def main(): stack = ioMRC.readMRC( sys.argv[1] )[0] output = sys.argv[2] apix = float( sys.argv[3] ) frame_dose = float( sys.argv[4] ) frames_thrown = int( sys.argv[5] ) pre_dose = frames_thrown * frame_dose print( "pre_dose = %.6f" % pre_dose ) num_frames = int( sys.argv[6] ) total_dose = pre_dose + num_frames * frame_dose print( "total_dose = %.6f" % total_dose ) kv = float( sys.argv[7] ) if sys.argv[8] == 'y': apply_dw = True else: apply_dw = False if apply_dw: dw_avg = util.FilterDoseWeight( stack, apix=apix, frame_dose=frame_dose, pre_dose=pre_dose, total_dose=total_dose, kv=kv ) else: dw_avg = np.sum( stack[:num_frames,:,:], axis=0 ) dw_avg = util.NormalizeImg( dw_avg, mean=0.0, std=100.0 ) # Normalize the new DW-rec image ioMRC.writeMRC( dw_avg, output, dtype='float32', pixelsize=apix, quickStats=False )
def main(): stack = ioMRC.readMRC( sys.argv[1] )[0] output = sys.argv[2] apix = float( sys.argv[3] ) frame_dose = float( sys.argv[4] ) frames_thrown = int( sys.argv[5] ) pre_dose = frames_thrown * frame_dose print( "pre_dose = %.6f" % pre_dose ) num_frames = int( sys.argv[6] ) total_dose = pre_dose + num_frames * frame_dose print( "total_dose = %.6f" % total_dose ) kv = float( sys.argv[7] ) if sys.argv[8] == 'y': apply_dw = True else: apply_dw = False if apply_dw: dw_avg = util.FilterDoseWeight( stack, apix=apix, frame_dose=frame_dose, pre_dose=pre_dose, total_dose=total_dose, kv=kv ) else: # dw_avg = np.sum( stack[:num_frames,:,:], axis=0 ) s = stack[:num_frames,:,:] dw_avg = ne.evaluate("sum(s, axis=0)") dw_avg = util.NormalizeImg( dw_avg, mean=0.0, std=100.0 ) # Normalize the new DW-rec image ioMRC.writeMRC( dw_avg, output, dtype='float32', pixelsize=apix, quickStats=False )
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ <half-map1> <half-map2> [options] Given two unmasked and unfiltered reconstructions from random halves of your dataset, calculates the FSC between them and applies additional postprocessing filters. Output: -FSC plot(s) in PNG format -Text file containing description of FSC and filters applied (_data.fsc) -Masked and unmasked postprocessed maps """ parser = OptionParser(usage) parser.add_option("--out", metavar="postprocess", type="string", default='postprocess', help="Output rootname.") parser.add_option("--angpix", metavar=1.0, type="float", help="Pixel size in Angstroems") parser.add_option("--fsc_threshold", metavar=0.143, default=0.143, type="float", help="Display the resolution at which the FSC curve crosses this value.") parser.add_option("--lowpass", metavar='"auto"', default='auto', help="Resolution (in Angstroems) at which to low-pass filter the final map. A negative value will skip low-pass filtering. Default is to low-pass at resolution determined from FSC threshold.") parser.add_option("--mask", metavar="MyMask.mrc", type="string", help="A file containing the mask to be applied to the half-maps before calculating the FSC.") parser.add_option("--force_mask", action="store_true", help="Force using this mask even if it has strange properties such as values outside the range [0,1].", default=False) parser.add_option("--mask_radius", metavar=0.5, default=None, type="float", help="If not specifying a mask file, a soft spherical mask can be created. This is the radius of this mask, in pixels or fraction of the box size.") parser.add_option("--mask_edge_width", metavar=6.0, default=None, type="float", help="This is the width of the cosine edge for the mask to be created, in pixels or fraction of the box size.") parser.add_option("--mask_center", metavar="0,0,0", default=None, type="string", help="Three numbers describing where the center of spherical mask should be placed within the 3D box (in pixels). Default is the middle of the box: (0,0,0). Can be positive or negative.") parser.add_option("--mw", metavar=1000.0, type="float", help="Molecular mass in kDa of particle or helical segment comprised within the mask. Needed to calculate volume-normalized Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012). If not specified, will do conventional FSC weighting on the final map (Rosenthal & Henderson, JMB 2003).") parser.add_option("--mw_ignore", metavar=0.0, type="float", default=0.0, help="EXPERIMENTAL OPTION: Molecular mass in kDa present within the mask that needs to be ignored. Needed to calculate an adaptation of the volume-normalized Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012). Only used if --mw is also specified. May be useful if your particles are extracted from 2D crystals.") parser.add_option("--skip_fsc_weighting", action="store_true", help="Do NOT apply FSC weighting (Rosenthal & Henderson, JMB 2003) to the final map, nor the Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012).", default=False) parser.add_option("--apply_fsc2", action="store_true", help="Apply the square of the FSC curve as a filter. Generally should be used together with the --skip_fsc_weighting option.", default=False) parser.add_option("--gaussian", action="store_true", help="Apply a Gaussian low-pass filter to the map, with cutoff defined by --lowpass. (default)", default=True) parser.add_option("--cosine", action="store_true", help="Apply a cosine-edge instead of Gaussian low-pass filter to the map, with cutoff defined by --lowpass. The width of the cosine edge can be specified with the option --edge_width.", default=False) parser.add_option("--cosine_edge_width", metavar=2.0, type="float", help="Width of the cosine-edge filter (in Fourier pixels). If set to zero, becomes a top-hat filter.", default=2.0) parser.add_option("--tophat", action="store_true", help="Apply a top-hat low-pass filter to the final map. Equivalent to specifying --cosine with --edge_width=0.", default=False) parser.add_option("--mtf", type="string", help="File containing the detector MTF for sharpening of the final map.") parser.add_option("--auto_bfac", metavar="10.0,0.0", default=None, type="string", help="Estimate B-factor automatically using information in this resolution range, in Angstroems (lowres,highres). This works based on the Guinier plot, which should ideally be a straight line from ~10.0 A and beyond (Rosenthal & Henderson, JMB 2003).'If you set lowres and/or maxres to -1, these values will be calculated automatically. MTF and FSC weighting information are employed, if not ommitted.") parser.add_option("--adhoc_bfac", metavar=0.0, type="float", help="Apply an ad-hoc B-factor to the map (in Angstroems^2). Can be positive (smoothing) or negative (sharpening).", default=0.0) parser.add_option("--randomize_below_fsc", metavar=0.8, type="float", help="If provided, will randomize phases for all Fourier shells beyond where the FSC drops below this value, to assess correlations introduced by the mask by High-Resolution Noise Substitution (Chen et al, Ultramicroscopy 2013). Be aware that this procedure may introduce a 'dip' in the FSC curves at the corresponding resolution value.") # parser.add_option("--evaluate_spw_random", action="store_true", default=False, help="If both --mw and --randomize_below_fsc are provided, will evalute the performance of the Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012) on the phase-randomized maps. Useful to assess how much artifacts (e.g. ringing) are being amplified by this filter.") # parser.add_option("--cone_aperture", metavar=90.0, type="float", help="Instead of the FSC, calculate the Fourier Conical Correlation, within a cone with this aperture, in degrees.") parser.add_option("--cone_aperture", metavar=90.0, type="float", help="If data contains a missing cone, use this option to exclude it from FSC calculations. A missing cone may introduce artificially high correlations in the FSC. The cone aperture (2*Theta) is given in degrees.") parser.add_option("--xy_only", action="store_true", default=False, help="CAUTION! EXPERIMENTAL OPTION: Evaluate average resolution along X,Y planes only.") parser.add_option("--z_only", action="store_true", default=False, help="CAUTION! EXPERIMENTAL OPTION: Evaluate average resolution along the Z direction only.") parser.add_option("--refine_res_lim", metavar=10.0, type="float", help="Resolution limit in Angstroems used during the refinement, to be displayed on the FSC plots.") parser.add_option("--resample", metavar=1.0, type="float", help="Resample the final result in Fourier space to this pixel size (in Angstroems) in order to make the volume larger or smaller.") # parser.add_option("--three_sigma", action="store_true", help="Show the 3-Sigma criterion curve on the FSC plots (van Heel, Ultramicroscopy 1987).", default=False) parser.add_option("--dpi", metavar=300, type="int", default=300, help="Resolution of the PNG files to be saved with the FSC curves (dots per inch).") (options, args) = parser.parse_args() command = ' '.join(sys.argv) # Do some sanity checks: if len(sys.argv) < 3: # print len(sys.argv), args print 'You must specify at least two map files to compute an FSC:' print usage sys.exit(1) if options.lowpass != 'auto': options.lowpass = float(options.lowpass) if options.mw != None and options.mw < 0.0: print 'Molecular mass cannot be negative!' sys.exit(1) if options.mw_ignore != None and options.mw_ignore < 0.0: print 'Molecular mass to be ignored cannot be negative!' sys.exit(1) if options.angpix == None: print '\nWARNING: Pixel size was not specified. Assuming 1.0 A/pixel.' options.angpix = 1.0 elif options.angpix <= 0.0: print 'Pixel size must be greater than zero!' sys.exit(1) if options.cosine_edge_width != None and options.cosine_edge_width < 0.0: print '\nCosine edge width cannot be negative!' sys.exit(1) if options.refine_res_lim != None and options.refine_res_lim <= 0.0: print 'Refinement resolution limit must be greater than zero!' sys.exit(1) if options.randomize_below_fsc != None and (options.randomize_below_fsc < -1.0 or options.randomize_below_fsc > 1.0): print 'FSC values for phase-randomization must be in the range [-1,1]!' sys.exit(1) if options.cone_aperture != None: options.cone_aperture = float(options.cone_aperture)/2 if options.tophat: options.gaussian = False options.cosine = True options.cosine_edge_width = 0.0 if options.mask_center == None: mask_center = [0,0,0] else: mask_center = np.array( map(float, options.mask_center.split( ',' ) ) ) if options.resample != None and options.resample <= 0.0: print( 'Resampling pixel size must be greater than zero! options.resample = %f A' % options.resample ) sys.exit(1) # Read in the two maps: sys.stdout = open(os.devnull, "w") # Suppress output map1 = ioMRC.readMRC( args[0] )[0] map2 = ioMRC.readMRC( args[1] )[0] map3 = ioMRC.readMRC( args[2] )[0] map4 = ioMRC.readMRC( args[3] )[0] sys.stdout = sys.__stdout__ # We check if there is a mask file and if not, should we create one? if options.mask != None: sys.stdout = open(os.devnull, "w") # Suppress output mask = ioMRC.readMRC( options.mask )[0] sys.stdout = sys.__stdout__ elif options.mask_radius != None or options.mask_edge_width != None: if options.mask_radius == None: options.mask_radius = 0.5 if options.mask_edge_width == None: options.mask_edge_width = 6.0 mask = util.SoftMask( map1.shape, radius = options.mask_radius, width = options.mask_edge_width, xyz=mask_center ) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( mask, options.out+'-mask.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True ) sys.stdout = sys.