Пример #1
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__()
        self.opt = opt
        self.logger = logger

        # 根据YoloV2和YoloV3使用不同的配置文件
        if opt.model == 'Yolo2':
            cfgfile = 'configs/yolo2-voc.cfg'
        elif opt.model == 'Yolo3':
            cfgfile = 'configs/yolo3-coco.cfg'

        # 初始化detector
        self.detector = Darknet(cfgfile, device=opt.device).to(opt.device)
        print_network(self.detector, logger=logger)

        # 在--load之前加载weights文件(可选)
        if opt.weights:
            utils.color_print('Load Yolo weights from %s.' % opt.weights, 3)
            self.detector.load_weights(opt.weights)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #2
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__(config, kwargs)
        self.opt = opt
        # cfgfile = 'yolo-voc.cfg'
        # self.detector = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
        # in_features = self.detector.roi_heads.box_predictor.cls_score.in_features
        #
        # # replace the pre-trained head with a new one
        # self.detector.roi_heads.box_predictor = FastRCNNPredictor(in_features, config.DATA.NUM_CLASSESS + 1)
        self.detector = yolov4(inference=True,
                               n_classes=config.DATA.NUM_CLASSESS)

        # """
        # 预训练模型
        # """
        # pretrained_dict = torch.load('pretrained/yolov4.pth')
        # self.detector.load_state_dict(pretrained_dict)

        self.yolov4loss = Yolo_loss(device=opt.device, batch=opt.batch_size)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        if opt.debug:
            print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)
Пример #3
0
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.classifier = Classifier()  #.cuda(device=opt.device)
        #####################
        #    Init weights
        #####################
        # self.classifier.apply(weights_init)

        print_network(self.classifier)

        self.optimizer = optim.Adam(self.classifier.parameters(),
                                    lr=opt.lr,
                                    betas=(0.95, 0.999))

        # load networks
        if opt.load:
            pretrained_path = opt.load
            self.load_network(self.classifier, 'G', opt.which_epoch,
                              pretrained_path)
            # if self.training:
            #     self.load_network(self.discriminitor, 'D', opt.which_epoch, pretrained_path)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #4
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__()
        self.opt = opt
        self.logger = logger

        kargs = {}
        if opt.scale:
            min_size = opt.scale
            max_size = int(min_size / 3 * 4)
            kargs = {
                'min_size': min_size,
                'max_size': max_size,
            }

        kargs.update({'box_nms_thresh': nms_thresh})

        # 定义backbone和Faster RCNN模型
        if opt.backbone is None or opt.backbone.lower() in [
                'res50', 'resnet50'
        ]:
            # 默认是带fpn的resnet50
            self.detector = fasterrcnn_resnet50_fpn(pretrained=False, **kargs)

            in_features = self.detector.roi_heads.box_predictor.cls_score.in_features

            # replace the pre-trained head with a new one
            self.detector.roi_heads.box_predictor = FastRCNNPredictor(
                in_features, opt.num_classes + 1)

        elif opt.backbone.lower() in ['vgg16', 'vgg']:
            backbone = vgg16_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=opt.num_classes + 1,
                                       **kargs)

        elif opt.backbone.lower() in ['res101', 'resnet101']:
            # 不带FPN的resnet101
            backbone = res101_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=opt.num_classes + 1,
                                       **kargs)

        elif opt.backbone.lower() in ['res', 'resnet']:
            raise RuntimeError(
                f'backbone "{opt.backbone}" is ambiguous, please specify layers.'
            )

        else:
            raise NotImplementedError(f'no such backbone: {opt.backbone}')

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #5
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.classifier = Classifier()  #.cuda(device=opt.device)
        #####################
        #    Init weights
        #####################
        # self.classifier.apply(weights_init)

        print_network(self.classifier)

        self.optimizer = optim.Adam(self.classifier.parameters(),
                                    lr=opt.lr,
                                    betas=(0.95, 0.999))

