_diff_b = ctmcmi.get_mutual_information_diff_b(R, t)
    mi_diff_c = ctmcmi.get_mutual_information_diff_c(R, t)
    print >> out, 'arbitrary large-ish divergence time:'
    print >> out, t
    print >> out
    print >> out, 'randomly sampled reversible rate matrix:'
    print >> out, R
    print >> out
    print >> out, 'stationary distribution:'
    print >> out, distn
    print >> out
    print >> out, 'spectrum of the rate matrix:'
    print >> out, spectrum
    print >> out
    print >> out, 'mutual information at t = %f:' % t
    print >> out, mi
    print >> out
    print >> out, 'mutual information at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_b(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_approx(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_approx_b(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f (ver. 3):' % t
    print >> out, ctmcmi.cute_MI_alternate(R, t)
    print >> out
    print >> out, 'large t approximation of MI at t = %f (ver. 4):' % t
    print >> out, ctmcmi.get_mutual_information_approx_c(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_small_approx(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_small_approx_b(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f (ver. 3):' % t
    print >> out, ctmcmi.get_mutual_information_small_approx_c(R, t)
    print >> out
    print >> out, 'small t approximation of MI at t = %f (ver. 4):' % t
    print >> out, ctmcmi.get_mutual_information_small_approx_d(R, t)
    print >> out
    print >> out, 'mutual information diff at t = %f:' % t
    print >> out, mi_diff
    print >> out
    print >> out, 'mutual information diff at t = %f (ver. 2):' % t
    print >> out, mi_diff_b
    print >> out
    print >> out, 'mutual information diff at t = %f (ver. 3):' % t
    print >> out, mi_diff_c
    print >> out
    print >> out, 'large t approximation of MI diff at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx(R, t)
    print >> out
    print >> out, 'large t approximation of MI diff at t = %f: (ver. 2)' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx_b(R, t)
    print >> out
    print >> out, 'large t approximation of MI diff at t = %f: (ver. 4)' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx_c(R, t)
    print >> out
    print >> out, 'log of mutual information at t = %f:' % t
    print >> out, math.log(mi)
    print >> out
    #print >> out, 'estimated derivative',
    #print >> out, 'of log of mutual information at t = %f:' % t
    #print >> out, (math.log(mi_c) - math.log(mi_a)) / (2*h)
    #print >> out
    print >> out, 'estimated derivative of log of MI',
    print >> out, 'at t = %f:' % t
    print >> out, mi_diff / mi
    print >> out
    print >> out, 'large t approximation of derivative of log of MI',
    print >> out, 'at t = %f:' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx(
        R, t) / ctmcmi.get_mutual_information_approx(R, t)
    print >> out
    print >> out, 'large t approximation of derivative of log of MI',
    print >> out, 'at t = %f (ver. 2):' % t
    print >> out, ctmcmi.get_mutual_information_diff_approx_b(
        R, t) / ctmcmi.get_mutual_information_approx_b(R, t)
    print >> out
    print >> out, 'twice the relevant eigenvalue:'
    print >> out, 2 * spectrum[-2]
    print >> out
    print >> out
    #print >> out, 'estimated derivative',
    #print >> out, 'of mutual information at t = %f:' % t
    #print >> out, (mi_c - mi_a) / (2*h)
    #print >> out
    #print >> out, '(estimated derivative of mutual information) /',
    #print >> out, '(mutual information) at t = %f:' % t
    #print >> out, (mi_c - mi_a) / (2*h*mi_b)
    #print >> out
    return out.getvalue()
Пример #18
0
def sample_row():
    n = 4
    # sample the exchangeability
    S = np.zeros((n, n))
    S[1,0] = random.expovariate(1)
    S[2,0] = random.expovariate(1)
    S[2,1] = random.expovariate(1)
    S[3,0] = random.expovariate(1)
    S[3,1] = random.expovariate(1)
    S[3,2] = random.expovariate(1)
    # sample the mutation stationary distribution
    mdistn = np.array([random.expovariate(1) for i in range(n)])
    mdistn /= np.sum(mdistn)
    # sample the mutation selection balance stationary distribution
    bdistn = np.array([random.expovariate(1) for i in range(n)])
    bdistn /= np.sum(bdistn)
    # sample the time
    t = random.expovariate(1)
    # sample the info type
    infotype = random.choice(('infotype.mi', 'infotype.fi'))