__stdout__ options.mask = options.out+'-mask.mrc' # Resolution range to estimate B-factor: if options.auto_bfac != None: resrange = options.auto_bfac.split(',') minres = float( resrange[0] ) maxres = float( resrange[1] ) NSAM = np.round( np.sqrt( np.sum( np.power( map1.shape, 2 ) ) ) / 2.0 / np.sqrt( len( map1.shape ) ) ).astype('int') + 1 # For cubic volumes this is just half the box size + 1. freq = ( np.arange( NSAM ) / ( 2.0 * ( NSAM - 1 ) * options.angpix ) ).reshape( NSAM, 1 ) freq[0] = 1.0/999 # Just to avoid dividing by zero later freq2 = freq * freq if np.any( map1.shape != map2.shape ): print 'Input maps must be the same size!' sys.exit(1) print '\nCalculating unmasked FSC...' if options.cone_aperture == None: fsc12 = util.FCC( map1, map2, xy_only = options.xy_only, z_only = options.z_only ) fsc34 = util.FCC( map3, map4, xy_only = options.xy_only, z_only = options.z_only ) else: # l = NSAM/2 + 1 # if np.mod(NSAM, 2): # freq[1:] = np.arange( float(l) ) / (NSAM - 1) # else: # freq[1:] = np.arange( float(l) ) / NSAM fsc = util.FCC( map1 , map2 , [ options.cone_aperture ], invertCone = True, xy_only = options.xy_only, z_only = options.z_only ) # if options.three_sigma: # three_sigma_curve = 3.0 / np.sqrt( np.reshape(fscmat[:,2], (l, 1)) ) dat = np.append(1.0/freq, freq, axis=1) # Start creating the matrix that will be written to an output file head = 'Res \t1/Res \t' # Header of the output file describing the data columns res12 = ResolutionAtThreshold(freq[1:], fsc12[1:NSAM], options.fsc_threshold) res34 = ResolutionAtThreshold(freq[1:], fsc34[1:NSAM], options.fsc_threshold) print 'FSC 1-2 >= %.3f up to %.3f A (unmasked)' % (options.fsc_threshold, res12) print 'FSC 3-4 >= %.3f up to %.3f A (unmasked)' % (options.fsc_threshold, res34) # Plot plt.figure() # if options.three_sigma: # plt.plot(freq[1:], fsc, freq[1:], three_sigma_curve) # else: # plt.plot(freq[1:], fsc) plt.plot(freq[1:], fsc12[1:NSAM],freq[1:], fsc34[1:NSAM]) plt.title('Fourier Ring Correlation') plt.ylabel('FRC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['4k4k','8k4k']) plt.ylim([0.0,1.0]) plt.minorticks_on() plt.grid(b=True, which='both') plt.savefig(options.out+'_frc-intra.png', dpi=options.dpi) plt.close() # # plt.plot(freq[1:], fsc) # map1amps = np.abs( np.fft.fftshift( np.fft.fftn( map1 ) ) ) # map2amps = np.abs( np.fft.fftshift( np.fft.fftn( map2 ) ) ) # map1ps = util.RadialProfile( map1amps ) # map2ps = util.RadialProfile( map2amps ) # plt.plot(freq[1:], map1ps[1:NSAM], freq[1:], map2ps[1:NSAM] ) # plt.title('1D Amplitude Spectrum') # plt.ylabel('Amplitudes (a.u.)') # plt.xlabel('Spatial frequency (1/A)') # # plt.ylim([0.0,1.0]) # plt.minorticks_on() # # ax = plt.gca() # # ax.set_yticks([options.fsc_threshold], minor=True) # # ax.set_yticklabels([str(options.fsc_threshold)], minor=True) # # if options.refine_res_lim != None: # # ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') # plt.legend([args[0], args[1]]) # plt.grid(b=True, which='both') # plt.savefig(options.out+'_amps.png', dpi=options.dpi) # plt.close() # plt.plot(freq[1:], map1ps[1:NSAM]**2, freq[1:], map2ps[1:NSAM]**2 ) # plt.title('1D Power Spectrum [Amps^2]') # plt.ylabel('Power (a.u.)') # plt.xlabel('Spatial frequency (1/A)') # # plt.ylim([0.0,1.0]) # plt.minorticks_on() # # ax = plt.gca() # # ax.set_yticks([options.fsc_threshold], minor=True) # # ax.set_yticklabels([str(options.fsc_threshold)], minor=True) # # if options.refine_res_lim != None: # # ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') # plt.legend([args[0], args[1]]) # plt.grid(b=True, which='both') # plt.savefig(options.out+'_ps.png', dpi=options.dpi) # plt.close() # plt.plot(freq[1:], np.log( map1ps[1:NSAM] ), freq[1:], np.log( map2ps[1:NSAM] ) ) # plt.title('Guinier plot [ log(Amps) ]') # plt.ylabel('log(Amps)') # plt.xlabel('Spatial frequency (1/A)') # # plt.ylim([0.0,1.0]) # plt.minorticks_on() # # ax = plt.gca() # # ax.set_yticks([options.fsc_threshold], minor=True) # # ax.set_yticklabels([str(options.fsc_threshold)], minor=True) # # if options.refine_res_lim != None: # # ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') # plt.legend([args[0], args[1]]) # plt.grid(b=True, which='both') # plt.savefig(options.out+'_guinier.png', dpi=options.dpi) # plt.close() dat = np.append(dat, fsc12[:NSAM], axis=1) # Append the unmasked FSC head += 'FSC12-unmasked\t' dat = np.append(dat, fsc34[:NSAM], axis=1) # Append the unmasked FSC head += 'FSC34-unmasked\t' # Now we go to the mask-related operations which are activated if a mask or MW are specified. If only if options.mask != None or options.mw != None: if options.mask == None: # If MW is specified but no mask, we issue a warning: print '\nWARNING: You specified MW without a mask. This may produce inaccurate results!' # rmin = np.float( np.min( map1.shape ) ) / 2.0 # mask = util.SoftMask( map1.shape, radius = rmin - 4.0, width = 6.0 ) mask = np.ones( map1.shape, dtype='float' ) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( mask, options.out+'-mask.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True ) sys.stdout = sys.__stdout__ options.mask = options.out+'-mask.mrc' if options.force_mask == False: if (mask.min() < -0.001 or mask.max() > 1.001): print '\nMask values not in range [0,1]! Min: %.6f, Max: %.6f' % (mask.min(), mask.max()) sys.exit(1) else: print '\nWARNING: You are forcing a mask that may have strange properties. Use at your own risk!!!' map1masked = map1 * mask map2masked = map2 * mask print '\nCalculating masked FSC...' if options.cone_aperture == None: fsc_mask = util.FCC( map1masked, map2masked, xy_only = options.xy_only, z_only = options.z_only ) else: fsc_mask = util.FCC( map1masked , map2masked , [ options.cone_aperture ], invertCone = True, xy_only = options.xy_only, z_only = options.z_only ) res_mask = ResolutionAtThreshold(freq[1:], fsc_mask[1:NSAM], options.fsc_threshold) print 'FSC >= %.3f up to %.3f A (masked)' % (options.fsc_threshold, res_mask) dat = np.append(dat, fsc_mask[:NSAM], axis=1) # Append the masked FSC head += 'FSC-masked\t' if options.randomize_below_fsc == None: # Plot plt.figure() plt.plot(freq[1:], fsc_mask[1:NSAM]) plt.title('Fourier Shell Correlation - masked') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_fsc-masked.png', dpi=options.dpi) plt.close() else: rand_res = ResolutionAtThreshold(freq[1:], fsc[1:NSAM], options.randomize_below_fsc) print '\nRandomizing phases beyond %.2f A...\n' % rand_res rand_freq = 1.0/rand_res np.random.seed( seed=123 ) # We have to enforce the random seed otherwise different runs would not be comparable map1randphase = util.HighResolutionNoiseSubstitution( map1, lp = rand_res, apix = options.angpix ) np.random.seed( seed=1234 ) # Cannot use same random seed for both maps!!! map2randphase = util.HighResolutionNoiseSubstitution( map2, lp = rand_res, apix = options.angpix ) # We mask the phase-randomized maps: map1randphasemasked = map1randphase * mask map2randphasemasked = map2randphase * mask print '\nCalculating masked FSC for phase-randomized maps...' if options.cone_aperture == None: fsc_mask_rnd = util.FCC( map1randphasemasked, map2randphasemasked, xy_only = options.xy_only, z_only = options.z_only ) else: fsc_mask_rnd = util.FCC( map1randphasemasked , map2randphasemasked , [ options.cone_aperture ], invertCone = True, xy_only = options.xy_only, z_only = options.z_only ) # We compute FSCtrue following (Chen et al, Ultramicroscopy 2013). For masked maps this will correct the FSC for eventual refinement overfitting, including from the mask: # fsc_mask_true[freq >= rand_freq] = (fsc_mask[freq >= rand_freq] - fsc_mask_rnd[freq >= rand_freq]) / (1 - fsc_mask_rnd[freq >= rand_freq]) fsc_mask_true = ( ( fsc_mask - fsc_mask_rnd ) / ( 1.0 - fsc_mask_rnd ) ) fsc_mask_true[:NSAM][freq < rand_freq] = fsc_mask[:NSAM][freq < rand_freq] fsc_mask_true = np.nan_to_num( fsc_mask_true ) res_mask_true = ResolutionAtThreshold(freq[1:], fsc_mask_true[1:NSAM], options.fsc_threshold) print 'FSC >= %.3f up to %.3f A (masked - true)' % (options.fsc_threshold, res_mask_true) dat = np.append(dat, fsc_mask_true[:NSAM], axis=1) # Append the true masked FSC head += 'FSC-masked_true\t' # Plot plt.figure() plt.plot(freq[1:], fsc_mask[1:NSAM], freq[1:], fsc_mask_rnd[1:NSAM], freq[1:], fsc_mask_true[1:NSAM]) plt.title('Fourier Shell Correlation - masked') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['FSC', 'FSC - phase randomized', 'FSC - true']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_fsc-masked_true.png', dpi=options.dpi) plt.close() res_mask = res_mask_true if options.mw == None and options.randomize_below_fsc == None: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['unmasked', 'masked']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_fsc.png', dpi=options.dpi) plt.close() elif options.mw == None and options.randomize_below_fsc != None: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask_true[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['unmasked', 'masked - true']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_fsc.png', dpi=options.dpi) plt.close() if options.mw != None: DALT = 0.81 # Da/A^3 # Estimate fraction of volume occupied by the molecule: fpart = 1000.0 * options.mw / DALT / (options.angpix * 2*NSAM)**3 fignore = 1000.0 * options.mw_ignore / DALT / (options.angpix * 2*NSAM)**3 # Fraction of the volume occupied by the mask: maskvoxsum = np.sum(mask) fmask = maskvoxsum / (2*NSAM)**3 print '\nCalculating Single-Particle Wiener filter...' print '\nFraction of particle within the volume (Fpart): %.6f' % fpart print 'Fraction of mask within the volume (Fmask): %.6f' % fmask if options.mw_ignore > 0.0: print 'Fraction of densities to be ignored within the volume (Fignore): %.6f' % fignore print 'Fpart/(Fmask-Fignore) ratio: %.6f' % (fpart/(fmask-fignore)) if (fpart/(fmask-fignore)) >= 1.0: print '\nWARNING: Your particle occupies a volume bigger than the mask. Mask is probably too tight or even too small!' else: print 'Fpart/Fmask ratio: %.6f' % (fpart/fmask) if (fpart/fmask) >= 1.0: print '\nWARNING: Your particle occupies a volume bigger than the mask. Mask is probably too tight or even too small!' # Let's do Single-Particle Wiener filtering following (Sindelar & Grigorieff, 2012): if options.randomize_below_fsc == None: fsc_spw = fsc_mask / (fsc_mask + (fpart / (fmask - fignore)) * (1.0 - fsc_mask)) else: fsc_spw = fsc_mask_true / (fsc_mask_true + (fpart / (fmask - fignore)) * (1.0 - fsc_mask_true)) res_spw = ResolutionAtThreshold(freq[1:], fsc_spw[1:NSAM], options.fsc_threshold) print '\nFSC >= %.3f up to %.3f A (volume-normalized)' % (options.fsc_threshold, res_spw) dat = np.append(dat, fsc_spw[:NSAM], axis=1) # Append the FSC-SPW head += 'FSC-SPW \t' # Plot plt.figure() plt.plot(freq[1:], fsc_spw[1:NSAM]) plt.title('Fourier Shell Correlation - Single-Particle Wiener filter') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_fsc-spw.png', dpi=options.dpi) plt.close() if options.randomize_below_fsc != None: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask[1:NSAM], freq[1:], fsc_spw[1:NSAM], freq[1:], fsc_mask_true[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['unmasked', 'masked', 'masked - SPW', 'masked - true']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_fsc.png', dpi=options.dpi) plt.close() else: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask[1:NSAM], freq[1:], fsc_spw[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['unmasked', 'masked', 'masked - SPW']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_fsc.png', dpi=options.dpi) plt.close() #### MAP FILTERING STEPS: # 1. Sum the two half-reconstructions: print '\nAveraging the two half-maps...' fullmap = 0.5 * ( map1 + map2 ) # 2. Apply FSC weighting or SPW filter to the final map, accordingly: if options.skip_fsc_weighting == False: print 'Applying FSC weighting (Cref) to the map...' if options.mask == None and options.mw == None: # Derive weights from unmasked FSC fsc_weights = np.sqrt(2 * np.abs(fsc) / (1 + np.abs(fsc))) elif options.mw == None: # Derive weights from masked FSC if options.randomize_below_fsc != None: fsc_weights = np.sqrt(2 * np.abs(fsc_mask_true) / (1 + np.abs(fsc_mask_true))) else: fsc_weights = np.sqrt(2 * np.abs(fsc_mask) / (1 + np.abs(fsc_mask))) else: fsc_weights = np.sqrt(2 * np.abs(fsc_spw) / (1 + np.abs(fsc_spw))) fullmap = util.RadialFilter( fullmap, fsc_weights, return_filter = False ) dat = np.append(dat, fsc_weights[:NSAM], axis=1) # Append the FSC weighting head += 'Cref_Weights\t' # 3. Sharpen map by recovering amplitudes from detector's MTF: if options.mtf != None: print 'Dividing map by the detector MTF...' try: mtf = np.loadtxt(options.mtf) ignore_mtf = False except ValueError: if options.mtf[-5:] == '.star': mtf = np.loadtxt(options.mtf, skiprows=4) ignore_mtf = False else: print 'Could not read MTF file! Ignoring MTF...' ignore_mtf = True if ignore_mtf == False: # We need to know the MTF values at the Fourier bins of our map. So we interpolate from the MTF description available: NSAMfull = np.ceil( np.sqrt( np.sum( np.power( map1.shape, 2 ) ) ) / 2.0 + 1).astype('int') # For cubic volumes this is just half the box size multiplied by sqrt(2). freqfull = ( np.arange( NSAMfull ) / ( 2.0 * NSAM * options.angpix ) ).reshape( NSAMfull, 1 ) freqfull[0] = 1.0/999 # Just to avoid dividing by zero later interp_mtf = np.interp(freqfull, mtf[:,0], mtf[:,1]) # print len(interp_mtf),len(freq[1:]full) # Divide Fourier components by the detector MTF: inv_mtf = 1.0/interp_mtf fullmap = util.RadialFilter( fullmap, inv_mtf, return_filter = False ) dat = np.append(dat, inv_mtf[:NSAM], axis=1) # Append the inverse MTF applied head += 'InverseMTF\t' # 4. Perform automatic sharpening based on the Guinier plot: ##### GUINIER PLOT ##### if options.auto_bfac != None: # Here we use the same method as relion_postprocess. Note there is a difference in the normalization of the FFT, but that doesn't affect the results (only the intercept of fit). # NOTE: the bfactor.exe and EM-BFACTOR programs use a different fitting method. radamp = util.RadialProfile( np.abs( np.fft.fftshift( np.fft.fftn( fullmap ) ) ) )[:NSAM] lnF = np.log( radamp ) if minres == -1.0: minres = 10.0 if maxres == -1.0: if options.mw != None: maxres = res_spw elif options.mask != None: maxres = res_mask else: maxres = res print '\nEstimating contrast decay (B-factor) from Guinier plot between %.2f A and %.2f A...