        # load networks
        if opt.load:
            pretrained_path = opt.load
            self.load_network(self.classifier, 'G', opt.which_epoch,
                              pretrained_path)
            # if self.training:
            #     self.load_network(self.discriminitor, 'D', opt.which_epoch, pretrained_path)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, input, label):

        predicted = self.classifier(input)
        loss = criterionCE(predicted, label)

        self.avg_meters.update({'Cross Entropy': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {'predicted': predicted}

    def forward(self, x):
        return self.classifier(x)

    def save(self, which_epoch):
        self.save_network(self.classifier, 'G', which_epoch)
        # self.save_network(self.discriminitor, 'D', which_epoch)

    def update_learning_rate(self):
        lrd = self.opt.lr / self.opt.niter_decay
        lr = self.old_lr - lrd
        # for param_group in self.d_optimizer.param_groups:
        #     param_group['lr'] = lr
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = lr
        if self.opt.verbose:
            print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr
Пример #6
0
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.detector = get_net().to(device=opt.device)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #7
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__(config, kwargs)
        self.opt = opt
        self.detector = get_net().to(device=opt.device)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        if opt.debug:
            print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)
Пример #8
0
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.detector = torchvision.models.detection.fasterrcnn_resnet50_fpn(
            pretrained=False)
        # self.detector = FasterRCNN_VGG()
        in_features = self.detector.roi_heads.box_predictor.cls_score.in_features

        # replace the pre-trained head with a new one
        self.detector.roi_heads.box_predictor = FastRCNNPredictor(
            in_features, opt.num_classes + 1)
        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #9
0
    def __init__(self, config, **kwargs):
        super(Model, self).__init__(config, kwargs)
        self.config = config

        # 根据YoloV2和YoloV3使用不同的配置文件
        if config.MODEL.NAME == 'Yolo2':
            cfgfile = 'configs/networks/yolo2-voc.cfg'
        elif config.MODEL.NAME == 'Yolo3':
            cfgfile = 'configs/networks/yolo3-coco.cfg'

        # 初始化detector
        self.detector = Darknet(cfgfile, device=opt.device).to(opt.device)
        if opt.debug:
            print_network(self.detector)

        # 在--load之前加载weights文件(可选)
        if opt.load and opt.load[-2:] != 'pt':
            if is_first_gpu():
                utils.color_print('Load Yolo weights from %s.' % opt.load, 3)
            self.detector.load_weights(opt.load)
        elif 'LOAD' in config.MODEL and config.MODEL.LOAD[-2:] != 'pt':
            if is_first_gpu():
                utils.color_print(
                    'Load Yolo weights from %s.' % config.MODEL.LOAD, 3)
            self.detector.load_weights(config.MODEL.LOAD)

        self.to(opt.device)
        # 多GPU支持
        if is_distributed():
            self.detector = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.detector)
            self.detector = torch.nn.parallel.DistributedDataParallel(
                self.detector,
                find_unused_parameters=False,
                device_ids=[opt.local_rank],
                output_device=opt.local_rank)
            # self.detector = torch.nn.parallel.DistributedDataParallel(self.detector, device_ids=[opt.local_rank], output_device=opt.local_rank)

        self.optimizer = get_optimizer(config, self.detector)
        self.scheduler = get_scheduler(config, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)
Пример #10
0
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        cfgfile = 'configs/yolov5x.yaml'
        self.detector = Yolo5(cfgfile)
        self.detector.hyp = hyp
        self.detector.gr = 1.0
        self.detector.nc = opt.num_classes
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
        self.it = 0
Пример #11
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__(config, kwargs)
        self.opt = opt
        cfgfile = 'configs/yolov5x.yaml'
        self.detector = Yolo5(cfgfile)
        self.detector.hyp = hyp
        self.detector.gr = 1.0
        self.detector.nc = config.DATA.NUM_CLASSESS
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        if opt.debug:
            print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)
        self.it = 0
Пример #12
0
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.classifier = Classifier()
        #####################
        #    Init weights
        #####################
        # self.classifier.apply(weights_init)

        print_network(self.classifier)

        self.optimizer = optim.Adam(self.classifier.parameters(),
                                    lr=opt.lr,
                                    betas=(0.95, 0.999))
        self.scheduler = get_scheduler(opt, self.optimizer)