    # Compute some intermediate variables
    # from which the summary statistics and the label are computed.
    S = S + S.T
    M = S * mdistn
    M -= np.diag(np.sum(M, axis=1))
    R = mrate.to_gtr_halpern_bruno(M, bdistn)
    shannon_ent_mut = -sum(p*log(p) for p in mdistn)
    shannon_ent_bal = -sum(p*log(p) for p in bdistn)
    logical_ent_mut = 1.0 - sum(p*p for p in mdistn)
    logical_ent_bal = 1.0 - sum(p*p for p in bdistn)
    expected_rate_mut = mrate.Q_to_expected_rate(M)
    expected_rate_bal = mrate.Q_to_expected_rate(R)
    spectral_rate_mut = 1 / mrate.R_to_relaxation_time(M)
    spectral_rate_bal = 1 / mrate.R_to_relaxation_time(R)
    mi_mut = ctmcmi.get_mutual_information(M, t)
    mi_bal = ctmcmi.get_mutual_information(R, t)
    fi_mut = divtime.get_fisher_information(M, t)
    fi_bal = divtime.get_fisher_information(R, t)
    # compute the summary statistics
    summary_entries = [
            shannon_ent_bal - shannon_ent_mut,
            logical_ent_bal - logical_ent_mut,
            log(shannon_ent_bal) - log(shannon_ent_mut),
            log(logical_ent_bal) - log(logical_ent_mut),
            expected_rate_bal - expected_rate_mut,
            spectral_rate_bal - spectral_rate_mut,
            log(expected_rate_bal) - log(expected_rate_mut),
            log(spectral_rate_bal) - log(spectral_rate_mut),
            mi_bal - mi_mut,
            fi_bal - fi_mut,
            math.log(mi_bal) - math.log(mi_mut),
            math.log(fi_bal) - math.log(fi_mut),
            ]
    # get the definition entries
    definition_entries = [
            S[1,0], S[2,0], S[2,1], S[3,0], S[3,1], S[3,2],
            mdistn[0], mdistn[1], mdistn[2], mdistn[3],
            bdistn[0], bdistn[1], bdistn[2], bdistn[3],
            infotype,
            t,
            ]
    # define the label
    if infotype == 'infotype.mi' and mi_mut > mi_bal:
        label = 'mut.is.better'
    elif infotype == 'infotype.mi' and mi_mut < mi_bal:
        label = 'bal.is.better'
    elif infotype == 'infotype.fi' and fi_mut > fi_bal:
        label = 'mut.is.better'
    elif infotype == 'infotype.fi' and fi_mut < fi_bal:
        label = 'bal.is.better'
    else:
        label = 'indistinguishable'
    # return the row
    return definition_entries + summary_entries + [label]
Пример #19
0
def get_response_content(fs):
    np.set_printoptions(linewidth=200)
    out = StringIO()
    R_jc = get_jc_rate_matrix()
    t = 0.1
    x = 1.6
    w = 0.5 * log(x)
    v = x_to_distn(x)
    R_hb_easy = mrate.to_gtr_halpern_bruno(R_jc, v)
    y, z, = mrate.x_to_halpern_bruno_yz(x)
    yz_ratio = y / z
    R_hb_tedious = get_mut_sel_rate_matrix(y, z)
    P_hb_easy = get_trans_mat_expm(R_hb_easy, t)
    P_hb_tedious = get_trans_mat_tediously(y, z, t)
    P_hb_tedious_c = get_trans_mat_tediously_c(y, z, t)
    P_hb_from_x = get_trans_mat_from_x(x, t)
    e_ll_jc = ctmcmi.get_expected_ll_ratio(R_jc, t)
    e_ll_jc_tedious = get_jc_e_ll(t)
    e_ll_hb = ctmcmi.get_expected_ll_ratio(R_hb_easy, t)
    e_ll_hb_from_x = get_e_ll_from_x(x, t)