\n' % (minres,maxres) hirange = 1./freq <= minres lorange = 1./freq >= maxres resrange = hirange * lorange resrange = resrange[:,0] fit = np.polyfit( freq2[resrange,0], lnF[resrange], deg=1) fitline = fit[0] * freq2 + fit[1] print 'Slope of fit: %.4f' % (fit[0]) print 'Intercept of fit: %.4f' % (fit[1]) print 'Correlation of fit: %.5f' % ( np.corrcoef( lnF[resrange], fitline[resrange,0] )[0,1] ) print 'B-factor for contrast restoration: %.4f A^2\n' % ( 4.0 * fit[0] ) fullmap = util.FilterBfactor( fullmap, apix=options.angpix, B = 4.0 * fit[0], return_filter = False ) guinierfilt = np.exp( - fit[0] * freq2 ) # Just for appending to the output data file dat = np.append(dat, guinierfilt[:NSAM], axis=1) # Append the B-factor filter derived from the Guinier plot head += 'Auto_B-factor\t' radampnew = util.RadialProfile( np.abs( np.fft.fftshift( np.fft.fftn( fullmap ) ) ) )[:NSAM] lnFnew = np.log( radampnew ) # Plot plt.figure() plt.plot( freq2, lnF, freq2[lorange[:,0],0], lnFnew[lorange[:,0]], freq2[resrange,0], fitline[resrange] ) plt.title('Guinier Plot') plt.ylabel('ln(F)') plt.xlabel('Spatial frequency^2 (1/A^2)') plt.legend(['Exp.', 'Exp. sharpened', 'Fit']) ax = plt.gca() ax.axvline(1.0/minres**2, linestyle='dashed', linewidth=0.75, color='m') ax.axvline(1.0/maxres**2, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out+'_guinier.png', dpi=options.dpi) plt.close() if options.cosine == False: print '\nWARNING: You should probably specify --cosine option to low-pass filter your map after sharpening!\n' # 5. Apply an ad-hoc B-factor for smoothing or sharpening the map, if provided: if options.adhoc_bfac != 0.0: print 'Applying ad-hoc B-factor to the map...' fullmap = util.FilterBfactor( fullmap, apix=options.angpix, B=options.adhoc_bfac, return_filter = False ) freq2 = freq * freq bfacfilt = np.exp( - options.adhoc_bfac * freq2 / 4.0 ) # Just for appending to the output data file dat = np.append(dat, bfacfilt[:NSAM], axis=1) # Append the ad-hoc B-factor filter applied head += 'Adhoc_B-factor\t' if options.cosine == False: print '\nWARNING: You should probably specify --cosine option to low-pass filter your map after sharpening!\n' # 6. Apply FSC^2 weighting to the final map: if options.apply_fsc2: print 'Applying FSC^2 weighting to the map...' if options.mask == None and options.mw == None: # Derive weights from unmasked FSC fsc2_weights = fsc**2 elif options.mw == None: # Derive weights from masked FSC if options.randomize_below_fsc != None: fsc2_weights = fsc_mask_true**2 else: fsc2_weights = fsc_mask**2 else: fsc2_weights = fsc_spw**2 fullmap = util.RadialFilter( fullmap, fsc2_weights, return_filter = False ) dat = np.append(dat, fsc2_weights[:NSAM], axis=1) # Append the FSC weighting head += 'FSC^2_Weights\t' # 7. Impose a Gaussian or Cosine or Top-hat low-pass filter with cutoff at given resolution, or resolution determined from FSC threshold: if options.lowpass == 'auto': print 'Low-pass filtering the map at resolution cutoff...' if options.mw != None: res_cutoff = res_spw elif options.mask != None: res_cutoff = res_mask else: res_cutoff = res if options.tophat == False and options.cosine == False: fullmap = util.FilterGauss( fullmap, apix=options.angpix, lp=res_cutoff, return_filter = False ) lp = np.exp( - res_cutoff ** 2 * freq2[:,0] / 2 ) else: fullmap = util.FilterCosine( fullmap, apix=options.angpix, lp=res_cutoff, return_filter = False, width = options.cosine_edge_width ) cosrad = np.argmin( np.abs( 1./freq - res_cutoff ) ) rii = cosrad + options.cosine_edge_width/2 rih = cosrad - options.cosine_edge_width/2 lp = np.zeros( freq[:,0].shape ) r = np.arange( len( freq ) ) fill_idx = r <= rih lp[fill_idx] = 1.0 rih_idx = r > rih rii_idx = r <= rii edge_idx = rih_idx * rii_idx lp[edge_idx] = ( 1.0 + np.cos( np.pi * ( r[edge_idx] - rih ) / options.cosine_edge_width ) ) / 2.0 dat = np.append(dat, lp.reshape(NSAM,1), axis=1) # Append the low-pass filter applied head += 'Low-pass \t' elif options.lowpass >= 0.0: print 'Low-pass filtering the map at resolution cutoff...' res_cutoff = options.lowpass if options.tophat == False and options.cosine == False: fullmap = util.FilterGauss( fullmap, apix=options.angpix, lp=res_cutoff, return_filter = False ) lp = np.exp( - res_cutoff ** 2 * freq2[:,0] / 2 ) else: fullmap = util.FilterCosine( fullmap, apix=options.angpix, lp=res_cutoff, return_filter = False, width = options.cosine_edge_width ) cosrad = np.where( freq <= 1./res_cutoff )[0][0] rii = cosrad + options.cosine_edge_width/2 rih = cosrad - options.cosine_edge_width/2 lp = np.zeros( freq[:,0].shape ) r = np.arange( len( freq ) ) fill_idx = r <= rih lp[fill_idx] = 1.0 rih_idx = r > rih rii_idx = r <= rii edge_idx = rih_idx * rii_idx lp[edge_idx] = ( 1.0 + np.cos( np.pi * ( r[edge_idx] - rih ) / options.cosine_edge_width ) ) / 2.0 dat = np.append(dat, lp.reshape(NSAM,1), axis=1) # Append the low-pass filter applied head += 'Low-pass \t' # 8. Apply mask, if provided: if options.mask != None or options.mw != None: print 'Masking the map...' masked = fullmap * mask if options.resample == None: sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( masked, options.out+'-masked.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True ) sys.stdout = sys.__stdout__ else: masked = util.Resample( masked, apix = options.angpix, newapix = options.resample ) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( masked, options.out+'-masked.mrc', dtype='float32', pixelsize=options.resample, quickStats=True ) sys.stdout = sys.__stdout__ mask = util.Resample( mask, apix = options.angpix, newapix = options.resample ) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( mask, options.out+'-mask.mrc', dtype='float32', pixelsize=options.resample, quickStats=True ) sys.stdout = sys.__stdout__ # Write filtered, unmasked map if options.resample == None: sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( fullmap, options.out+'-unmasked.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True ) sys.stdout = sys.__stdout__ else: fullmap = util.Resample( fullmap, apix = options.angpix, newapix = options.resample ) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( fullmap, options.out+'-unmasked.mrc', dtype='float32', pixelsize=options.resample, quickStats=True ) sys.stdout = sys.__stdout__ # Save output file with all relevant FSC data np.savetxt(options.out+'_data.fsc', np.matrix(dat), header=command+'\n'+head, delimiter='\t', fmt='%.6f') print '\nDone!'
#!/usr/bin/env python import focus_utilities as util from mrcz import ioMRC import sys import numpy as np stackin = ioMRC.readMRC(sys.argv[1])[0][0] stackout = sys.argv[2] angpix = np.float(sys.argv[3]) lowpass = np.float(sys.argv[4]) for i in range(stackin.shape[0]): print('Zeroing amplitudes of slice %d/%d beyond %f A...' % (i + 1, stackin.shape[0], lowpass)) ioMRC.writeMRC(util.FilterCosine(stackin[i, :, :], lp=lowpass, apix=angpix, width=0), stackout, idx=i) print('Done!')
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ <half-map1> <half-map2> [options] Given two unmasked and unfiltered reconstructions from random halves of your dataset, calculates the FSC between them and applies additional postprocessing filters. Output: -FSC plot(s) in PNG format -Text file containing description of FSC and filters applied (_data.fsc) -Masked and unmasked postprocessed maps """ parser = OptionParser(usage) parser.add_option("--out", metavar="postprocess", type="string", default='postprocess', help="Output rootname.") parser.add_option("--angpix", metavar=1.0, type="float", help="Pixel size in Angstroems") parser.add_option( "--fsc_threshold", metavar=0.143, default=0.143, type="float", help="Display the resolution at which the FSC curve crosses this value." ) parser.add_option( "--lowpass", metavar='"auto"', default='auto', help= "Resolution (in Angstroems) at which to low-pass filter the final map. A negative value will skip low-pass filtering. Default is to low-pass at resolution determined from FSC threshold." ) parser.add_option( "--mask", metavar="MyMask.mrc", type="string", help= "A file containing the mask to be applied to the half-maps before calculating the FSC." ) parser.add_option( "--force_mask", action="store_true", help= "Force using this mask even if it has strange properties such as values outside the range [0,1].", default=False) parser.add_option( "--mask_radius", metavar=0.5, default=None, type="float", help= "If not specifying a mask file, a soft spherical mask can be created. This is the radius of this mask, in pixels or fraction of the box size." ) parser.add_option( "--mask_edge_width", metavar=6.0, default=None, type="float", help= "This is the width of the cosine edge for the mask to be created, in pixels or fraction of the box size." ) parser.add_option( "--mask_center", metavar="0,0,0", default=None, type="string", help= "Three numbers describing where the center of spherical mask should be placed within the 3D box (in pixels). Default is the middle of the box: (0,0,0). Can be positive or negative." ) parser.add_option( "--mw", metavar=1000.0, type="float", help= "Molecular mass in kDa of particle or helical segment comprised within the mask. Needed to calculate volume-normalized Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012). If not specified, will do conventional FSC weighting on the final map (Rosenthal & Henderson, JMB 2003)." ) parser.add_option( "--mw_ignore", metavar=0.0, type="float", default=0.0, help= "EXPERIMENTAL OPTION: Molecular mass in kDa present within the mask that needs to be ignored. Needed to calculate an adaptation of the volume-normalized Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012). Only used if --mw is also specified. May be useful if your particles are extracted from 2D crystals." ) parser.add_option( "--skip_fsc_weighting", action="store_true", help= "Do NOT apply FSC weighting (Rosenthal & Henderson, JMB 2003) to the final map, nor the Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012).", default=False) parser.add_option( "--apply_fsc2", action="store_true", help= "Apply the square of the FSC curve as a filter. Generally should be used together with the --skip_fsc_weighting option.", default=False) parser.add_option( "--gaussian", action="store_true", help= "Apply a Gaussian low-pass filter to the map, with cutoff defined by --lowpass. (default)", default=True) parser.add_option( "--cosine", action="store_true", help= "Apply a cosine-edge instead of Gaussian low-pass filter to the map, with cutoff defined by --lowpass. The width of the cosine edge can be specified with the option --edge_width.", default=False) parser.add_option( "--cosine_edge_width", metavar=2.0, type="float", help= "Width of the cosine-edge filter (in Fourier pixels). If set to zero, becomes a top-hat filter.", default=2.0) parser.add_option( "--tophat", action="store_true", help= "Apply a top-hat low-pass filter to the final map. Equivalent to specifying --cosine with --edge_width=0.", default=False) parser.add_option( "--mtf", type="string", help="File containing the detector MTF for sharpening of the final map." ) parser.add_option( "--auto_bfac", metavar="10.0,0.0", default=None, type="string", help= "Estimate B-factor automatically using information in this resolution range, in Angstroems (lowres,highres). This works based on the Guinier plot, which should ideally be a straight line from ~10.0 A and beyond (Rosenthal & Henderson, JMB 2003).'If you set lowres and/or maxres to -1, these values will be calculated automatically. MTF and FSC weighting information are employed, if not ommitted." ) parser.add_option( "--adhoc_bfac", metavar=0.0, type="float", help= "Apply an ad-hoc B-factor to the map (in Angstroems^2). Can be positive (smoothing) or negative (sharpening).", default=0.0) parser.add_option( "--randomize_below_fsc", metavar=0.8, type="float", help= "If provided, will randomize phases for all Fourier shells beyond where the FSC drops below this value, to assess correlations introduced by the mask by High-Resolution Noise Substitution (Chen et al, Ultramicroscopy 2013). Be aware that this procedure may introduce a 'dip' in the FSC curves at the corresponding resolution value." ) # parser.add_option("--evaluate_spw_random", action="store_true", default=False, help="If both --mw and --randomize_below_fsc are provided, will evalute the performance of the Single-Particle Wiener filter (Sindelar & Grigorieff, JSB 2012) on the phase-randomized maps. Useful to assess how much artifacts (e.g. ringing) are being amplified by this filter.") # parser.add_option("--cone_aperture", metavar=90.0, type="float", help="Instead of the FSC, calculate the Fourier Conical Correlation, within a cone with this aperture, in degrees.") parser.add_option( "--cone_aperture", metavar=90.0, type="float", help= "If data contains a missing cone, use this option to exclude it from FSC calculations. A missing cone may introduce artificially high correlations in the FSC. The cone aperture (2*Theta) is given in degrees." ) parser.add_option( "--xy_only", action="store_true", default=False, help= "CAUTION! EXPERIMENTAL OPTION: Evaluate average resolution along X,Y planes only." ) parser.add_option( "--z_only", action="store_true", default=False, help= "CAUTION! EXPERIMENTAL OPTION: Evaluate average resolution along the Z direction only." ) parser.add_option( "--refine_res_lim", metavar=10.0, type="float", help= "Resolution limit in Angstroems used during the refinement, to be displayed on the FSC plots." ) parser.add_option( "--resample", metavar=1.0, type="float", help= "Resample the final result in Fourier space to this pixel size (in Angstroems) in order to make the volume larger or smaller." ) # parser.add_option("--three_sigma", action="store_true", help="Show the 3-Sigma criterion curve on the