Пример #1
0
def _create_summary(sense_place, ks_place, im_out_place, im_truth_place):
    sensemap = sense_place
    ks_input = ks_place
    image_output = im_out_place
    image_truth = im_truth_place

    image_input = tf_util.model_transpose(ks_input, sensemap)
    mask_input = tf_util.kspace_mask(ks_input, dtype=tf.complex64)
    ks_output = tf_util.model_forward(image_output, sensemap)
    ks_truth = tf_util.model_forward(image_truth, sensemap)

    with tf.name_scope("input-output-truth"):
        summary_input = tf_util.sumofsq(ks_input, keep_dims=True)
        summary_output = tf_util.sumofsq(ks_output, keep_dims=True)
        summary_truth = tf_util.sumofsq(ks_truth, keep_dims=True)
        summary_fft = tf.log(
            tf.concat((summary_input, summary_output, summary_truth), axis=2) +
            1e-6)
        tf.summary.image("kspace",
                         summary_fft,
                         max_outputs=FLAGS.num_summary_image)
        summary_input = tf_util.sumofsq(image_input, keep_dims=True)
        summary_output = tf_util.sumofsq(image_output, keep_dims=True)
        summary_truth = tf_util.sumofsq(image_truth, keep_dims=True)
        summary_image = tf.concat(
            (summary_input, summary_output, summary_truth), axis=2)
        tf.summary.image("image",
                         summary_image,
                         max_outputs=FLAGS.num_summary_image)

    with tf.name_scope("truth"):
        summary_truth_real = tf.reduce_sum(image_truth,
                                           axis=-1,
                                           keep_dims=True)
        summary_truth_real = tf.real(summary_truth_real)
        tf.summary.image("image_real",
                         summary_truth_real,
                         max_outputs=FLAGS.num_summary_image)

    with tf.name_scope("mask"):
        summary_mask = tf_util.sumofsq(mask_input, keep_dims=True)
        tf.summary.image("mask",
                         summary_mask,
                         max_outputs=FLAGS.num_summary_image)

    with tf.name_scope("sensemap"):
        summary_map = tf.slice(tf.abs(sensemap), [0, 0, 0, 0, 0],
                               [-1, -1, -1, 1, -1])
        summary_map = tf.transpose(summary_map, [0, 1, 4, 2, 3])
        summary_map = tf.reshape(
            summary_map,
            [tf.shape(summary_map)[0],
             tf.shape(summary_map)[1], -1])
        summary_map = tf.expand_dims(summary_map, axis=-1)
        tf.summary.image("image",
                         summary_map,
                         max_outputs=FLAGS.num_summary_image)
Пример #2
0
def unroll_fista(
    ks_input,
    sensemap,
    num_grad_steps=5,
    resblock_num_features=128,
    resblock_num_blocks=2,
    is_training=True,
    scope="MRI",
    mask_output=1,
    window=None,
    do_hardproj=True,
    num_summary_image=0,
    mask=None,
    verbose=False,
    conv="real",
    do_conjugate=False,
    activation="relu",
):
    """Create general unrolled network for MRI.
    x_{k+1} = S( x_k - 2 * t * A^T W (A x- b) )
            = S( x_k - 2 * t * (A^T W A x - A^T W b))
    """
    if window is None:
        window = 1
    summary_iter = None

    global type_conv
    type_conv = conv
    global conjugate
    conjugate = do_conjugate

    if verbose:
        print(
            "%s> Building FISTA unrolled network (%d steps)...."
            % (scope, num_grad_steps)
        )
        if sensemap is not None:
            print("%s>   Using sensitivity maps..." % scope)
    with tf.variable_scope(scope):
        if mask is None:
            mask = tf_util.kspace_mask(ks_input, dtype=tf.complex64)
        ks_input = mask * ks_input
        ks_0 = ks_input
        # x0 = A^T W b
        im_0 = tf_util.model_transpose(ks_0 * window, sensemap)
        im_0 = tf.identity(im_0, name="input_image")
        # To be updated
        ks_k = ks_0
        im_k = im_0

        for i_step in range(num_grad_steps):
            iter_name = "iter_%02d" % i_step
            with tf.variable_scope(iter_name):
                # = S( x_k - 2 * t * (A^T W A x_k - A^T W b))
                # = S( x_k - 2 * t * (A^T W A x_k - x0))
                with tf.variable_scope("update"):
                    im_k_orig = im_k
                    # xk = A^T A x_k
                    ks_k = tf_util.model_forward(im_k, sensemap)
                    ks_k = mask * ks_k
                    im_k = tf_util.model_transpose(ks_k * window, sensemap)
                    # xk = A^T A x_k - A^T b
                    im_k = tf_util.complex_to_channels(im_k - im_0)
                    im_k_orig = tf_util.complex_to_channels(im_k_orig)
                    # Update step
                    t_update = tf.get_variable(
                        "t", dtype=tf.float32, initializer=tf.constant([-2.0])
                    )
                    im_k = im_k_orig + t_update * im_k

                with tf.variable_scope("prox"):
                    num_channels_out = im_k.shape[-1]
                    im_k = prior_grad_res_net(
                        im_k,
                        training=is_training,
                        num_features=resblock_num_features,
                        num_blocks=resblock_num_blocks,
                        num_features_out=num_channels_out,
                        data_format="channels_last",
                        activation=activation
                    )
                    im_k = tf_util.channels_to_complex(im_k)