    e_ll_hb_from_x_b = get_e_ll_from_x_b(x, t)
    e_ll_hb_from_x_htrig = get_e_ll_from_x_htrig(x, t)
    # print some values
    print >> out, 'Jukes-Cantor mutation matrix:'
    print >> out, R_jc
    print >> out
    print >> out, 'ratio of common to uncommon probabilities:'
    print >> out, x
    print >> out
    print >> out, '1/2 log ratio:'
    print >> out, w
    print >> out
    print >> out, 'fast rate:'
    print >> out, y
    print >> out
    print >> out, 'slow rate:'
    print >> out, z
    print >> out
    print >> out, 'reciprocal of fast rate:'
    print >> out, 1.0 / y
    print >> out
    print >> out, 'ratio of fast to slow rates (should be x):'
    print >> out, yz_ratio
    print >> out
    print >> out, 'mutation-selection rate matrix (easy):'
    print >> out, R_hb_easy
    print >> out
    print >> out, 'mutation-selection rate matrix (tedious):'
    print >> out, R_hb_tedious
    print >> out
    print >> out, 'time:'
    print >> out, t
    print >> out
    print >> out, 'mutation-selection transition matrix (easy):'
    print >> out, P_hb_easy
    print >> out
    print >> out, 'mutation-selection transition matrix (tedious):'
    print >> out, P_hb_tedious
    print >> out
    print >> out, 'mutation-selection transition matrix (tedious c):'
    print >> out, P_hb_tedious_c
    print >> out
    print >> out, 'mutation-selection transition matrix (from x):'
    print >> out, P_hb_from_x
    print >> out
    print >> out, 'expected Jukes-Cantor log likelihood ratio:'
    print >> out, e_ll_jc
    print >> out
    print >> out, 'expected Jukes-Cantor log likelihood ratio (tedious):'
    print >> out, e_ll_jc_tedious
    print >> out
    print >> out, 'expected mutation-selection log likelihood ratio:'
    print >> out, e_ll_hb
    print >> out
    print >> out, 'expected mutation-selection ll ratio from x:'
    print >> out, e_ll_hb_from_x
    print >> out
    print >> out, 'expected mutation-selection ll ratio from x (impl b):'
    print >> out, e_ll_hb_from_x_b
    print >> out
    print >> out, 'expected mutation-selection ll ratio from x (htrig):'
    print >> out, e_ll_hb_from_x_htrig
    print >> out
    # check some invariants
    if np.allclose(R_hb_easy, R_hb_tedious):
        print >> out, 'halpern-bruno rate matrices are equal as expected'
    else:
        print >> out, '*** halpern-bruno rate matrices are not equal!'
    if np.allclose(P_hb_easy, P_hb_tedious):
        print >> out, 'halpern-bruno transition matrices are equal as expected'
    else:
        print >> out, '*** halpern-bruno transition matrices are not equal!'
    if np.allclose(P_hb_easy, P_hb_tedious_c):
        print >> out, 'halpern-bruno transition matrices are equal as expected'
    else:
        print >> out, '*** halpern-bruno transition matrices are not equal!'
    if np.allclose(P_hb_easy, P_hb_from_x):
        print >> out, 'halpern-bruno transition matrices are equal as expected'
    else:
        print >> out, '*** halpern-bruno trans. mat. from x is not equal!'