FSC plots (van Heel, Ultramicroscopy 1987).", default=False) parser.add_option( "--dpi", metavar=300, type="int", default=300, help= "Resolution of the PNG files to be saved with the FSC curves (dots per inch)." ) (options, args) = parser.parse_args() command = ' '.join(sys.argv) # Do some sanity checks: if len(sys.argv) < 3: # print len(sys.argv), args print 'You must specify at least two map files to compute an FSC:' print usage sys.exit(1) if options.lowpass != 'auto': options.lowpass = float(options.lowpass) if options.mw != None and options.mw < 0.0: print 'Molecular mass cannot be negative!' sys.exit(1) if options.mw_ignore != None and options.mw_ignore < 0.0: print 'Molecular mass to be ignored cannot be negative!' sys.exit(1) if options.angpix == None: print '\nWARNING: Pixel size was not specified. Assuming 1.0 A/pixel.' options.angpix = 1.0 elif options.angpix <= 0.0: print 'Pixel size must be greater than zero!' sys.exit(1) if options.cosine_edge_width != None and options.cosine_edge_width < 0.0: print '\nCosine edge width cannot be negative!' sys.exit(1) if options.refine_res_lim != None and options.refine_res_lim <= 0.0: print 'Refinement resolution limit must be greater than zero!' sys.exit(1) if options.randomize_below_fsc != None and ( options.randomize_below_fsc < -1.0 or options.randomize_below_fsc > 1.0): print 'FSC values for phase-randomization must be in the range [-1,1]!' sys.exit(1) if options.cone_aperture != None: options.cone_aperture = float(options.cone_aperture) / 2 if options.tophat: options.gaussian = False options.cosine = True options.cosine_edge_width = 0.0 if options.mask_center == None: mask_center = [0, 0, 0] else: mask_center = np.array(map(float, options.mask_center.split(','))) if options.resample != None and options.resample <= 0.0: print( 'Resampling pixel size must be greater than zero! options.resample = %f A' % options.resample) sys.exit(1) # Read in the two maps: sys.stdout = open(os.devnull, "w") # Suppress output map1 = ioMRC.readMRC(args[0])[0] map2 = ioMRC.readMRC(args[1])[0] map3 = ioMRC.readMRC(args[2])[0] map4 = ioMRC.readMRC(args[3])[0] sys.stdout = sys.__stdout__ # We check if there is a mask file and if not, should we create one? if options.mask != None: sys.stdout = open(os.devnull, "w") # Suppress output mask = ioMRC.readMRC(options.mask)[0] sys.stdout = sys.__stdout__ elif options.mask_radius != None or options.mask_edge_width != None: if options.mask_radius == None: options.mask_radius = 0.5 if options.mask_edge_width == None: options.mask_edge_width = 6.0 mask = util.SoftMask(map1.shape, radius=options.mask_radius, width=options.mask_edge_width, xyz=mask_center) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(mask, options.out + '-mask.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True) sys.stdout = sys.__stdout__ options.mask = options.out + '-mask.mrc' # Resolution range to estimate B-factor: if options.auto_bfac != None: resrange = options.auto_bfac.split(',') minres = float(resrange[0]) maxres = float(resrange[1]) NSAM = np.round( np.sqrt(np.sum(np.power(map1.shape, 2))) / 2.0 / np.sqrt(len(map1.shape))).astype( 'int') + 1 # For cubic volumes this is just half the box size + 1. freq = (np.arange(NSAM) / (2.0 * (NSAM - 1) * options.angpix)).reshape( NSAM, 1) freq[0] = 1.0 / 999 # Just to avoid dividing by zero later freq2 = freq * freq if np.any(map1.shape != map2.shape): print 'Input maps must be the same size!' sys.exit(1) print '\nCalculating unmasked FSC...' if options.cone_aperture == None: fsc12 = util.FCC(map1, map2, xy_only=options.xy_only, z_only=options.z_only) fsc34 = util.FCC(map3, map4, xy_only=options.xy_only, z_only=options.z_only) else: # l = NSAM/2 + 1 # if np.mod(NSAM, 2): # freq[1:] = np.arange( float(l) ) / (NSAM - 1) # else: # freq[1:] = np.arange( float(l) ) / NSAM fsc = util.FCC(map1, map2, [options.cone_aperture], invertCone=True, xy_only=options.xy_only, z_only=options.z_only) # if options.three_sigma: # three_sigma_curve = 3.0 / np.sqrt( np.reshape(fscmat[:,2], (l, 1)) ) dat = np.append( 1.0 / freq, freq, axis=1 ) # Start creating the matrix that will be written to an output file head = 'Res \t1/Res \t' # Header of the output file describing the data columns res12 = ResolutionAtThreshold(freq[1:], fsc12[1:NSAM], options.fsc_threshold) res34 = ResolutionAtThreshold(freq[1:], fsc34[1:NSAM], options.fsc_threshold) print 'FSC 1-2 >= %.3f up to %.3f A (unmasked)' % (options.fsc_threshold, res12) print 'FSC 3-4 >= %.3f up to %.3f A (unmasked)' % (options.fsc_threshold, res34) # Plot plt.figure() # if options.three_sigma: # plt.plot(freq[1:], fsc, freq[1:], three_sigma_curve) # else: # plt.plot(freq[1:], fsc) plt.plot(freq[1:], fsc12[1:NSAM], freq[1:], fsc34[1:NSAM]) plt.title('Fourier Ring Correlation') plt.ylabel('FRC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['4k4k', '8k4k']) plt.ylim([0.0, 1.0]) plt.minorticks_on() plt.grid(b=True, which='both') plt.savefig(options.out + '_frc-intra.png', dpi=options.dpi) plt.close() # # plt.plot(freq[1:], fsc) # map1amps = np.abs( np.fft.fftshift( np.fft.fftn( map1 ) ) ) # map2amps = np.abs( np.fft.fftshift( np.fft.fftn( map2 ) ) ) # map1ps = util.RadialProfile( map1amps ) # map2ps = util.RadialProfile( map2amps ) # plt.plot(freq[1:], map1ps[1:NSAM], freq[1:], map2ps[1:NSAM] ) # plt.title('1D Amplitude Spectrum') # plt.ylabel('Amplitudes (a.u.)') # plt.xlabel('Spatial frequency (1/A)') # # plt.ylim([0.0,1.0]) # plt.minorticks_on() # # ax = plt.gca() # # ax.set_yticks([options.fsc_threshold], minor=True) # # ax.set_yticklabels([str(options.fsc_threshold)], minor=True) # # if options.refine_res_lim != None: # # ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') # plt.legend([args[0], args[1]]) # plt.grid(b=True, which='both') # plt.savefig(options.out+'_amps.png', dpi=options.dpi) # plt.close() # plt.plot(freq[1:], map1ps[1:NSAM]**2, freq[1:], map2ps[1:NSAM]**2 ) # plt.title('1D Power Spectrum [Amps^2]') # plt.ylabel('Power (a.u.)') # plt.xlabel('Spatial frequency (1/A)') # # plt.ylim([0.0,1.0]) # plt.minorticks_on() # # ax = plt.gca() # # ax.set_yticks([options.fsc_threshold], minor=True) # # ax.set_yticklabels([str(options.fsc_threshold)], minor=True) # # if options.refine_res_lim != None: # # ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') # plt.legend([args[0], args[1]]) # plt.grid(b=True, which='both') # plt.savefig(options.out+'_ps.png', dpi=options.dpi) # plt.close() # plt.plot(freq[1:], np.log( map1ps[1:NSAM] ), freq[1:], np.log( map2ps[1:NSAM] ) ) # plt.title('Guinier plot [ log(Amps) ]') # plt.ylabel('log(Amps)') # plt.xlabel('Spatial frequency (1/A)') # # plt.ylim([0.0,1.0]) # plt.minorticks_on() # # ax = plt.gca() # # ax.set_yticks([options.fsc_threshold], minor=True) # # ax.set_yticklabels([str(options.fsc_threshold)], minor=True) # # if options.refine_res_lim != None: # # ax.axvline(1.0/options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') # plt.legend([args[0], args[1]]) # plt.grid(b=True, which='both') # plt.savefig(options.out+'_guinier.png', dpi=options.dpi) # plt.close() dat = np.append(dat, fsc12[:NSAM], axis=1) # Append the unmasked FSC head += 'FSC12-unmasked\t' dat = np.append(dat, fsc34[:NSAM], axis=1) # Append the unmasked FSC head += 'FSC34-unmasked\t' # Now we go to the mask-related operations which are activated if a mask or MW are specified. If only if options.mask != None or options.mw != None: if options.mask == None: # If MW is specified but no mask, we issue a warning: print '\nWARNING: You specified MW without a mask. This may produce inaccurate results!' # rmin = np.float( np.min( map1.shape ) ) / 2.0 # mask = util.SoftMask( map1.shape, radius = rmin - 4.0, width = 6.0 ) mask = np.ones(map1.shape, dtype='float') sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(mask, options.out + '-mask.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True) sys.stdout = sys.__stdout__ options.mask = options.out + '-mask.mrc' if options.force_mask == False: if (mask.min() < -0.001 or mask.max() > 1.001): print '\nMask values not in range [0,1]! Min: %.6f, Max: %.6f' % ( mask.min(), mask.max()) sys.exit(1) else: print '\nWARNING: You are forcing a mask that may have strange properties. Use at your own risk!!!' map1masked = map1 * mask map2masked = map2 * mask print '\nCalculating masked FSC...' if options.cone_aperture == None: fsc_mask = util.FCC(map1masked, map2masked, xy_only=options.xy_only, z_only=options.z_only) else: fsc_mask = util.FCC(map1masked, map2masked, [options.cone_aperture], invertCone=True, xy_only=options.xy_only, z_only=options.z_only) res_mask = ResolutionAtThreshold(freq[1:], fsc_mask[1:NSAM], options.fsc_threshold) print 'FSC >= %.3f up to %.3f A (masked)' % (options.fsc_threshold, res_mask) dat = np.append(dat, fsc_mask[:NSAM], axis=1) # Append the masked FSC head += 'FSC-masked\t' if options.randomize_below_fsc == None: # Plot plt.figure() plt.plot(freq[1:], fsc_mask[1:NSAM]) plt.title('Fourier Shell Correlation - masked') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0 / options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_fsc-masked.png', dpi=options.dpi) plt.close() else: rand_res = ResolutionAtThreshold(freq[1:], fsc[1:NSAM], options.randomize_below_fsc) print '\nRandomizing phases beyond %.2f A...\n' % rand_res rand_freq = 1.0 / rand_res np.random.seed( seed=123 ) # We have to enforce the random seed otherwise different runs would not be comparable map1randphase = util.HighResolutionNoiseSubstitution( map1, lp=rand_res, apix=options.angpix) np.random.seed( seed=1234) # Cannot use same random seed for both maps!!! map2randphase = util.HighResolutionNoiseSubstitution( map2, lp=rand_res, apix=options.angpix) # We mask the phase-randomized maps: map1randphasemasked = map1randphase * mask map2randphasemasked = map2randphase * mask print '\nCalculating masked FSC for phase-randomized maps...' if options.cone_aperture == None: fsc_mask_rnd = util.FCC(map1randphasemasked, map2randphasemasked, xy_only=options.xy_only, z_only=options.z_only) else: fsc_mask_rnd = util.FCC(map1randphasemasked, map2randphasemasked, [options.cone_aperture], invertCone=True, xy_only=options.xy_only, z_only=options.z_only) # We compute FSCtrue following (Chen et al, Ultramicroscopy 2013). For masked maps this will correct the FSC for eventual refinement overfitting, including from the mask: # fsc_mask_true[freq >= rand_freq] = (fsc_mask[freq >= rand_freq] - fsc_mask_rnd[freq >= rand_freq]) / (1 - fsc_mask_rnd[freq >= rand_freq]) fsc_mask_true = ((fsc_mask - fsc_mask_rnd) / (1.0 - fsc_mask_rnd)) fsc_mask_true[:NSAM][freq < rand_freq] = fsc_mask[:NSAM][ freq < rand_freq] fsc_mask_true = np.nan_to_num(fsc_mask_true) res_mask_true = ResolutionAtThreshold(freq[1:], fsc_mask_true[1:NSAM], options.fsc_threshold) print 'FSC >= %.3f up to %.3f A (masked - true)' % ( options.fsc_threshold, res_mask_true) dat = np.append(dat, fsc_mask_true[:NSAM], axis=1) # Append the true masked FSC head += 'FSC-masked_true\t' # Plot plt.figure() plt.plot(freq[1:], fsc_mask[1:NSAM], freq[1:], fsc_mask_rnd[1:NSAM], freq[1:], fsc_mask_true[1:NSAM]) plt.title('Fourier Shell Correlation - masked') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['FSC', 'FSC - phase randomized', 'FSC - true']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0 / options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_fsc-masked_true.png', dpi=options.dpi) plt.close() res_mask = res_mask_true if options.mw == None and options.randomize_below_fsc == None: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['unmasked', 'masked']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0 / options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_fsc.png', dpi=options.dpi) plt.close() elif options.mw == None and options.randomize_below_fsc != None: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask_true[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['unmasked', 'masked - true']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0 / options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_fsc.png', dpi=options.dpi) plt.close() if options.mw != None: DALT = 0.81 # Da/A^3 # Estimate fraction of volume occupied by the molecule: fpart = 1000.0 * options.mw / DALT / (options.angpix * 2 * NSAM)**3 fignore = 1000.0 * options.mw_ignore / DALT / (options.angpix * 2 * NSAM)**3 # Fraction of the volume occupied by the mask: maskvoxsum = np.sum(mask) fmask = maskvoxsum / (2 * NSAM)**3 print '\nCalculating Single-Particle Wiener filter...' print '\nFraction of particle within the volume (Fpart): %.6f' % fpart print 'Fraction of mask within the volume (Fmask): %.6f' % fmask if options.mw_ignore > 0.0: print 'Fraction of densities to be ignored within the volume (Fignore): %.6f' % fignore print 'Fpart/(Fmask-Fignore) ratio: %.6f' % (fpart / (fmask - fignore)) if (fpart / (fmask - fignore)) >= 1.0: print '\nWARNING: Your particle occupies a volume bigger than the mask. Mask is probably too tight or even too small!' else: print 'Fpart/Fmask ratio: %.6f' % (fpart / fmask) if (fpart / fmask) >= 1.0: print '\nWARNING: Your particle occupies a volume bigger than the mask. Mask is probably too tight or even too