Пример #1
0
def test_ovr_partial_fit():
    # Test if partial_fit is working as intended
    X, y = shuffle(iris.data, iris.target, random_state=0)
    ovr = OneVsRestClassifier(MultinomialNB())
    ovr.partial_fit(X[:100], y[:100], np.unique(y))
    ovr.partial_fit(X[100:], y[100:])
    pred = ovr.predict(X)
    ovr2 = OneVsRestClassifier(MultinomialNB())
    pred2 = ovr2.fit(X, y).predict(X)

    assert_almost_equal(pred, pred2)
    assert len(ovr.estimators_) == len(np.unique(y))
    assert np.mean(y == pred) > 0.65

    # Test when mini batches doesn't have all classes
    # with SGDClassifier
    X = np.abs(np.random.randn(14, 2))
    y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3]

    ovr = OneVsRestClassifier(
        SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0))
    ovr.partial_fit(X[:7], y[:7], np.unique(y))
    ovr.partial_fit(X[7:], y[7:])
    pred = ovr.predict(X)
    ovr1 = OneVsRestClassifier(
        SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0))
    pred1 = ovr1.fit(X, y).predict(X)
    assert np.mean(pred == y) == np.mean(pred1 == y)

    # test partial_fit only exists if estimator has it:
    ovr = OneVsRestClassifier(SVC())
    assert not hasattr(ovr, "partial_fit")
Пример #2
0
def test_ovr_pipeline():
    # Test with pipeline of length one
    # This test is needed because the multiclass estimators may fail to detect
    # the presence of predict_proba or decision_function.
    clf = Pipeline([("tree", DecisionTreeClassifier())])
    ovr_pipe = OneVsRestClassifier(clf)
    ovr_pipe.fit(iris.data, iris.target)
    ovr = OneVsRestClassifier(DecisionTreeClassifier())
    ovr.fit(iris.data, iris.target)
    assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data))
Пример #3
0
def test_ovr_always_present():
    # Test that ovr works with classes that are always present or absent.
    # Note: tests is the case where _ConstantPredictor is utilised
    X = np.ones((10, 2))
    X[:5, :] = 0

    # Build an indicator matrix where two features are always on.
    # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)]
    y = np.zeros((10, 3))
    y[5:, 0] = 1
    y[:, 1] = 1
    y[:, 2] = 1

    ovr = OneVsRestClassifier(LogisticRegression())
    assert_warns(UserWarning, ovr.fit, X, y)
    y_pred = ovr.predict(X)
    assert_array_equal(np.array(y_pred), np.array(y))
    y_pred = ovr.decision_function(X)
    assert np.unique(y_pred[:, -2:]) == 1
    y_pred = ovr.predict_proba(X)
    assert_array_equal(y_pred[:, -1], np.ones(X.shape[0]))

    # y has a constantly absent label
    y = np.zeros((10, 2))
    y[5:, 0] = 1  # variable label
    ovr = OneVsRestClassifier(LogisticRegression())
    assert_warns(UserWarning, ovr.fit, X, y)
    y_pred = ovr.predict_proba(X)
    assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0]))
Пример #4
0
def test_decision_function_shape_two_class():
    for n_classes in [2, 3]:
        X, y = make_blobs(centers=n_classes, random_state=0)
        for estimator in [svm.SVC, svm.NuSVC]:
            clf = OneVsRestClassifier(
                estimator(decision_function_shape="ovr")).fit(X, y)
            assert len(clf.predict(X)) == len(y)
Пример #5
0
def test_ovr_single_label_decision_function():
    X, Y = datasets.make_classification(n_samples=100,
                                        n_features=20,
                                        random_state=0)
    X_train, Y_train = X[:80], Y[:80]
    X_test = X[80:]
    clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
    assert_array_equal(
        clf.decision_function(X_test).ravel() > 0, clf.predict(X_test))
Пример #6
0
def test_ovr_multiclass():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
    y = ["eggs", "spam", "ham", "eggs", "ham"]
    Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]])

    classes = set("ham eggs spam".split())

    for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
                     LinearRegression(), Ridge(), ElasticNet()):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        assert set(clf.classes_) == classes
        y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
        assert_array_equal(y_pred, ["eggs"])