        # load networks
        # if opt.load:
        #     pretrained_path = opt.load
        #     self.load_network(self.classifier, 'G', opt.which_epoch, pretrained_path)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #13
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__()
        self.opt = opt
        # cfgfile = 'yolo-voc.cfg'
        # self.detector = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
        # in_features = self.detector.roi_heads.box_predictor.cls_score.in_features
        #
        # # replace the pre-trained head with a new one
        # self.detector.roi_heads.box_predictor = FastRCNNPredictor(in_features, opt.num_classes + 1)
        self.detector = Retina_50(opt.num_classes,pretrained=True)

        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #14
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__()
        self.opt = opt
        self.detector = SSDDetector(opt).to(device=opt.device)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

        CENTER_VARIANCE = 0.1
        SIZE_VARIANCE = 0.2
        THRESHOLD = 0.5

        self.target_transform = SSDTargetTransform(
            PriorBox(opt)(), CENTER_VARIANCE, SIZE_VARIANCE, THRESHOLD)
Пример #15
0
    def __init__(self, config, **kwargs):
        super(Model, self).__init__(config, kwargs)
        self.config = config
        self.detector = SSDDetector(config).to(device=opt.device)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        if opt.debug:
            print_network(self.detector)

        self.optimizer = get_optimizer(config, self.detector)
        self.scheduler = get_scheduler(config, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)

        CENTER_VARIANCE = 0.1
        SIZE_VARIANCE = 0.2
        THRESHOLD = 0.5

        self.target_transform = SSDTargetTransform(
            PriorBox(config)(), CENTER_VARIANCE, SIZE_VARIANCE, THRESHOLD)
Пример #16
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt

        # 根据YoloV2和YoloV3使用不同的配置文件
        if opt.model == 'Yolo2':
            cfgfile = 'configs/yolo2-voc.cfg'
        elif opt.model == 'Yolo3':
            cfgfile = 'configs/yolo3-coco.cfg'

        # 初始化detector
        self.detector = Darknet(cfgfile, device=opt.device).to(opt.device)
        print_network(self.detector)

        # 在--load之前加载weights文件(可选)
        if opt.weights:
            utils.color_print('Load Yolo weights from %s.' % opt.weights, 3)
            self.detector.load_weights(opt.weights)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, sample, *arg):
        """
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        loss_layers = self.detector.loss_layers
        org_loss = []

        image = sample['image'].to(opt.device)  # target domain
        target = sample['yolo_boxes'].to(opt.device)

        detection_output = self.detector(image)  # 在src domain上训练检测

        for i, l in enumerate(loss_layers):
            ol = l(detection_output[i]['x'], target)
            org_loss.append(ol)

        loss = sum(org_loss)

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()

        nn.utils.clip_grad_norm_(self.detector.parameters(), 10000)
        self.optimizer.step()

        org_loss.clear()

        gc.collect()
        return {}

    def forward(self, image):
        """
        Args:
            image: [b, 3, h, w] Tensor
        """
        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        if self.detector.net_name() == 'region':  # region_layer
            shape = (0, 0)
        else:
            shape = (opt.width, opt.height)

        num_classes = self.detector.num_classes

        output = self.detector(image)
        all_boxes = get_all_boxes(output,
                                  shape,
                                  conf_thresh,
                                  num_classes,
                                  device=opt.device,
                                  only_objectness=0,
                                  validation=True)

        for b in range(len(all_boxes)):
            boxes = all_boxes[b]
            width = opt.width
            height = opt.height
            correct_yolo_boxes(boxes, width, height, width, height)

            boxes = nms(boxes, nms_thresh)
            img_boxes = []
            img_labels = []
            img_scores = []