small!' # Let's do Single-Particle Wiener filtering following (Sindelar & Grigorieff, 2012): if options.randomize_below_fsc == None: fsc_spw = fsc_mask / (fsc_mask + (fpart / (fmask - fignore)) * (1.0 - fsc_mask)) else: fsc_spw = fsc_mask_true / (fsc_mask_true + (fpart / (fmask - fignore)) * (1.0 - fsc_mask_true)) res_spw = ResolutionAtThreshold(freq[1:], fsc_spw[1:NSAM], options.fsc_threshold) print '\nFSC >= %.3f up to %.3f A (volume-normalized)' % ( options.fsc_threshold, res_spw) dat = np.append(dat, fsc_spw[:NSAM], axis=1) # Append the FSC-SPW head += 'FSC-SPW \t' # Plot plt.figure() plt.plot(freq[1:], fsc_spw[1:NSAM]) plt.title( 'Fourier Shell Correlation - Single-Particle Wiener filter') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0 / options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_fsc-spw.png', dpi=options.dpi) plt.close() if options.randomize_below_fsc != None: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask[1:NSAM], freq[1:], fsc_spw[1:NSAM], freq[1:], fsc_mask_true[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend( ['unmasked', 'masked', 'masked - SPW', 'masked - true']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0 / options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_fsc.png', dpi=options.dpi) plt.close() else: # Plot plt.figure() plt.plot(freq[1:], fsc[1:NSAM], freq[1:], fsc_mask[1:NSAM], freq[1:], fsc_spw[1:NSAM]) plt.title('Fourier Shell Correlation') plt.ylabel('FSC') plt.xlabel('Spatial frequency (1/A)') plt.legend(['unmasked', 'masked', 'masked - SPW']) plt.minorticks_on() ax = plt.gca() ax.set_yticks([options.fsc_threshold], minor=True) ax.set_yticklabels([str(options.fsc_threshold)], minor=True) if options.refine_res_lim != None: ax.axvline(1.0 / options.refine_res_lim, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_fsc.png', dpi=options.dpi) plt.close() #### MAP FILTERING STEPS: # 1. Sum the two half-reconstructions: print '\nAveraging the two half-maps...' fullmap = 0.5 * (map1 + map2) # 2. Apply FSC weighting or SPW filter to the final map, accordingly: if options.skip_fsc_weighting == False: print 'Applying FSC weighting (Cref) to the map...' if options.mask == None and options.mw == None: # Derive weights from unmasked FSC fsc_weights = np.sqrt(2 * np.abs(fsc) / (1 + np.abs(fsc))) elif options.mw == None: # Derive weights from masked FSC if options.randomize_below_fsc != None: fsc_weights = np.sqrt(2 * np.abs(fsc_mask_true) / (1 + np.abs(fsc_mask_true))) else: fsc_weights = np.sqrt(2 * np.abs(fsc_mask) / (1 + np.abs(fsc_mask))) else: fsc_weights = np.sqrt(2 * np.abs(fsc_spw) / (1 + np.abs(fsc_spw))) fullmap = util.RadialFilter(fullmap, fsc_weights, return_filter=False) dat = np.append(dat, fsc_weights[:NSAM], axis=1) # Append the FSC weighting head += 'Cref_Weights\t' # 3. Sharpen map by recovering amplitudes from detector's MTF: if options.mtf != None: print 'Dividing map by the detector MTF...' try: mtf = np.loadtxt(options.mtf) ignore_mtf = False except ValueError: if options.mtf[-5:] == '.star': mtf = np.loadtxt(options.mtf, skiprows=4) ignore_mtf = False else: print 'Could not read MTF file! Ignoring MTF...' ignore_mtf = True if ignore_mtf == False: # We need to know the MTF values at the Fourier bins of our map. So we interpolate from the MTF description available: NSAMfull = np.ceil( np.sqrt(np.sum(np.power(map1.shape, 2))) / 2.0 + 1 ).astype( 'int' ) # For cubic volumes this is just half the box size multiplied by sqrt(2). freqfull = (np.arange(NSAMfull) / (2.0 * NSAM * options.angpix)).reshape(NSAMfull, 1) freqfull[0] = 1.0 / 999 # Just to avoid dividing by zero later interp_mtf = np.interp(freqfull, mtf[:, 0], mtf[:, 1]) # print len(interp_mtf),len(freq[1:]full) # Divide Fourier components by the detector MTF: inv_mtf = 1.0 / interp_mtf fullmap = util.RadialFilter(fullmap, inv_mtf, return_filter=False) dat = np.append(dat, inv_mtf[:NSAM], axis=1) # Append the inverse MTF applied head += 'InverseMTF\t' # 4. Perform automatic sharpening based on the Guinier plot: ##### GUINIER PLOT ##### if options.auto_bfac != None: # Here we use the same method as relion_postprocess. Note there is a difference in the normalization of the FFT, but that doesn't affect the results (only the intercept of fit). # NOTE: the bfactor.exe and EM-BFACTOR programs use a different fitting method. radamp = util.RadialProfile( np.abs(np.fft.fftshift(np.fft.fftn(fullmap))))[:NSAM] lnF = np.log(radamp) if minres == -1.0: minres = 10.0 if maxres == -1.0: if options.mw != None: maxres = res_spw elif options.mask != None: maxres = res_mask else: maxres = res print '\nEstimating contrast decay (B-factor) from Guinier plot between %.2f A and %.2f A...\n' % ( minres, maxres) hirange = 1. / freq <= minres lorange = 1. / freq >= maxres resrange = hirange * lorange resrange = resrange[:, 0] fit = np.polyfit(freq2[resrange, 0], lnF[resrange], deg=1) fitline = fit[0] * freq2 + fit[1] print 'Slope of fit: %.4f' % (fit[0]) print 'Intercept of fit: %.4f' % (fit[1]) print 'Correlation of fit: %.5f' % (np.corrcoef( lnF[resrange], fitline[resrange, 0])[0, 1]) print 'B-factor for contrast restoration: %.4f A^2\n' % (4.0 * fit[0]) fullmap = util.FilterBfactor(fullmap, apix=options.angpix, B=4.0 * fit[0], return_filter=False) guinierfilt = np.exp( -fit[0] * freq2) # Just for appending to the output data file dat = np.append( dat, guinierfilt[:NSAM], axis=1) # Append the B-factor filter derived from the Guinier plot head += 'Auto_B-factor\t' radampnew = util.RadialProfile( np.abs(np.fft.fftshift(np.fft.fftn(fullmap))))[:NSAM] lnFnew = np.log(radampnew) # Plot plt.figure() plt.plot(freq2, lnF, freq2[lorange[:, 0], 0], lnFnew[lorange[:, 0]], freq2[resrange, 0], fitline[resrange]) plt.title('Guinier Plot') plt.ylabel('ln(F)') plt.xlabel('Spatial frequency^2 (1/A^2)') plt.legend(['Exp.', 'Exp. sharpened', 'Fit']) ax = plt.gca() ax.axvline(1.0 / minres**2, linestyle='dashed', linewidth=0.75, color='m') ax.axvline(1.0 / maxres**2, linestyle='dashed', linewidth=0.75, color='m') plt.grid(b=True, which='both') plt.savefig(options.out + '_guinier.png', dpi=options.dpi) plt.close() if options.cosine == False: print '\nWARNING: You should probably specify --cosine option to low-pass filter your map after sharpening!\n' # 5. Apply an ad-hoc B-factor for smoothing or sharpening the map, if provided: if options.adhoc_bfac != 0.0: print 'Applying ad-hoc B-factor to the map...' fullmap = util.FilterBfactor(fullmap, apix=options.angpix, B=options.adhoc_bfac, return_filter=False) freq2 = freq * freq bfacfilt = np.exp(-options.adhoc_bfac * freq2 / 4.0) # Just for appending to the output data file dat = np.append(dat, bfacfilt[:NSAM], axis=1) # Append the ad-hoc B-factor filter applied head += 'Adhoc_B-factor\t' if options.cosine == False: print '\nWARNING: You should probably specify --cosine option to low-pass filter your map after sharpening!\n' # 6. Apply FSC^2 weighting to the final map: if options.apply_fsc2: print 'Applying FSC^2 weighting to the map...' if options.mask == None and options.mw == None: # Derive weights from unmasked FSC fsc2_weights = fsc**2 elif options.mw == None: # Derive weights from masked FSC if options.randomize_below_fsc != None: fsc2_weights = fsc_mask_true**2 else: fsc2_weights = fsc_mask**2 else: fsc2_weights = fsc_spw**2 fullmap = util.RadialFilter(fullmap, fsc2_weights, return_filter=False) dat = np.append(dat, fsc2_weights[:NSAM], axis=1) # Append the FSC weighting head += 'FSC^2_Weights\t' # 7. Impose a Gaussian or Cosine or Top-hat low-pass filter with cutoff at given resolution, or resolution determined from FSC threshold: if options.lowpass == 'auto': print 'Low-pass filtering the map at resolution cutoff...' if options.mw != None: res_cutoff = res_spw elif options.mask != None: res_cutoff = res_mask else: res_cutoff = res if options.tophat == False and options.cosine == False: fullmap = util.FilterGauss(fullmap, apix=options.angpix, lp=res_cutoff, return_filter=False) lp = np.exp(-res_cutoff**2 * freq2[:, 0] / 2) else: fullmap = util.FilterCosine(fullmap, apix=options.angpix, lp=res_cutoff, return_filter=False, width=options.cosine_edge_width) cosrad = np.argmin(np.abs(1. / freq - res_cutoff)) rii = cosrad + options.cosine_edge_width / 2 rih = cosrad - options.cosine_edge_width / 2 lp = np.zeros(freq[:, 0].shape) r = np.arange(len(freq)) fill_idx = r <= rih lp[fill_idx] = 1.0 rih_idx = r > rih rii_idx = r <= rii edge_idx = rih_idx * rii_idx lp[edge_idx] = (1.0 + np.cos( np.pi * (r[edge_idx] - rih) / options.cosine_edge_width)) / 2.0 dat = np.append(dat, lp.reshape(NSAM, 1), axis=1) # Append the low-pass filter applied head += 'Low-pass \t' elif options.lowpass >= 0.0: print 'Low-pass filtering the map at resolution cutoff...' res_cutoff = options.lowpass if options.tophat == False and options.cosine == False: fullmap = util.FilterGauss(fullmap, apix=options.angpix, lp=res_cutoff, return_filter=False) lp = np.exp(-res_cutoff**2 * freq2[:, 0] / 2) else: fullmap = util.FilterCosine(fullmap, apix=options.angpix, lp=res_cutoff, return_filter=False, width=options.cosine_edge_width) cosrad = np.where(freq <= 1. / res_cutoff)[0][0] rii = cosrad + options.cosine_edge_width / 2 rih = cosrad - options.cosine_edge_width / 2 lp = np.zeros(freq[:, 0].shape) r = np.arange(len(freq)) fill_idx = r <= rih lp[fill_idx] = 1.0 rih_idx = r > rih rii_idx = r <= rii edge_idx = rih_idx * rii_idx lp[edge_idx] = (1.0 + np.cos( np.pi * (r[edge_idx] - rih) / options.cosine_edge_width)) / 2.0 dat = np.append(dat, lp.reshape(NSAM, 1), axis=1) # Append the low-pass filter applied head += 'Low-pass \t' # 8. Apply mask, if provided: if options.mask != None or options.mw != None: print 'Masking the map...' masked = fullmap * mask if options.resample == None: sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(masked, options.out + '-masked.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True) sys.stdout = sys.__stdout__ else: masked = util.Resample(masked, apix=options.angpix, newapix=options.resample) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(masked, options.out + '-masked.mrc', dtype='float32', pixelsize=options.resample, quickStats=True) sys.stdout = sys.__stdout__ mask = util.Resample(mask, apix=options.angpix, newapix=options.resample) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(mask, options.out + '-mask.mrc', dtype='float32', pixelsize=options.resample, quickStats=True) sys.stdout = sys.__stdout__ # Write filtered, unmasked map if options.resample == None: sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(fullmap, options.out + '-unmasked.mrc', dtype='float32', pixelsize=options.angpix, quickStats=True) sys.stdout = sys.__stdout__ else: fullmap = util.Resample(fullmap, apix=options.angpix, newapix=options.resample) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(fullmap, options.out + '-unmasked.mrc', dtype='float32', pixelsize=options.resample, quickStats=True) sys.stdout = sys.__stdout__ # Save output file with all relevant FSC data np.savetxt(options.out + '_data.fsc', np.matrix(dat), header=command + '\n' + head, delimiter='\t', fmt='%.6f') print '\nDone!'
def main(): # BATCHSIZE=2048 parfile = sys.argv[1] newparfile = sys.argv[2] mrcfile = sys.argv[3] newmrcfile = sys.argv[4] par = np.loadtxt(parfile, comments='C') U = np.unique( par[:,7] ) oddU = U[0::2] # .par file convention starts at 1! evenU = U[1::2] oddpar = par[np.in1d( par[:,7], oddU )] evenpar = par[np.in1d( par[:,7], evenU )] # Sets may be unbalanced because we don't have control of how many particles each crystal has: Nmin = min( oddpar.shape[0], evenpar.shape[0] ) Nmax = max( oddpar.shape[0], evenpar.shape[0] ) diff = Nmax - Nmin # This gives how many particles we have to exclude in order to have balanced sets # So to avoid removing all "extra" particles from the same crystal, we remove 'diff' particles at random: idx = np.arange( Nmax ) np.random.seed( seed=123 ) # Fix random seed to get reproducible results np.random.shuffle( idx ) keep = sorted( idx[diff:] ) # These are the indices of the particles we want to keep if oddpar.shape[0] == Nmax: oddpar = oddpar[keep,:] else: evenpar = evenpar[keep,:] N = Nmin*2 both = np.empty( ( N, par.shape[1] ), dtype=par.dtype ) both[0::2,:] = oddpar both[1::2,:] = evenpar print 'Reordered %s into new dataset with %d particles evenly split.' % (parfile, N) print '%d particles needed to be excluded from the original dataset.' % diff print 'Now writing new MRC stack with reordered particles...' order = ( both[:,0] - 1 ).astype( 'int' ) # sys.stdout = open(os.devnull, "w") # Suppress output j = 0 for i in order: mrc = ioMRC.readMRC( mrcfile, idx = i )[0] ioMRC.writeMRC( mrc, newmrcfile, dtype='float32', idx = j ) # print 'Wrote particle %d/%d... \r' % (j+1, N), j += 1 sys.stdout = sys.__stdout__ print 'Done writing new MRC stack, now correcting indices in new .par file...' both[:,0] = np.reshape( np.arange( 1, N + 1 ), ( 1, N ) ) np.savetxt( newparfile, both, fmt=' %d %.2f %.2f %.2f %.2f %.2f %d %d %.2f %.2f %.2f %.2f %d %.4f %.2f %.2f' ) # Let's also save a text file containing the indices of the excluded particles: np.savetxt( parfile+'.excluded.idx', idx[:diff], fmt='%d' ) print 'Done!'