                im_k = tf.identity(im_k, name="image")
                if num_summary_image > 0:
                    with tf.name_scope("summary"):
                        tmp = tf_util.sumofsq(im_k, keep_dims=True)
                        if summary_iter is None:
                            summary_iter = tmp
                        else:
                            summary_iter = tf.concat(
                                (summary_iter, tmp), axis=2)
                        tf.summary.scalar("max/" + iter_name,
                                          tf.reduce_max(tmp))

        ks_k = tf_util.model_forward(im_k, sensemap)
        if do_hardproj:
            if verbose:
                print("%s>   Final hard data projection..." % scope)
            # Final data projection
            ks_k = mask * ks_0 + (1 - mask) * ks_k
            if mask_output is not None:
                ks_k = ks_k * mask_output
            im_k = tf_util.model_transpose(ks_k * window, sensemap)

        ks_k = tf.identity(ks_k, name="output_kspace")
        im_k = tf.identity(im_k, name="output_image")

    if summary_iter is not None:
        tf.summary.image("iter/image", summary_iter,
                         max_outputs=num_summary_image)

    return im_k
Пример #3
0
def unroll_fista(
    ks_input,
    sensemap,
    num_grad_steps=5,
    resblock_num_features=128,
    resblock_num_blocks=2,
    is_training=True,
    scope="MRI",
    mask_output=1,
    window=None,
    do_hardproj=True,
    num_summary_image=0,
    mask=None,
    verbose=False,
):
    """Create general unrolled network for MRI.
    x_{k+1} = S( x_k - 2 * t * A^T W (A x- b) )
            = S( x_k - 2 * t * (A^T W A x - A^T W b))
    """
    # get list of GPU devices
    local_device_protos = device_lib.list_local_devices()
    device_list = [x.name for x in local_device_protos if x.device_type == "GPU"]

    if window is None:
        window = 1
    summary_iter = None

    if verbose:
        print(
            "%s> Building FISTA unrolled network (%d steps)...."
            % (scope, num_grad_steps)
        )
        if sensemap is not None:
            print("%s>   Using sensitivity maps..." % scope)

    with tf.variable_scope(scope):
        if mask is None:
            mask = tf_util.kspace_mask(ks_input, dtype=tf.complex64)
        ks_input = mask * ks_input
        ks_0 = ks_input
        # x0 = A^T W b
        im_0 = tf_util.model_transpose(ks_0 * window, sensemap)
        im_0 = tf.identity(im_0, name="input_image")
        # To be updated
        ks_k = ks_0
        im_k = im_0

        for i_step in range(num_grad_steps):
            iter_name = "iter_%02d" % i_step
            i_device = int(len(device_list) * i_step / num_grad_steps)
            # cur_device = device_list[i_device]
            cur_device = device_list[-1]

            with tf.device(cur_device), tf.variable_scope(iter_name):
            # with tf.variable_scope(iter_name):
                # = S( x_k - 2 * t * (A^T W A x_k - A^T W b))
                # = S( x_k - 2 * t * (A^T W A x_k - x0))
                with tf.variable_scope("update"):
                    im_k_orig = im_k

                    # xk = A^T A x_k
                    ks_k = tf_util.model_forward(im_k, sensemap)
                    ks_k = mask * ks_k
                    im_k = tf_util.model_transpose(ks_k * window, sensemap)
                    # xk = A^T A x_k - A^T b
                    im_k = tf_util.complex_to_channels(im_k - im_0)
                    im_k_orig = tf_util.complex_to_channels(im_k_orig)
                    # Update step
                    t_update = tf.get_variable(
                        "t", dtype=tf.float32, initializer=tf.constant([-2.0])
                    )
                    im_k = im_k_orig + t_update * im_k

                with tf.variable_scope("prox"):
                    num_channels_out = im_k.shape[-1]
                    # Default is channels last
                    # im_k = prior_grad_res_net(im_k, training=is_training,
                    #                           cout=num_channels_out)

                    # Transpose channels_last to channels_first
                    im_k = tf.transpose(im_k, [0, 3, 1, 2])
                    im_k = prior_grad_res_net(
                        im_k,
                        training=is_training,
                        num_features=resblock_num_features,
                        num_blocks=resblock_num_blocks,
                        num_features_out=num_channels_out,
                        data_format="channels_first",
                    )
                    im_k = tf.transpose(im_k, [0, 2, 3, 1])

                    im_k = tf_util.channels_to_complex(im_k)

                im_k = tf.identity(im_k, name="image")
                if num_summary_image > 0:
                    with tf.name_scope("summary"):
                        tmp = tf_util.sumofsq(im_k, keep_dims=True)
                        if summary_iter is None:
                            summary_iter = tmp
                        else:
                            summary_iter = tf.concat((summary_iter, tmp), axis=2)
                        # tf.summary.scalar("max/" + iter_name, tf.reduce_max(tmp))

        ks_k = tf_util.model_forward(im_k, sensemap)
        if do_hardproj:
            if verbose:
                print("%s>   Final hard data projection..." % scope)
            # Final data projection
            ks_k = mask * ks_0 + (1 - mask) * ks_k
            if mask_output is not None:
                ks_k = ks_k * mask_output
            im_k = tf_util.model_transpose(ks_k * window, sensemap)

        ks_k = tf.identity(ks_k, name="output_kspace")
        im_k = tf.identity(im_k, name="output_image")

    # if summary_iter is not None:
    #     tf.summary.image("iter/image", summary_iter, max_outputs=num_summary_image)

    return im_k