            b, c, h, w = image.shape

            for box in boxes:
                box[0] -= box[2] / 2
                box[1] -= box[3] / 2
                box[2] += box[0]
                box[3] += box[1]

                box[0] *= w
                box[2] *= w
                box[1] *= h
                box[3] *= h

                for i in range(5, len(box), 2):
                    img_boxes.append(box[:4])
                    img_labels.append(box[i + 1])
                    score = box[4] * box[i]
                    img_scores.append(score)

            batch_bboxes.append(np.array(img_boxes))
            batch_labels.append(np.array(img_labels).astype(np.int32))
            batch_scores.append(np.array(img_scores))

        return batch_bboxes, batch_labels, batch_scores

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #17
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.detector = SSDDetector(opt).to(device=opt.device)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

        CENTER_VARIANCE = 0.1
        SIZE_VARIANCE = 0.2
        THRESHOLD = 0.5

        self.target_transform = SSDTargetTransform(
            PriorBox(opt)(), CENTER_VARIANCE, SIZE_VARIANCE, THRESHOLD)

    def update(self, sample, *arg):
        """
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        loss_dict = self.forward(sample)

        loss = sum(loss for loss in loss_dict.values())
        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward(self, sample):
        if self.training:
            return self.forward_train(sample)
        else:
            return self.forward_test(sample)

    def forward_train(self, sample):
        labels = sample['labels']
        for label in labels:
            label += 1.  # effdet的label从1开始

        image, bboxes, labels = sample['image'], sample['bboxes'], sample[
            'labels']

        for box in bboxes:
            box[:, 0::2] /= 512  # width
            box[:, 1::2] /= 512  # height

        for b in range(len(labels)):
            bboxes[b], labels[b] = self.target_transform(bboxes[b], labels[b])

        image = image.to(opt.device)
        bboxes = torch.stack(bboxes).to(opt.device)
        labels = torch.stack(labels).long().to(opt.device)

        targets = {'boxes': bboxes, 'labels': labels}

        loss_dict = self.detector(image, targets=targets)

        return loss_dict

    def forward_test(self, image):
        conf_thresh = 0.5

        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        outputs = self.detector(image)

        for b in range(len(outputs)):  #
            output = outputs[b]
            boxes = output['boxes']
            labels = output['labels']
            scores = output['scores']
            boxes = boxes[scores > conf_thresh]
            labels = labels[scores > conf_thresh]
            labels = labels - 1
            scores = scores[scores > conf_thresh]

            batch_bboxes.append(boxes.detach().cpu().numpy())
            batch_labels.append(labels.detach().cpu().numpy())
            batch_scores.append(scores.detach().cpu().numpy())

        return batch_bboxes, batch_labels, batch_scores

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #18
0
    def __init__(self, opt, logger=None):
        super(Model, self).__init__()
        self.opt = opt

        if opt.scale:
            min_size = opt.scale
            max_size = int(min_size / 3 * 5)
        else:
            min_size = 800
            max_size = 1333
            # anchor_sizes = ((16,), (32,), (64,), (128,), (512,)) # ,( 4,), (256,), (512,))
            # aspect_ratios = ((0.2, 0.5, 1.0, 2.0, 5.0),) * len(anchor_sizes)
            # rpn_anchor_generator = AnchorGenerator(
            #     anchor_sizes, aspect_ratios
            # )

        kargs = {
            'min_size': min_size,
            'max_size': max_size,
            'cascade_iou_thr': [0.5, 0.6, 0.7],
        }

        # 定义backbone和Faster RCNN模型
        if opt.backbone is None or opt.backbone.lower() in [
                'res50', 'resnet50'
        ]:
            # 默认是带fpn的resnet50
            self.detector = cascadercnn_resnet50_fpn(pretrained=False, **kargs)

            in_features = self.detector.roi_heads[
                0].box_predictor.cls_score.in_features