def main(): # BATCHSIZE=2048 parfile = sys.argv[1] newparfile = sys.argv[2] mrcfile = sys.argv[3] newmrcfile = sys.argv[4] par = np.loadtxt(parfile, comments='C') U = np.unique(par[:, 7]) oddU = U[0::2] # .par file convention starts at 1! evenU = U[1::2] oddpar = par[np.in1d(par[:, 7], oddU)] evenpar = par[np.in1d(par[:, 7], evenU)] # Sets may be unbalanced because we don't have control of how many particles each crystal has: Nmin = min(oddpar.shape[0], evenpar.shape[0]) Nmax = max(oddpar.shape[0], evenpar.shape[0]) diff = Nmax - Nmin # This gives how many particles we have to exclude in order to have balanced sets # So to avoid removing all "extra" particles from the same crystal, we remove 'diff' particles at random: idx = np.arange(Nmax) np.random.seed(seed=123) # Fix random seed to get reproducible results np.random.shuffle(idx) keep = sorted( idx[diff:]) # These are the indices of the particles we want to keep if oddpar.shape[0] == Nmax: oddpar = oddpar[keep, :] else: evenpar = evenpar[keep, :] N = Nmin * 2 both = np.empty((N, par.shape[1]), dtype=par.dtype) both[0::2, :] = oddpar both[1::2, :] = evenpar print 'Reordered %s into new dataset with %d particles evenly split.' % ( parfile, N) print '%d particles needed to be excluded from the original dataset.' % diff print 'Now writing new MRC stack with reordered particles...' order = (both[:, 0] - 1).astype('int') # sys.stdout = open(os.devnull, "w") # Suppress output j = 0 for i in order: mrc = ioMRC.readMRC(mrcfile, idx=i)[0] ioMRC.writeMRC(mrc, newmrcfile, dtype='float32', idx=j) # print 'Wrote particle %d/%d... \r' % (j+1, N), j += 1 sys.stdout = sys.__stdout__ print 'Done writing new MRC stack, now correcting indices in new .par file...' both[:, 0] = np.reshape(np.arange(1, N + 1), (1, N)) np.savetxt( newparfile, both, fmt= ' %d %.2f %.2f %.2f %.2f %.2f %d %d %.2f %.2f %.2f %.2f %d %.4f %.2f %.2f' ) # Let's also save a text file containing the indices of the excluded particles: np.savetxt(parfile + '.excluded.idx', idx[:diff], fmt='%d') print 'Done!'
# # ############################################################################# # This script will tile an .mrcs stack to generate a single MRC image from mrcz import ioMRC import sys import copy import numpy as np # import matplotlib.pyplot as plt # import matplotlib.cm as cmap mrcs_in = sys.argv[1] mrc_out = sys.argv[2] tile_x = int(sys.argv[3]) tile_y = int(sys.argv[4]) mrcs = ioMRC.readMRC(mrcs_in)[0] if tile_x * tile_y < mrcs.shape[0]: print( 'Tiling size must be at least equal to the number of particles in the stack! You specified: tile_x = %d, tile_y = %d' % (tile_x, tile_y)) sys.exit(1) elif tile_x * tile_y >= mrcs.shape[0]: outmrc = np.zeros( (tile_y * mrcs.shape[2], tile_x * mrcs.shape[1])).astype(mrcs.dtype) k = 0 for i in np.arange(tile_y): for j in np.arange(tile_x):
from mrcz import ioMRC # if you install mrcz from pip: # from mrcz from mrcz import ioMRC import focus_utilities as fu import focus_ctf as ctf import matplotlib.pyplot as plt import matplotlib.cm as cmap # Read the image and its header: img, hed = ioMRC.readMRC('/path/to/micrograph0001.mrc') # Apply a cosine-edge low-pass filter, half-width at 20.0 A, 6-Fourier-pixels wide: # Other filter choices available, such as Gaussian, B-factor, etc. Low-pass and high-pass options can be combined. img_filt = fu.FilterCosine(img, apix=1.0, lp=20.0, width=6.0, return_filter=False) # Display the filtered image: plt.imshow(img_filt, cmap=cmap.gray) plt.show() plt.close # Apply CTF-correction to this micrograph (defocus and astigmatism determined by Gctf): imgctf, cortype = ctf.CorrectCTF(img, DF1=28329.113281, DF2=28981.464844, AST=16.717291, WGH=0.07, invert_contrast=False,
#!/usr/bin/env python import focus_utilities as util from mrcz import ioMRC import sys import numpy as np stackin = ioMRC.readMRC( sys.argv[1] )[0] stackout = sys.argv[2] angpix = np.float( sys.argv[3] ) lowpass = np.float( sys.argv[4] ) for i in range( stackin.shape[0] ): print( ' Randomizing phases of slice %d/%d beyond %f A...' % ( i+1, stackin.shape[0], lowpass ) ) ioMRC.writeMRC( util.HighResolutionNoiseSubstitution( stackin[i,:,:], apix=angpix, lp=lowpass ), stackout, idx=i ) print( 'Done!' )
############################################################################# # This script will tile an .mrcs stack to generate a single MRC image from mrcz import ioMRC import sys import copy import numpy as np # import matplotlib.pyplot as plt # import matplotlib.cm as cmap mrcs_in = sys.argv[1] mrc_out = sys.argv[2] tile_x = int( sys.argv[3] ) tile_y = int( sys.argv[4] ) mrcs = ioMRC.readMRC( mrcs_in )[0] if tile_x * tile_y < mrcs.shape[0]: print( 'Tiling size must be at least equal to the number of particles in the stack! You specified: tile_x = %d, tile_y = %d' % ( tile_x, tile_y ) ) sys.exit(1) elif tile_x * tile_y >= mrcs.shape[0]: outmrc = np.zeros( ( tile_y*mrcs.shape[2], tile_x*mrcs.shape[1] ) ).astype( mrcs.dtype ) k = 0 for i in np.arange( tile_y ): for j in np.arange( tile_x ): if k < mrcs.shape[0]:
def main(): # Get arguments: folders = sys.argv[1] merge_dirfile = sys.argv[2] png_path = sys.argv[3] stack_path = sys.argv[4] stack_rootname = sys.argv[5] box_size = int(sys.argv[6]) phaori_shift = np.array([float(sys.argv[7].split(',')[0]), float(sys.argv[7].split(',')[1])]) # How many degrees to offset the phase origins in order to get a protein in the center of the particle for a zero-tilt image apix = float(sys.argv[8]) # pixel size in Angstroems microscope_voltage = float(sys.argv[9]) # microscope voltage in kV microscope_cs = float(sys.argv[10]) # microscope spherical aberration in mm ampcontrast = 1.0-float(sys.argv[11])**2 # amplitude contrast of CTF (obtained here from phase contrast) magnification = float(sys.argv[12]) sigcc = float(sys.argv[13]) if sys.argv[14] == 'y': invert_micrograph = True else: invert_micrograph = False if sys.argv[15] == 'y': normalize_box = True else: normalize_box = False if sys.argv[16] == 'y': calculate_defocus_tilted = True else: calculate_defocus_tilted = False if sys.argv[17] == 'y': save_phase_flipped = True else: save_phase_flipped = False if sys.argv[18] == 'y': save_ctf_multiplied = True else: save_ctf_multiplied = False if sys.argv[19] == 'y': save_wiener_filtered = True else: save_wiener_filtered = False wiener_constant = float(sys.argv[20]) sigma = float(sys.argv[21]) # Sigma for normalization of the windowed images (if normalize_box == True) sigma_rad = float(sys.argv[22]) # Radius for normalization of the windowed images (if normalize_box == True), for estimating AVG and STD if sys.argv[23] == 'Defocus/Lattice': tiltgeom = '' elif sys.argv[23] == 'Defocus': tiltgeom = 'DEFOCUS_' elif sys.argv[23] == 'Lattice': tiltgeom = 'LATTICE_' elif sys.argv[23] == 'Merge': tiltgeom = 'MERGE_' if sys.argv[24] == 'Micrograph': ctfcor = True # stack_rootname = stack_rootname + '_ctfcor' else: ctfcor = False if sys.argv[25] == 'y': save_pick_fig = True else: save_pick_fig = False if sys.argv[26] == 'y': use_masked_image = True else: use_masked_image = False if sys.argv[27] == 'y': do_resample = True else: do_resample = False n_threads = int(sys.argv[28]) if n_threads < 1: n_threads = 1 this_thread = int(sys.argv[29]) # End arguments f = open(merge_dirfile,'r') img_dirs = f.readlines() f.close() # Constant parameters to be written on the .par file of this dataset: shx = 0.0 shy = 0.0 occ = 100.0 logp = 0 sig = 0.5 # This has nothing to do with the normalization SIGMA! score = 0.0 chg = 0.0 idx = 0 # box_fail = 0 phaori_err = 0 prog = 0.0 N = len(img_dirs) # print N # batch_size = round(float(N)/n_threads) batch_size = int( round( float( N ) / n_threads ) ) first_img = ( this_thread - 1 ) * batch_size if this_thread < n_threads: last_img = first_img + batch_size else: last_img = N img_dirs = img_dirs[first_img:last_img] n = first_img + 1 print '\nJob %d/%d picking particles from micrographs %d to %d...\n' % (this_thread, n_threads, n, last_img) # print N, last_img # Open the .par file to store all particle parameters: f = open(stack_path+stack_rootname+'_1_r1-%.4d.par' % this_thread, 'w+') # Open the master coordinates file: mcf = open(stack_path+stack_rootname+'_coordinates_master-%.4d.txt' % this_thread, 'w+') for d in img_dirs: d = d.strip() imname = d.split('/')[-1] try: # Read in all relevant image parameters: params = Read2dxCfgFile(folders+d+'/2dx_image.cfg') except: print '\nProblem with image %s!\n' % d continue # if ctfcor: # try: # mrc = glob.glob(folders+d+'/image_ctfcor.mrc')[0] # img = ioMRC.readMRC(mrc)[0] # Read image # bf = open(folders+d+'/image_ctfcor.box', 'w+') # except: # print '\nCTF-corrected micrograph not found for image %s!\n' % d # continue # else: if use_masked_image: # First we look for the masked, zero-padded, normalized micrograph: try: # # There might be some funny numbers appended to the file name so we have to look for the shortest one to get the right file: # mrclist = glob.glob(folders+d+'/m'+imname+'*.mrc') # lenlist = [] # for m in mrclist: # lenlist.append(len(m)) # shortest_idx = np.argsort(lenlist)[0] # # print mrclist[shortest_idx] # mrc = mrclist[shortest_idx] # bf = open(os.path.splitext(mrc)[0]+'.box', 'w+') # # mrc = sorted(glob.glob(folders+d+'/m'+imname+'*.mrc'))[0] # # bf = open(folders+d+'/m'+imname+'.box', 'w+') mrc = folders + d + '/' + params['imagename'] + '.mrc' sys.stdout = open(os.devnull, "w") # Suppress output img = ioMRC.readMRC(mrc)[0] # Read image sys.stdout = sys.__stdout__ bf = open(folders + d + '/' + params['imagename'] + '.box', 'w+') except: # If it doesn't exist, we try the unmasked, zero-padded, normalized micrograph: try: # mrclist = glob.glob(folders+d+'/'+imname+'*.mrc') # lenlist = [] # for m in mrclist: # lenlist.append(len(m)) # shortest_idx = np.argsort(lenlist)[0] # # print mrclist[shortest_idx] # mrc = mrclist[shortest_idx] # bf = open(os.path.splitext(mrc)[0]+'.box', 'w+') # # mrc = sorted(glob.glob(folders+d+'/m'+imname+'*.mrc'))[0] # # bf = open(folders+d+'/m'+imname+'.box', 'w+') mrc = folders + d + '/' + params['nonmaskimagename'] + '.mrc' sys.stdout = open(os.devnull, "w") # Suppress output img = ioMRC.readMRC(mrc)[0] # Read image sys.stdout = sys.__stdout__ bf = open(folders + d + '/' + params['nonmaskimagename'] + '.box', 'w+') except: # If neither exist we skip this image print '::\nProblem with image %s!\n' % d continue else: # If the user requires, we go directly to the unmasked, zero-padded, normalized micrograph: try: # mrclist = glob.glob(folders+d+'/'+imname+'*.mrc') # lenlist = [] # for m in mrclist: # lenlist.append(len(m)) # shortest_idx = np.argsort(lenlist)[0] # # print mrclist[shortest_idx] # mrc = mrclist[shortest_idx] # bf = open(os.path.splitext(mrc)[0]+'.box', 'w+') # # mrc = sorted(glob.glob(folders+d+'/m'+imname+'*.mrc'))[0] # # bf = open(folders+d+'/m'+imname+'.box', 'w+') mrc = folders + d + '/' + params['nonmaskimagename'] + '.mrc' sys.stdout = open(os.devnull, "w") # Suppress output img = ioMRC.readMRC(mrc)[0] # Read image sys.stdout = sys.