    # return the results
    return out.getvalue()
Пример #20
0
def get_input_matrices(fs):
    """
    @return: M, R
    """
    # get the positive strict lower triangular part of the S matrix
    L = []
    for i, line in enumerate(fs.lowtri):
        values = line.split()
        if len(values) != i + 1:
            raise ValueError(
                    'expected %d values on line "%s"' % (i+1, line))
        vs = [float(v) for v in values]
        if any(x<0 for x in vs):
            raise ValueError('exchangeabilities must be nonnegative')
        L.append(vs)
    # get the mut and mutsel weights
    mut_weights = [float(v) for v in fs.mutweights]
    mutsel_weights = [float(v) for v in fs.mutselweights]
    if any(x<=0 for x in mut_weights + mutsel_weights):
        raise ValueError('stationary weights must be positive')
    # normalize weights to distributions
    mut_distn = [v / sum(mut_weights) for v in mut_weights]
    mutsel_distn = [v / sum(mutsel_weights) for v in mutsel_weights]
    # get the exchangeability matrix
    nstates = len(L) + 1
    S = np.zeros((nstates, nstates))
    for i, row in enumerate(L):
        for j, v in enumerate(row):
            S[i+1, j] = v
            S[j, i+1] = v
    # check the state space sizes implied by the inputs
    if len(set(len(x) for x in (S, mut_weights, mutsel_weights))) != 1:
        raise ValueError('the inputs do not agree on the state space size')
    # check for sufficient number of states
    if nstates < 2:
        raise ValueError('at least two states are required')
    # check reducibility of the exchangeability
    if not MatrixUtil.is_symmetric_irreducible(S):
        raise ValueError('exchangeability is not irreducible')
    # get the mutation rate matrix
    M = S * mut_distn * fs.mutscale
    M -= np.diag(np.sum(M, axis=1))
    # check sign symmetry and irreducibility
    if not MatrixUtil.is_symmetric_irreducible(np.sign(M)):
        raise ValueError(
                'mutation rate matrix is not sign symmetric irreducible')
    # get the mutation selection balance rate matrix
    R = mrate.to_gtr_halpern_bruno(M, mutsel_distn)
    # check sign symmetry and irreducibility
    if not MatrixUtil.is_symmetric_irreducible(np.sign(R)):
        raise ValueError(
                'mut-sel balance rate matrix '
                'is not sign symmetric irreducible')
    # check the stationary distributions
    mut_distn_observed = mrate.R_to_distn(M)
    if not np.allclose(mut_distn_observed, mut_distn):
        raise ValueError(
                'internal mut stationary distribution computation error')
    mutsel_distn_observed = mrate.R_to_distn(R)
    if not np.allclose(mutsel_distn_observed, mutsel_distn):
        raise ValueError(
                'internal mut-sel stationary distribution computation error')
    # return the values
    return M, R
Пример #21
0
def get_response_content(fs):
    out = StringIO()
    np.set_printoptions(linewidth=200)
    # get the user defined variables
    n = fs.nstates
    # sample a random rate matrix
    v = divtime.sample_distribution(n)
    S = divtime.sample_symmetric_rate_matrix(n)
    R = mrate.to_gtr_halpern_bruno(S, v)
    # get some properties of the rate matrix and its re-symmetrization
    S = mrate.symmetrized(R)
    distn = mrate.R_to_distn(R)
    w, U = np.linalg.eigh(S)
    D = np.diag(U.T[-1])**2
    D_inv = np.diag(np.reciprocal(U.T[-1]))**2
    for t in (1.0, 2.0):
        P = scipy.linalg.expm(R * t)
        M = ndot(D**.5, scipy.linalg.expm(S * t), D**.5)
        M_star = ndot(D_inv**.5, scipy.linalg.expm(S * t), D_inv**.5)
        M_star_log = np.log(M_star)
        M_star_log_w, M_star_log_U = np.linalg.eigh(M_star_log)
        E = M * np.log(M_star)
        E_w, E_U = np.linalg.eigh(E)
        print >> out, 't:'
        print >> out, t
        print >> out
        print >> out, 'randomly sampled rate matrix R'
        print >> out, R
        print >> out
        print >> out, 'symmetrized matrix S'
        print >> out, S
        print >> out
        print >> out, 'stationary distribution diagonal D'
        print >> out, D
        print >> out
        print >> out, 'R = D^-1/2 S D^1/2'
        print >> out, ndot(D_inv**.5, S, D**.5)
        print >> out
        print >> out, 'probability matrix e^(R*t) = P'
        print >> out, P
        print >> out
        print >> out, 'P = D^-1/2 e^(S*t) D^1/2'
        print >> out, ndot(D_inv**.5, scipy.linalg.expm(S * t), D**.5)
        print >> out
        print >> out, 'pairwise distribution matrix M'
        print >> out, 'M = D^1/2 e^(S*t) D^1/2'