            # replace the pre-trained head with a new one
            self.detector.roi_heads[0].box_predictor = FastRCNNPredictor(
                in_features, opt.num_classes + 1)
            self.detector.roi_heads[1].box_predictor = FastRCNNPredictor(
                in_features, opt.num_classes + 1)
            self.detector.roi_heads[2].box_predictor = FastRCNNPredictor(
                in_features, opt.num_classes + 1)

        elif opt.backbone.lower() in ['vgg16', 'vgg']:
            backbone = vgg16_backbone()
            self.detector = CascadeRCNN(backbone,
                                        num_classes=opt.num_classes + 1,
                                        **kargs)

        elif opt.backbone.lower() in ['res101', 'resnet101']:
            # 不带FPN的resnet101
            backbone = res101_backbone()
            self.detector = CascadeRCNN(backbone,
                                        num_classes=opt.num_classes + 1,
                                        **kargs)

        elif opt.backbone.lower() in ['res', 'resnet']:
            raise RuntimeError(
                f'backbone "{opt.backbone}" is ambiguous, please specify layers.'
            )

        else:
            raise NotImplementedError(f'no such backbone: {opt.backbone}')

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
Пример #19
0
class Model(BaseModel):
    def __init__(self, opt, logger=None):
        super(Model, self).__init__()
        self.opt = opt
        # cfgfile = 'yolo-voc.cfg'
        # self.detector = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
        # in_features = self.detector.roi_heads.box_predictor.cls_score.in_features
        #
        # # replace the pre-trained head with a new one
        # self.detector.roi_heads.box_predictor = FastRCNNPredictor(in_features, opt.num_classes + 1)
        self.detector = Retina_50(opt.num_classes,pretrained=True)

        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, sample, *arg):
        """
        给定一个batch的图像和gt, 更新网络权重, 仅在训练时使用.
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        images = sample['image'].to(opt.device)


        annotations = [torch.cat([box, label.unsqueeze(1)], dim=1).to(opt.device) for box, label in zip(sample['bboxes'],sample['labels'])]
        inputs = images, annotations

        loss = sum(self.detector(inputs))

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward_test(self, image):  # test
        """给定一个batch的图像, 输出预测的[bounding boxes, labels和scores], 仅在验证和测试时使用"""

        conf_thresh = 0.  # 0.5 for vis result

        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        for i in range(image.shape[0]):
            single_image = image[i: i+1]

            scores, labels, bboxes = self.detector(single_image)  # RetinaNet只支持单张检测

            conf = scores > conf_thresh
            bboxes = bboxes[conf].detach().cpu().numpy()
            labels = labels[conf].detach().cpu().numpy()
            scores = scores[conf].detach().cpu().numpy()

            batch_bboxes.append(bboxes)
            batch_labels.append(labels)
            batch_scores.append(scores)

        return batch_bboxes, batch_labels, batch_scores

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #20
0
class Model(BaseModel):
    def __init__(self, config, **kwargs):
        super(Model, self).__init__(config, kwargs)
        self.config = config

        # 根据YoloV2和YoloV3使用不同的配置文件
        if config.MODEL.NAME == 'Yolo2':
            cfgfile = 'configs/networks/yolo2-voc.cfg'
        elif config.MODEL.NAME == 'Yolo3':
            cfgfile = 'configs/networks/yolo3-coco.cfg'

        # 初始化detector
        self.detector = Darknet(cfgfile, device=opt.device).to(opt.device)
        if opt.debug:
            print_network(self.detector)

        # 在--load之前加载weights文件(可选)
        if opt.load and opt.load[-2:] != 'pt':
            if is_first_gpu():
                utils.color_print('Load Yolo weights from %s.' % opt.load, 3)
            self.detector.load_weights(opt.load)
        elif 'LOAD' in config.MODEL and config.MODEL.LOAD[-2:] != 'pt':
            if is_first_gpu():
                utils.color_print(
                    'Load Yolo weights from %s.' % config.MODEL.LOAD, 3)
            self.detector.load_weights(config.MODEL.LOAD)