        # test input as label indicator matrix
        clf = OneVsRestClassifier(base_clf).fit(X, Y)
        y_pred = clf.predict([[0, 0, 4]])[0]
        assert_array_equal(y_pred, [0, 0, 1])
Пример #7
0
    def conduct_test(base_clf, test_predict_proba=False):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        assert set(clf.classes_) == classes
        y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
        assert_array_equal(y_pred, ["eggs"])
        if hasattr(base_clf, 'decision_function'):
            dec = clf.decision_function(X)
            assert dec.shape == (5, )

        if test_predict_proba:
            X_test = np.array([[0, 0, 4]])
            probabilities = clf.predict_proba(X_test)
            assert 2 == len(probabilities[0])
            assert (clf.classes_[np.argmax(probabilities,
                                           axis=1)] == clf.predict(X_test))

        # test input as label indicator matrix
        clf = OneVsRestClassifier(base_clf).fit(X, Y)
        y_pred = clf.predict([[3, 0, 0]])[0]
        assert y_pred == 1
Пример #8
0
def test_ovr_fit_predict_sparse():
    for sparse in [
            sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix,
            sp.lil_matrix
    ]:
        base_clf = MultinomialNB(alpha=1)

        X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                       n_features=20,
                                                       n_classes=5,
                                                       n_labels=3,
                                                       length=50,
                                                       allow_unlabeled=True,
                                                       random_state=0)

        X_train, Y_train = X[:80], Y[:80]
        X_test = X[80:]

        clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
        Y_pred = clf.predict(X_test)

        clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train))
        Y_pred_sprs = clf_sprs.predict(X_test)

        assert clf.multilabel_
        assert sp.issparse(Y_pred_sprs)
        assert_array_equal(Y_pred_sprs.toarray(), Y_pred)

        # Test predict_proba
        Y_proba = clf_sprs.predict_proba(X_test)

        # predict assigns a label if the probability that the
        # sample has the label is greater than 0.5.
        pred = Y_proba > .5
        assert_array_equal(pred, Y_pred_sprs.toarray())

        # Test decision_function
        clf = svm.SVC()
        clf_sprs = OneVsRestClassifier(clf).fit(X_train, sparse(Y_train))
        dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int)
        assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray())
Пример #9
0
def test_ovr_multilabel():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
    y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]])

    for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
                     LinearRegression(), Ridge(), ElasticNet(),
                     Lasso(alpha=0.5)):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        y_pred = clf.predict([[0, 4, 4]])[0]
        assert_array_equal(y_pred, [0, 1, 1])
        assert clf.multilabel_
Пример #10
0
def test_ovr_multilabel_decision_function():
    X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                   n_features=20,
                                                   n_classes=5,
                                                   n_labels=3,
                                                   length=50,
                                                   allow_unlabeled=True,
                                                   random_state=0)
    X_train, Y_train = X[:80], Y[:80]
    X_test = X[80:]
    clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
    assert_array_equal((clf.decision_function(X_test) > 0).astype(int),
                       clf.predict(X_test))
Пример #11
0
def test_ovr_single_label_predict_proba():
    base_clf = MultinomialNB(alpha=1)
    X, Y = iris.data, iris.target
    X_train, Y_train = X[:80], Y[:80]
    X_test = X[80:]
    clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)

    # Decision function only estimator.
    decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
    assert not hasattr(decision_only, 'predict_proba')