        print >> out, M
        print >> out
        print >> out, 'sum of entries of M'
        print >> out, np.sum(M)
        print >> out
        print >> out, 'M_star = D^-1/2 e^(S*t) D^-1/2'
        print >> out, M_star
        print >> out
        print >> out, 'entrywise logarithm logij(M_star)'
        print >> out, np.log(M_star)
        print >> out
        print >> out, 'Hadamard product M o logij(M_star) = E'
        print >> out, E
        print >> out
        print >> out, 'spectrum of M:'
        print >> out, np.linalg.eigvalsh(M)
        print >> out
        print >> out, 'spectrum of logij(M_star):'
        print >> out, M_star_log_w
        print >> out
        print >> out, 'corresponding eigenvectors of logij(M_star) as columns:'
        print >> out, M_star_log_U
        print >> out
        print >> out, 'spectrum of E:'
        print >> out, E_w
        print >> out
        print >> out, 'corresponding eigenvectors of E as columns:'
        print >> out, E_U
        print >> out
        print >> out, 'entrywise square roots of stationary distribution:'
        print >> out, np.sqrt(v)
        print >> out
        print >> out, 'sum of entries of E:'
        print >> out, np.sum(E)
        print >> out
        print >> out, 'mutual information:'
        print >> out, ctmcmi.get_mutual_information(R, t)
        print >> out
        print >> out
    return out.getvalue()
Пример #22
0
def get_response_content(fs):
    out = StringIO()
    np.set_printoptions(linewidth=200)
    # get the user defined variables
    n = fs.nstates
    # sample a random rate matrix
    v = divtime.sample_distribution(n)
    S = divtime.sample_symmetric_rate_matrix(n)
    R = mrate.to_gtr_halpern_bruno(S, v)
    # get some properties of the rate matrix and its re-symmetrization
    S = mrate.symmetrized(R)
    distn = mrate.R_to_distn(R)
    w, U = np.linalg.eigh(S)
    D = np.diag(U.T[-1])**2
    D_inv = np.diag(np.reciprocal(U.T[-1]))**2
    for t in (1.0, 2.0):
        P = scipy.linalg.expm(R*t)
        M = ndot(D**.5, scipy.linalg.expm(S*t), D**.5)
        M_star = ndot(D_inv**.5, scipy.linalg.expm(S*t), D_inv**.5)
        M_star_log = np.log(M_star)
        M_star_log_w, M_star_log_U = np.linalg.eigh(M_star_log)
        E = M * np.log(M_star)
        E_w, E_U = np.linalg.eigh(E)
        print >> out, 't:'
        print >> out, t
        print >> out
        print >> out, 'randomly sampled rate matrix R'
        print >> out, R
        print >> out
        print >> out, 'symmetrized matrix S'
        print >> out, S
        print >> out
        print >> out, 'stationary distribution diagonal D'
        print >> out, D
        print >> out
        print >> out, 'R = D^-1/2 S D^1/2'
        print >> out, ndot(D_inv**.5, S, D**.5)
        print >> out
        print >> out, 'probability matrix e^(R*t) = P'
        print >> out, P
        print >> out
        print >> out, 'P = D^-1/2 e^(S*t) D^1/2'
        print >> out, ndot(D_inv**.5, scipy.linalg.expm(S*t), D**.5)
        print >> out
        print >> out, 'pairwise distribution matrix M'
        print >> out, 'M = D^1/2 e^(S*t) D^1/2'
        print >> out, M
        print >> out
        print >> out, 'sum of entries of M'
        print >> out, np.sum(M)
        print >> out
        print >> out, 'M_star = D^-1/2 e^(S*t) D^-1/2'
        print >> out, M_star
        print >> out
        print >> out, 'entrywise logarithm logij(M_star)'
        print >> out, np.log(M_star)
        print >> out
        print >> out, 'Hadamard product M o logij(M_star) = E'
        print >> out, E
        print >> out
        print >> out, 'spectrum of M:'
        print >> out, np.linalg.eigvalsh(M)
        print >> out
        print >> out, 'spectrum of logij(M_star):'
        print >> out, M_star_log_w
        print >> out
        print >> out, 'corresponding eigenvectors of logij(M_star) as columns:'
        print >> out, M_star_log_U
        print >> out
        print >> out, 'spectrum of E:'
        print >> out, E_w
        print >> out
        print >> out, 'corresponding eigenvectors of E as columns:'
        print >> out, E_U
        print >> out
        print >> out, 'entrywise square roots of stationary distribution:'
        print >> out, np.sqrt(v)
        print >> out
        print >> out, 'sum of entries of E:'
        print >> out, np.sum(E)
        print >> out
        print >> out, 'mutual information:'
        print >> out, ctmcmi.get_mutual_information(R, t)
        print >> out
        print >> out
    return out.getvalue()