        self.to(opt.device)
        # 多GPU支持
        if is_distributed():
            self.detector = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.detector)
            self.detector = torch.nn.parallel.DistributedDataParallel(
                self.detector,
                find_unused_parameters=False,
                device_ids=[opt.local_rank],
                output_device=opt.local_rank)
            # self.detector = torch.nn.parallel.DistributedDataParallel(self.detector, device_ids=[opt.local_rank], output_device=opt.local_rank)

        self.optimizer = get_optimizer(config, self.detector)
        self.scheduler = get_scheduler(config, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)

    def update(self, sample, *args):
        """
        给定一个batch的图像和gt, 更新网络权重, 仅在训练时使用.
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        #loss_layers = self.detector.loss_layers
        #org_loss = []

        image = torch.stack(sample['image']).to(opt.device)  # target domain
        target = sample['yolo_boxes'].to(opt.device)

        #detection_output = self.detector(image)  # 在src domain上训练检测

        #for i, l in enumerate(loss_layers):
        #    ol=l(detection_output[i]['x'], target)
        #    org_loss.append(ol)

        #loss = sum(org_loss)
        loss = self.detector(image, target=target)

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()

        nn.utils.clip_grad_norm_(self.detector.parameters(), 10000)
        self.optimizer.step()

        return {}

    def forward_test(self, image):
        """
        给定一个batch的图像, 输出预测的[bounding boxes, labels和scores], 仅在验证和测试时使用
        Args:
            image: [b, 3, h, w] list
        """
        image = torch.stack(image).to(opt.device)

        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        if self.config.MODEL.NAME == 'Yolo2':  # region_layer
            shape = (0, 0)
        else:
            shape = self.config.DATA.SCALE

        assert len(shape) == 2

        num_classes = self.config.DATA.NUM_CLASSESS

        outputs = self.detector(image)

        outputs = get_all_boxes(outputs,
                                shape,
                                conf_thresh,
                                num_classes,
                                device=opt.device,
                                only_objectness=False,
                                validation=True)

        # ipdb.set_trace()

        for b in range(image.shape[0]):
            preds = outputs[b]
            preds = preds[preds[:, 4] > conf_thresh]

            boxes = preds[:, :4]
            det_conf = preds[:, 4]
            cls_conf = preds[:, 5:]
            if len(cls_conf):
                _, labels = torch.max(cls_conf, 1)

                b, c, h, w = image.shape

                boxes = xywh_to_xyxy(boxes, w, h)  # yolo的xywh转成输出的xyxy

                nms_indices = box_ops.batched_nms(boxes, det_conf, labels,
                                                  nms_thresh)
                # nms_indices = nms(boxes, det_conf, nms_thresh)
            else:
                nms_indices = []

            if len(nms_indices) == 0:
                batch_bboxes.append(np.array([[]], np.float32))
                batch_labels.append(np.array([], np.int32))
                batch_scores.append(np.array([], np.float32))
                continue

            boxes, det_conf, cls_conf = keep(nms_indices,
                                             [boxes, det_conf, cls_conf])
            max_conf, labels = torch.max(cls_conf, 1)

            scores = det_conf * max_conf

            if not DO_FAST_EVAL:  # 只保留概率最高的类,能够加快eval速度但会降低精度
                repeat_boxes = boxes.repeat([num_classes, 1])
                repeat_det_conf = det_conf.repeat(num_classes)
                repeat_conf = cls_conf.transpose(1, 0).contiguous().view(-1)
                repeat_labels = torch.linspace(
                    0, num_classes - 1,
                    num_classes).repeat(boxes.shape[0],
                                        1).transpose(1,
                                                     0).contiguous().view(-1)

                boxes, det_conf, cls_conf, labels = keep(
                    repeat_conf > cls_thresh, [
                        repeat_boxes, repeat_det_conf, repeat_conf,
                        repeat_labels
                    ])
                scores = det_conf * cls_conf

            batch_bboxes.append(to_numpy(boxes))
            batch_labels.append(to_numpy(labels, np.int32))
            batch_scores.append(to_numpy(scores))