    Y_pred = clf.predict(X_test)
    Y_proba = clf.predict_proba(X_test)

    assert_almost_equal(Y_proba.sum(axis=1), 1.0)
    # predict assigns a label if the probability that the
    # sample has the label is greater than 0.5.
    pred = np.array([l.argmax() for l in Y_proba])
    assert not (pred - Y_pred).any()
Пример #12
0
def test_classifier_chain_vs_independent_models():
    # Verify that an ensemble of classifier chains (each of length
    # N) can achieve a higher Jaccard similarity score than N independent
    # models
    X, Y = generate_multilabel_dataset_with_correlations()
    X_train = X[:600, :]
    X_test = X[600:, :]
    Y_train = Y[:600, :]
    Y_test = Y[600:, :]

    ovr = OneVsRestClassifier(LogisticRegression())
    ovr.fit(X_train, Y_train)
    Y_pred_ovr = ovr.predict(X_test)

    chain = ClassifierChain(LogisticRegression())
    chain.fit(X_train, Y_train)
    Y_pred_chain = chain.predict(X_test)

    assert (jaccard_score(Y_test, Y_pred_chain, average='samples') >
            jaccard_score(Y_test, Y_pred_ovr, average='samples'))
Пример #13
0
def test_ovr_multilabel_predict_proba():
    base_clf = MultinomialNB(alpha=1)
    for au in (False, True):
        X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                       n_features=20,
                                                       n_classes=5,
                                                       n_labels=3,
                                                       length=50,
                                                       allow_unlabeled=au,
                                                       random_state=0)
        X_train, Y_train = X[:80], Y[:80]
        X_test = X[80:]
        clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)

        # Decision function only estimator.
        decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
        assert not hasattr(decision_only, 'predict_proba')

        # Estimator with predict_proba disabled, depending on parameters.
        decision_only = OneVsRestClassifier(svm.SVC(probability=False))
        assert not hasattr(decision_only, 'predict_proba')
        decision_only.fit(X_train, Y_train)
        assert not hasattr(decision_only, 'predict_proba')
        assert hasattr(decision_only, 'decision_function')

        # Estimator which can get predict_proba enabled after fitting
        gs = GridSearchCV(svm.SVC(probability=False),
                          param_grid={'probability': [True]})
        proba_after_fit = OneVsRestClassifier(gs)
        assert not hasattr(proba_after_fit, 'predict_proba')
        proba_after_fit.fit(X_train, Y_train)
        assert hasattr(proba_after_fit, 'predict_proba')

        Y_pred = clf.predict(X_test)
        Y_proba = clf.predict_proba(X_test)

        # predict assigns a label if the probability that the
        # sample has the label is greater than 0.5.
        pred = Y_proba > .5
        assert_array_equal(pred, Y_pred)
Пример #14
0
def test_ovr_multilabel_dataset():
    base_clf = MultinomialNB(alpha=1)
    for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)):
        X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                       n_features=20,
                                                       n_classes=5,
                                                       n_labels=2,
                                                       length=50,
                                                       allow_unlabeled=au,
                                                       random_state=0)
        X_train, Y_train = X[:80], Y[:80]
        X_test, Y_test = X[80:], Y[80:]
        clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
        Y_pred = clf.predict(X_test)

        assert clf.multilabel_
        assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"),
                            prec,
                            decimal=2)
        assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"),
                            recall,
                            decimal=2)
Пример #15
0
print(__doc__)

# Load a multi-label dataset from https://www.openml.org/d/40597
X, Y = fetch_openml('yeast', version=4, return_X_y=True)
Y = Y == 'TRUE'
X_train, X_test, Y_train, Y_test = train_test_split(X,
                                                    Y,
                                                    test_size=.2,
                                                    random_state=0)

# Fit an independent logistic regression model for each class using the
# OneVsRestClassifier wrapper.
base_lr = LogisticRegression()
ovr = OneVsRestClassifier(base_lr)
ovr.fit(X_train, Y_train)
Y_pred_ovr = ovr.predict(X_test)
ovr_jaccard_score = jaccard_score(Y_test, Y_pred_ovr, average='samples')

# Fit an ensemble of logistic regression classifier chains and take the
# take the average prediction of all the chains.
chains = [
    ClassifierChain(base_lr, order='random', random_state=i) for i in range(10)
]
for chain in chains:
    chain.fit(X_train, Y_train)

Y_pred_chains = np.array([chain.predict(X_test) for chain in chains])
chain_jaccard_scores = [
    jaccard_score(Y_test, Y_pred_chain >= .5, average='samples')
    for Y_pred_chain in Y_pred_chains
]