__stdout__ bf = open(folders + d + '/' + params['nonmaskimagename'] + '.box', 'w+') except: # If neither exist we skip this image print '::\nProblem with image %s!' % d print '::' continue # Here we check whether the pixel size defined in the image cfg file agrees with the desired one: # print params.keys() apixold = apix if ( params['sample_pixel'] < 0.99 * apix ) or ( params['sample_pixel'] > 1.01 * apix ): # Should not differ by more than 1% ! try: apixold = params['stepdigitizer'] * 1e4 / params['magnification'] # We give it a second chance by calculating from stepdigitizer and magnification # print params['stepdigitizer'], params['magnification'] except KeyError: params_master = Read2dxCfgFile(folders+d+'/../2dx_master.cfg') # Try to fetch stepdigitizer information from the group's 2dx_master.cfg file apixold = params_master['stepdigitizer'] * 1e4 / params['magnification'] # We give it a second chance by calculating from stepdigitizer and magnification if ( apixold < 0.99 * apix ) or ( apixold > 1.01 * apix ): # Should not differ by more than 1% ! if do_resample: # We resample the micrograph in Fourier space to bring it to the desired pixel size: print apixold, apix img = util.Resample( img, apix=apixold, newapix=apix ) else: print '::\nSkipping image %s: pixel size of this image seems to be different from the one defined (%f A).' % (d, apix) print '::\nPlease check it if you would like to include this image.' print '::' continue # TO DO: if magnification differs (by failing the tests above), should we resample the micrograph to desired mag? print '::\nNow boxing unit cells of micrograph %d/%d.\n' % (n, N) print mrc try: if invert_micrograph: img = -1.0 * img # img = spx.EMNumPy.em2numpy(img) profile = glob.glob(folders+d+'/*profile.dat')[0] dat = ReadProfileDat(profile) ccmean = np.mean(dat[:,4]) ccstd = np.std(dat[:,4]) cc_thr = ccmean + sigcc * ccstd print ':\nImage average value:%.2f' % img.mean() print ':Image standard deviation:%.2f' % img.std() print ':' print ':CC scores average value:%.2f' % ccmean print ':CC scores standard deviation:%.2f' % ccstd print ':Only particles with CC score above %.2f will be picked.\n' % cc_thr # # Get several values related to defocus, astigmatism and tilting: # params = Read2dxCfgFile(folders+d+'/2dx_image.cfg') # w = img.get_xsize() w = img.shape[0] # Get the unit-cell vectors: if sum(params['PHAORI']) == 0: PhaOriX = 0 PhaOriY = 0 a = [0,0] b = [0,0] else: a,b = LatticeReciprocal2Real(params['u'], params['v'], w * apix / apixold ) # These parameters are w.r.t to the original image size # Convert from Numpy-array to list: a = [a[0], a[1]] b = [b[0], b[1]] x,y = CalculatePickingPositions(dat, a, b, w * apix / apixold, params['PHAORI'], phaori_shift, params[tiltgeom+'TLTANG']) # These parameters are w.r.t to the original image size x *= apixold / apix y *= apixold / apix # Plot the picking profile: if save_pick_fig: meanimg = img.mean() stdimg = img.std() climimg = [meanimg - 2 * stdimg, meanimg + 2 * stdimg] fig1 = plt.figure() plt.imshow(img, cmap=cm.gray, vmin=climimg[0], vmax=climimg[1]) Axes1 = fig1.gca() # The following values are constant within each crystal: phi = 90.0 - params[tiltgeom+'TAXA'] theta = params[tiltgeom+'TLTANG'] psi = 270.0 - params[tiltgeom+'TLTAXIS'] ang = params['AST_ANGLE'] max_good = np.sum( dat[:,4] < cc_thr ) # The maximum number of particles we may extract from this micrograph # print 'max_good is ',max_good boxes = np.zeros( (max_good, box_size, box_size), dtype='float32' ) if save_phase_flipped: boxespf = np.zeros( (max_good, box_size, box_size), dtype='float32' ) if save_ctf_multiplied: boxescm = np.zeros( (max_good, box_size, box_size), dtype='float32' ) if save_wiener_filtered: boxeswf = np.zeros( (max_good, box_size, box_size), dtype='float32' ) idx_start = idx # Absolute index in the beginning of this crystal m = 0 ptcl_idx = np.arange( dat.shape[0] ) # print 'ptcl_idx[-1] is ',ptcl_idx[-1] # if shuffle_order: # np.random.seed( seed=n ) # Fix random seed to get reproducible results # np.random.shuffle( ptcl_idx ) for i in ptcl_idx: # for i in np.arange(dat.shape[0]): # print i,m try: # Adjust the picking coordinates for the .box file and picking plots: xbox_plot = x[i] + w/2 ybox_plot = y[i] + w/2 xbox = xbox_plot - box_size/2 ybox = ybox_plot - box_size/2 # if dat[i,4] < cc_thr or np.isnan(x[i]) or np.isnan(y[i]): if dat[i,4] < cc_thr: if save_pick_fig: # Write red patch on image to be saved as .png describing the picking positions: Axes1.add_patch(patches.Circle((xbox_plot, ybox_plot), edgecolor='magenta', facecolor='none', linewidth=0.8, radius=box_size/8)) # Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='red', facecolor='none', linewidth=0.2)) else: # Extract the particle from the micrograph at specified position: # NOTE THAT X,Y CONVENTIONS FOR ioMRC/NUMPY ARE INVERTED IN RELATION TO SPARX/EMAN!!! # box = spx.Util.window(img,int(box_size),int(box_size),1,int(round(x[i])),int(round(y[i]))) xi = int(round(x[i])) yi = int(round(y[i])) # print xi-w/2-box_size/2, xi-w/2+box_size/2 box_ext = img[yi-w/2-box_size/2:yi-w/2+box_size/2, xi-w/2-box_size/2:xi-w/2+box_size/2] # Normalize box to zero mean and constant pre-defined sigma: if normalize_box: # box = NormalizeStack([box], sigma)[0] # try: box = util.NormalizeImg( box_ext, std=sigma, radius=sigma_rad ) else: box = box_ext # except Warning: # raise ZeroDivisionError( "Standard deviation of image is zero!" ) # Sometimes the box contains weird values that may be tricky to detect. Testing the mean of the pixels for NaN and Inf seems to work: # tmpmean = box.mean() # if np.isnan( tmpmean ) or np.isinf( tmpmean ): # print tmpmean tmpstd = box.std() if np.isnan( tmpstd ) or np.isinf( tmpstd ): # print tmpstd print( "The box of CC peak (%d,%d) at position (%d,%d) in micrograph %d/%d contains strange values (NaN or Inf)! Will be discarded." % (dat[i,0], dat[i,1], int(round(x[i])), int(round(y[i])), n, N) ) raise ValueError boxes[m,:,:] = box # if m == 0: # boxes[0,:,:] = box # else: # # print box.shape # boxes = np.append( boxes, box.reshape( ( 1, box_size, box_size) ), axis=0 ) if calculate_defocus_tilted or save_phase_flipped or save_ctf_multiplied or save_wiener_filtered: RLDEF1,RLDEF2 = CalculateDefocusTilted(x[i], y[i], apix, params[tiltgeom+'TLTAXIS'], params[tiltgeom+'TLTANG'], params['DEFOCUS1'], params['DEFOCUS2']) else: RLDEF1 = params['DEFOCUS1'] RLDEF2 = params['DEFOCUS2'] if RLDEF1 <= 0.0 or RLDEF2 <= 0.0: print( "The box of CC peak (%d,%d) at position (%d,%d) in micrograph %d/%d has a negative defocus value! Tilt geometry for this crystal is probably wrong. Particle will be discarded." % (dat[i,0], dat[i,1], int(round(x[i])), int(round(y[i])), n, N) ) raise ValueError # Write .par file with the parameters for each particle in the dataset: print >>f, ' %d' % (idx+1),' %.2f' % psi,' %.2f' % theta,' %.2f' % phi,' %.2f' % shx,' %.2f' % shy,' %d' % magnification,' %d' % n,' %.2f' % RLDEF1,' %.2f' % RLDEF2,' %.2f' % ang,' %.2f' % occ,' %d' % logp,' %.4f' % sig,' %.2f' % score,' %.2f' % chg # Write the picking information to the .box file: print >>bf, '%d' % xbox, '\t%d' % ybox, '\t%d' % box_size, '\t%d' % box_size # Write the picking and defocus information to the master coordinates file: print >>mcf, '%d' % (idx+1),'\t%d' % n,'\t%s' % folders+d+'/'+imname,'\t%d' % xbox, '\t%d' % ybox, '\t%d' % box_size, '\t%d' % box_size,'\t%.2f' % RLDEF1,'\t%.2f' % RLDEF2 # Write image to the particle stack: # if idx == 0: # # If this is the first image, we initiate as a normal .mrcs stack. # box.write_image(stack_path+stack_rootname+'-%.4d.mrcs' % this_thread, idx) # else: # # Subsequent images are directly appended to the file: # with open(stack_path+stack_rootname+'-%.4d.mrcs' % this_thread, 'ab') as mrcf: # spx.EMNumPy.em2numpy(box).tofile(mrcf) # if (save_phase_flipped or save_wiener_filtered) and not ctfcor: # # Convert CTF parameters to SPARX convention: # defocus = (RLDEF1+RLDEF2)/2 # ast = RLDEF1-RLDEF2 # if params['AST_ANGLE'] < 0.0: # astang = 360.0 + params['AST_ANGLE'] # else: # astang = params['AST_ANGLE'] # # Generate SPARX CTF object: # p = [defocus * 1e-4, microscope_cs, microscope_voltage, apix, 0, ampcontrast * 100, ast * 1e-4, astang] # spx.set_ctf(box, p) # ctf = spx.generate_ctf(p) # Phase-flip the image: if save_phase_flipped: # Apply CTF correction on whole micrograph to reduce delocalization effects: # imgctfcor = spx.filt_ctf( img, ctf, binary=1 ) # boxctfcor = spx.Util.window( imgctfcor, int( box_size ), int( box_size ), 1, int( round( x[i] ) ), int( round( y[i] ) ) ) if ctfcor: imgctfcor = CTF.CorrectCTF( img, DF1=RLDEF1, DF2=RLDEF2, AST=params['AST_ANGLE'], WGH=ampcontrast, apix=apix, Cs=microscope_cs, kV=microscope_voltage, phase_flip=True, return_ctf=False, invert_contrast=False )[0] boxctfcor = imgctfcor[yi-w/2-box_size/2:yi-w/2+box_size/2, xi-w/2-box_size/2:xi-w/2+box_size/2] else: boxctfcor = CTF.CorrectCTF( box_ext, DF1=RLDEF1, DF2=RLDEF2, AST=params['AST_ANGLE'], WGH=ampcontrast, apix=apix, Cs=microscope_cs, kV=microscope_voltage, phase_flip=True, return_ctf=False, invert_contrast=False )[0] if normalize_box: # try: boxctfcor = util.NormalizeImg( boxctfcor, std=sigma, radius=sigma_rad ) # except Warning: # raise ZeroDivisionError( "Standard deviation of image is zero!" ) boxespf[m,:,:] = boxctfcor # if m == 0: # boxespf[0,:,:] = boxctfcor # else: # boxespf = np.append( boxespf, boxctfcor.reshape( ( 1, box_size, box_size) ), axis=0 ) # Write image to the particle stack: # if idx == 0: # # If this is the first image, we initiate as a normal .mrcs stack. # boxctfcor.write_image( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread, idx ) # else: # # Subsequent images are directly appended to the file: # with open( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread, 'ab' ) as mrcf: # spx.EMNumPy.em2numpy(boxctfcor).tofile( mrcf ) # CTF-multiply the image: if save_ctf_multiplied: # # Apply CTF correction on whole micrograph to reduce delocalization effects: # imgctfcor = spx.filt_ctf( img, ctf, binary=0 ) # boxctfcor = spx.Util.window( imgctfcor, int( box_size ), int( box_size ), 1, int( round( x[i] ) ), int( round( y[i] ) ) ) if ctfcor: imgctfcor = CTF.CorrectCTF( img, DF1=RLDEF1, DF2=RLDEF2, AST=params['AST_ANGLE'], WGH=ampcontrast, apix=apix, Cs=microscope_cs, kV=microscope_voltage, ctf_multiply=True, return_ctf=False, invert_contrast=False )[0] boxctfcor = imgctfcor[yi-w/2-box_size/2:yi-w/2+box_size/2, xi-w/2-box_size/2:xi-w/2+box_size/2] else: boxctfcor = CTF.CorrectCTF( box_ext, DF1=RLDEF1, DF2=RLDEF2, AST=params['AST_ANGLE'], WGH=ampcontrast, apix=apix, Cs=microscope_cs, kV=microscope_voltage, ctf_multiply=True, return_ctf=False, invert_contrast=False )[0] if normalize_box: # try: boxctfcor = util.NormalizeImg( boxctfcor, std=sigma, radius=sigma_rad ) # except Warning: # raise ZeroDivisionError( "Standard deviation of image is zero!" ) boxescm[m,:,:] = boxctfcor # if m == 0: # boxescm[0,:,:] = boxctfcor # else: # boxescm = np.append( boxescm, boxctfcor.reshape( ( 1, box_size, box_size) ), axis=0 ) # Write image to the particle stack: # if idx == 0: # # If this is the first image, we initiate as a normal .mrcs stack. # boxctfcor.write_image( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, idx ) # else: # # Subsequent images are directly appended to the file: # with open( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, 'ab' ) as mrcf: # spx.EMNumPy.em2numpy(boxctfcor).tofile( mrcf ) # Wiener-filter the image: if save_wiener_filtered: # # Apply CTF correction on whole micrograph to reduce delocalization effects: # imgctfcor = spx.filt_ctf( img, ctf, binary=0 ) # boxctfcor = spx.Util.window( imgctfcor, int( box_size ), int( box_size ), 1, int( round( x[i] ) ), int( round( y[i] ) ) ) if ctfcor: imgctfcor = CTF.CorrectCTF( img, DF1=RLDEF1, DF2=RLDEF2, AST=params['AST_ANGLE'], WGH=ampcontrast, apix=apix, Cs=microscope_cs, kV=microscope_voltage, wiener_filter=True, return_ctf=False, invert_contrast=False, C=wiener_constant )[0] boxctfcor = imgctfcor[yi-w/2-box_size/2:yi-w/2+box_size/2, xi-w/2-box_size/2:xi-w/2+box_size/2] else: boxctfcor = CTF.CorrectCTF( box_ext, DF1=RLDEF1, DF2=RLDEF2, AST=params['AST_ANGLE'], WGH=ampcontrast, apix=apix, Cs=microscope_cs, kV=microscope_voltage, wiener_filter=True, return_ctf=False, invert_contrast=False, C=wiener_constant )[0] if normalize_box: # try: boxctfcor = util.NormalizeImg( boxctfcor, std=sigma, radius=sigma_rad ) # except Warning: # raise ZeroDivisionError( "Standard deviation of image is zero!" ) boxeswf[m,:,:] = boxctfcor # if m == 0: # boxeswf[0,:,:] = boxctfcor # else: # boxeswf = np.append( boxeswf, boxctfcor.reshape( ( 1, box_size, box_size) ), axis=0 ) # Write image to the particle stack: # if idx == 0: # # If this is the first image, we initiate as a normal .mrcs stack. # boxctfcor.write_image( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, idx ) # else: # # Subsequent images are directly appended to the file: # with open( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, 'ab' ) as mrcf: # spx.EMNumPy.em2numpy(boxctfcor).tofile( mrcf ) if save_pick_fig: # Write green patch on image to be saved as .png describing the picking positions: Axes1.add_patch(patches.Circle((xbox_plot, ybox_plot), edgecolor='lime', facecolor='none', linewidth=0.8, radius=box_size/8)) # Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='lime', facecolor='none', linewidth=0.2)) m += 1 idx += 1 except ( RuntimeError, ValueError, ZeroDivisionError, IndexError ) as e: if save_pick_fig: # Write red patch on image to be saved as .png describing the picking positions: Axes1.add_patch(patches.Circle((xbox_plot, ybox_plot), edgecolor='magenta', facecolor='none', linewidth=0.8, radius=box_size/8)) # Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='red', facecolor='none', linewidth=0.2)) print 'Failed to box CC peak (%d,%d) at position (%d,%d) in micrograph %d/%d!' % (dat[i,0], dat[i,1], int(round(x[i])), int(round(y[i])), n, N) # except ValueError: # if save_pick_fig: # # Write red patch on image to be saved as .png describing the picking positions: # # Axes1.add_patch(patches.Circle((dat[i,2], dat[i,3]), edgecolor='red', facecolor='none', linewidth=0.2, radius=20)) # Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='red', facecolor='none', linewidth=0.2)) # print 'Failed to box CC peak (%d,%d) at position (%d,%d) in micrograph %d/%d!' % (dat[i,0], dat[i,1], int(round(x[i])), int(round(y[i])), n, N) # except ZeroDivisionError: # if save_pick_fig: # # Write red patch on image to be saved as .png describing the picking positions: # # Axes1.add_patch(patches.Circle((dat[i,2], dat[i,3]), edgecolor='red', facecolor='none', linewidth=0.2, radius=20)) # Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='red', facecolor='none', linewidth=0.2)) # print 'Failed to box CC peak (%d,%d) at position (%d,%d) in micrograph %d/%d!' % (dat[i,0], dat[i,1], int(round(x[i])), int(round(y[i])), n, N) # Particles are written to stacks in crystal batches, thus saving fopen() calls: sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC( boxes[:m,:,:], stack_path+stack_rootname+'-%.4d.mrcs' % this_thread, dtype='float32', idx=idx_start ) if save_phase_flipped: ioMRC.writeMRC( boxespf[:m,:,:], stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread, dtype='float32', idx=idx_start ) if save_ctf_multiplied: ioMRC.writeMRC( boxescm[:m,:,:], stack_path+stack_rootname+'_ctf-multiplied-%.4d.mrcs' % this_thread, dtype='float32', idx=idx_start ) if save_wiener_filtered: ioMRC.writeMRC( boxeswf[:m,:,:], stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, dtype='float32', idx=idx_start ) sys.stdout = sys.__stdout__ print '\nBoxed %d/%d CC peaks from micrograph %d/%d.\n' % (m, dat.shape[0], n, N) # # Update the counts in the MRC headers: # # First the normal particle stack: # header = ioMRC.readMRCHeader( stack_path+stack_rootname+'-%.4d.mrcs' % this_thread ) # header['dimensions'][0] = idx # # Now we write the header back: # with open( stack_path+stack_rootname+'-%.4d.mrcs' % this_thread, 'rb+' ) as mrcf: # ioMRC.writeMRCHeader( mrcf, header, endchar = '<' ) # # Then the phase-flipped: # if save_phase_flipped and not ctfcor: # header = ioMRC.readMRCHeader( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread ) # header['dimensions'][0] = idx # # Now we write the header back: # with open( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread, 'rb+' ) as mrcf: # ioMRC.writeMRCHeader( mrcf, header, endchar = '<' ) # # Then the Wiener-filtered: # if save_wiener_filtered and not ctfcor: # header = ioMRC.readMRCHeader( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread ) # header['dimensions'][0] = idx # # Now we write the header back: # with open( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, 'rb+' ) as mrcf: # ioMRC.writeMRCHeader( mrcf, header, endchar = '<' ) # print '<<@progress: %d>>' % round(n*100.0/N) # Report progress to the GUI: prog += 75.0/N if prog >= 1.0: print '<<@progress: +%d>>' % round(prog) prog -= np.floor(prog) if save_pick_fig: fig1.savefig(png_path+'mic_%.3d_' % n+imname+'_picking.png', dpi=300) plt.close(fig1) n += 1 except RuntimeError: # print '::PROBLEM WITH MICROGRAPH %d/%d!!! Maybe it was not found?' % (n, N) # print '::' # print mrc print '\nPROBLEM WITH MICROGRAPH:' print '%s' % mrc print 'Maybe it was not found?' except ValueError: # print '::PROBLEM WITH CC PROFILE FOR IMAGE %d/%d!!!' % (n, N) # print '::' # print mrc print '\nPROBLEM WITH CC PROFILE FOR IMAGE:' print '%s' % mrc bf.close() # n += 1 # print '::Total boxed unit cells:%d' % idx # print '::Failed to box %d unit cells.' % box_fail # print '<<@progress: +%d>>' % round(prog/0.01) print '\nJob %d/%d finished picking particles.\n' % (this_thread, n_threads) f.close() mcf.close()
def main(): # Get arguments: stack_path = sys.argv[1] stack_rootname = sys.argv[2] + '_' + sys.argv[3] if sys.argv[4] == 'y': do_frc = True else: do_frc = False frc_folder = sys.argv[5] sigma = float( sys.argv[6] ) # Sigma for normalization of the windowed images (if normalize_box == True) sigma_rad = float( sys.argv[7] ) # Radius for normalization of the windowed images (if normalize_box == True), for estimating AVG and STD apix = float(sys.argv[8]) # pixel size in Angstroems thr = float(sys.argv[9]) # pixel size in Angstroems if sys.argv[10] == 'y': shuffle_order = True else: shuffle_order = False filter_type = sys.argv[11] res_cutoff = float(sys.argv[12]) n_threads = int(sys.argv[13]) if n_threads < 1: n_threads = 1 this_thread = int(sys.argv[14]) # End arguments stack_file = stack_path + stack_rootname + '.mrcs' f = open( stack_path + stack_rootname + '_crystal-avg_1_r1-%.4d.par' % this_thread, 'w+') # first = spx.EMData() # first.read_image(stack_file, 0) sys.stdout = open(os.devnull, "w") # Suppress output header = ioMRC.readMRCHeader(stack_file) sys.stdout = sys.__stdout__ par = np.loadtxt(stack_path + stack_rootname + '_1_r1.par', comments='C') labels = par[:, 7] X = np.unique(labels) XN = len(X) batch_size = int(round(float(XN) / n_threads)) first_img = (this_thread - 1) * batch_size if this_thread < n_threads: last_img = first_img + batch_size else: last_img = XN X = X[first_img:last_img] n = first_img + 1 print '\nJob %d/%d averaging particles from crystals %d to %d...\n' % ( this_thread, n_threads, n, last_img) prog = 0.0 j = 1 for x in X: print '::Averaging particles from crystal %d/%d...' % (x, XN) img_list = np.where(labels == x)[0] if shuffle_order: np.random.seed( seed=n) # Fix random seed to get reproducible results np.random.shuffle(img_list) # avg = spx.EMData(first.get_xsize(),first.get_ysize()) # ioMRC header is Z,Y,X: avg = np.zeros([header['dimensions'][2], header['dimensions'][1]]) # sys.stdout = open(os.devnull, "w") # Suppress output # ptcls = ioMRC.readMRC(stack_file, idx=(img_list[0], img_list[-1]) )[0] # sys.stdout = sys.__stdout__ if do_frc: plt.figure() # odd = spx.EMData(first.get_xsize(),first.get_ysize()) # even = spx.EMData(first.get_xsize(),first.get_ysize()) odd = np.zeros([header['dimensions'][2], header['dimensions'][1]]) even = np.zeros([header['dimensions'][2], header['dimensions'][1]]) # odd = np.mean( ptcls[1::2,:,:], axis=0 ) # even = np.mean( ptcls[::2,:,:], axis=0 ) k = 1 for i in img_list: # img = spx.EMData() # img.read_image(stack_file, int(i)) sys.stdout = open(os.devnull, "w") # Suppress output img = ioMRC.readMRC(stack_file, idx=i)[0] sys.stdout = sys.__stdout__ avg += img if do_frc: if np.mod(k, 2) == 1: odd += img else: even += img k += 1 # Write .par file with the parameters for each particle in the dataset: # print >>f, ' %d' % (x),' %.2f' % par[img_list[0],1],' %.2f' % par[img_list[0],2],' %.2f' % par[img_list[0],3],' %.2f' % par[img_list[0],4],' %.2f' % par[img_list[0],5],' %d' % par[img_list[0],6],' %d' % par[img_list[0],7],' %.2f' % par[img_list[0],8],' %.2f' % par[img_list[0],9],' %.2f' % par[img_list[0],10],' %.2f' % par[img_list[0],11],' %d' % par[img_list[0],12],' %.4f' % par[img_list[0],13],' %.2f' % par[img_list[0],14],' %.2f' % par[img_list[0],15] print >> f, ' %d' % (j), ' %.2f' % par[ img_list[0], 1], ' %.2f' % par[img_list[0], 2], ' %.2f' % par[ img_list[0], 3], ' %.2f' % par[img_list[0], 4], ' %.2f' % par[ img_list[0], 5], ' %d' % par[img_list[0], 6], ' %d' % par[ img_list[0], 7], ' %.2f' % par[img_list[0], 8], ' %.2f' % par[ img_list[0], 9], ' %.2f' % par[ img_list[0], 10], ' %.2f' % par[ img_list[0], 11], ' %d' % par[ img_list[0], 12], ' %.4f' % par[ img_list[0], 13], ' %.2f' % par[ img_list[0], 14], ' %.2f' % par[ img_list[0], 15] if do_frc: # NSAM = np.round( np.sqrt( np.sum( np.power( odd.shape, 2 ) ) ) / 2.0 / np.sqrt( 2.0 ) ).astype('int') # For cubic volumes this is just half the box size. NSAM = avg.shape[-1] / 2 freq = (np.arange(NSAM) / (2.0 * NSAM * apix)).reshape(NSAM, 1) freq[0] = 1.0 / 999 # Just to avoid dividing by zero later frc = util.FRC(odd, even) if filter_type == 'FRC': frc_weights = np.sqrt(2 * np.abs(frc) / (1 + np.abs(frc))) avg = util.RadialFilter(avg, frc_weights, return_filter=False) elif filter_type == 'FRC2': frc_weights = frc**2 avg = util.RadialFilter(avg, frc_weights, return_filter=False) if res_cutoff >= 0.0: avg = util.FilterCosine(avg, apix=apix, lp=res_cutoff, return_filter=False, width=5) # plt.plot(freq,frc[:NSAM],freq,np.sqrt(2 * np.abs(frc) / (1 + np.abs(frc)))[:NSAM],freq,frc[:NSAM]**2) plt.plot(freq, frc[:NSAM]) yvalues = [ i / 10.0 for i in np.arange(np.round(np.min(frc)) * 10.0, 11) ] yvalues.append(thr) plt.title('Fourier Ring Correlation - TLTANG = %.1f' % par[img_list[0], 2]) plt.ylabel('FRC') plt.xlabel('Spatial frequency (1/A)') # plt.ylim(0.0,1.0) plt.yticks(yvalues) plt.grid() # plt.legend(['FRC','FRC_weights','FRC^2']) plt.savefig(frc_folder + 'crystal_' + '%.3d' % x + '_' + sys.argv[3] + '_FRC.png', dpi=300) plt.close() j += 1 # if normalize_box: # box = NormalizeStack([box], sigma)[0] avg = util.NormalizeImg(avg, std=sigma, radius=sigma_rad) # avg = NormalizeStack([avg], sigma)[0] # avg.write_image(stack_path+stack_rootname+'_crystal-avg-%.4d.mrcs' % this_thread, j-1) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(avg, stack_path + stack_rootname + '_crystal-avg-%.4d.mrcs' % this_thread, dtype='float32', idx=j - 2) sys.stdout = sys.__stdout__ # Report progress to the GUI: prog += 90.0 / XN if prog >= 1.0: print '<<@progress: +%d>>' % round(prog) prog -= np.floor(prog)