        return batch_bboxes, batch_labels, batch_scores

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #21
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        cfgfile = 'configs/yolov5x.yaml'
        self.detector = Yolo5(cfgfile)
        self.detector.hyp = hyp
        self.detector.gr = 1.0
        self.detector.nc = opt.num_classes
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)
        self.it = 0

    def update(self, sample, *arg):
        """
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        # self.it += 1
        # ni = self.it + self.nb * self.epoch
        #
        # if ni <= self.n_burn:
        #     xi = [0, self.n_burn]  # x interp
        #     # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
        #     accumulate = max(1, np.interp(ni, xi, [1, 64 / opt.batch_size]).round())
        #     for j, x in enumerate(self.optimizer.param_groups):
        #         # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
        #         x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * (((1 + math.cos(self.epoch * math.pi / 300)) / 2) ** 1.0) * 0.9 + 0.1])
        #         if 'momentum' in x:
        #             x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

        image = sample['image'].to(opt.device)  # target domain
        target = sample['yolo5_boxes'].to(opt.device)
        pred = self.detector(image)
        loss, loss_items = compute_loss(pred, target.to(opt.device), self.detector)
        self.avg_meters.update({'loss': sum(loss_items).item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward(self, image):  # test
        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        inf_out, _ = self.detector(image)
        
        bboxes = non_max_suppression(inf_out, conf_thres=0.001, iou_thres=0.65, merge=False)

        b = len(bboxes)
        for bi in range(b):
            pred = bboxes[bi]
            if pred is None:
                batch_bboxes.append(np.array([[]]))
                batch_labels.append(np.array([]))
                batch_scores.append(np.array([]))
            else:
                boxes = pred[:,:4].cpu().detach().numpy()
                scores = pred[:,4].cpu().detach().numpy()
                labels = pred[:,5].cpu().detach().numpy().astype(np.int32)
                batch_bboxes.append(boxes)
                batch_labels.append(labels)
                batch_scores.append(scores)

        # ipdb.set_trace()
        """xywh转x1y1x2y2"""
        # bboxes[:, :, 0] = bboxes[:, :, 0] - bboxes[:, :, 2] / 2
        # bboxes[:, :, 1] = bboxes[:, :, 1] - bboxes[:, :, 3] / 2
        # bboxes[:, :, 2] += bboxes[:, :, 0]
        # bboxes[:, :, 3] += bboxes[:, :, 1]

        # b = image.shape[0]  # batch有几张图
        # for bi in range(b):
        #     bbox = bboxes[bi]
        #     conf_bbox = bbox[bbox[:, 4] > opt.conf_thresh]
        #     xyxy_bbox = conf_bbox[:, :4]  # x1y1x2y2坐标
        #     scores = conf_bbox[:, 4]

        #     nms_indices = nms(xyxy_bbox, scores, opt.nms_thresh)

        #     xyxy_bbox = xyxy_bbox[nms_indices]
        #     scores = scores[nms_indices]  # 检测的置信度
        #     classification = conf_bbox[nms_indices, 5:]

            

        #     if len(classification) != 0:
        #         prob, class_id = torch.max(classification, 1)
        #         # scores = scores * prob  # 乘以最高类别的置信度
        #     else:
        #         class_id = torch.Tensor([])

        #     if opt.box_fusion == 'wbf':
        #         pass
        #         # boxes, scores, labels = weighted_boxes_fusion([xyxy_bbox.detach().cpu().numpy()], 
        #         #                                             [scores.detach().cpu().numpy()], 
        #         #                                             [np.zeros([xyxy_bbox.shape[0]], dtype=np.int32)], 
        #         #                                             iou_thr=0.5)
        #     elif opt.box_fusion == 'nms':
        #         boxes = xyxy_bbox.detach().cpu().numpy()
        #         scores = scores.detach().cpu().numpy()
        #         labels = class_id.detach().cpu().numpy()

        #     batch_bboxes.append(boxes)
        #     batch_labels.append(labels)
        #     batch_scores.append(scores)

        return batch_bboxes, batch_labels, batch_scores

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        # state = torch.load(ckpt_path)
        # utils.p(list(state['detector'].keys()))
        # print('=========================================')
        # utils.p(list(self.detector.state_dict().keys()))
        # ipdb.set_trace()
        # self.detector.load_state_dict(state)
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #22
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.classifier = Classifier()  #.cuda(device=opt.device)
        #####################
        #    Init weights
        #####################
        # self.classifier.apply(weights_init)

        print_network(self.classifier)

        self.optimizer = get_optimizer(opt, self.classifier)
        self.scheduler = get_scheduler(opt, self.optimizer)

        # load networks
        # if opt.load:
        #     pretrained_path = opt.load
        #     self.load_network(self.classifier, 'G', opt.which_epoch, pretrained_path)
        # if self.training:
        #     self.load_network(self.discriminitor, 'D', opt.which_epoch, pretrained_path)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, input, label):

        predicted = self.classifier(input)

        loss_ce = self.criterionCE(predicted, label)
        loss = loss_ce
        self.avg_meters.update({'Cross Entropy': loss_ce.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {'predicted': predicted}

    def forward(self, x):
        return self.classifier(x)

    def load(self, ckpt_path):
        load_dict = torch.load(ckpt_path, map_location=opt.device)
        self.classifier.load_state_dict(load_dict['classifier'])
        if opt.resume:
            self.optimizer.load_state_dict(load_dict['optimizer'])
            self.scheduler.load_state_dict(load_dict['scheduler'])
            epoch = load_dict['epoch']
            utils.color_print('Load checkpoint from %s, resume training.' % ckpt_path, 3)
        else:
            epoch = load_dict['epoch']
            utils.color_print('Load checkpoint from %s.' % ckpt_path, 3)

        return epoch

    def save(self, which_epoch):
        # self.save_network(self.classifier, 'G', which_epoch)
        save_filename = f'{which_epoch}_{opt.model}.pt'
        save_path = os.path.join(self.save_dir, save_filename)
        save_dict = OrderedDict()
        save_dict['classifier'] = self.classifier.state_dict()
        # save_dict['discriminitor'] = self.discriminitor.state_dict()
        save_dict['optimizer'] = self.optimizer.state_dict()
        save_dict['scheduler'] = self.scheduler.state_dict()
        save_dict['epoch'] = which_epoch
        torch.save(save_dict, save_path)
        utils.color_print(f'Save checkpoint "{save_path}".', 3)
Пример #23
0
class Model(BaseModel):
    def __init__(self, opt, logger=None):
        super(Model, self).__init__()
        self.opt = opt
        self.logger = logger

        kargs = {}
        if opt.scale:
            min_size = opt.scale
            max_size = int(min_size / 3 * 4)
            kargs = {
                'min_size': min_size,
                'max_size': max_size,
            }

        kargs.update({'box_nms_thresh': nms_thresh})

        # 定义backbone和Faster RCNN模型
        if opt.backbone is None or opt.backbone.lower() in [
                'res50', 'resnet50'
        ]:
            # 默认是带fpn的resnet50
            self.detector = fasterrcnn_resnet50_fpn(pretrained=False, **kargs)

            in_features = self.detector.roi_heads.box_predictor.cls_score.in_features

            # replace the pre-trained head with a new one
            self.detector.roi_heads.box_predictor = FastRCNNPredictor(
                in_features, opt.num_classes + 1)

        elif opt.backbone.lower() in ['vgg16', 'vgg']:
            backbone = vgg16_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=opt.num_classes + 1,
                                       **kargs)

        elif opt.backbone.lower() in ['res101', 'resnet101']:
            # 不带FPN的resnet101
            backbone = res101_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=opt.num_classes + 1,
                                       **kargs)

        elif opt.backbone.lower() in ['res', 'resnet']:
            raise RuntimeError(
                f'backbone "{opt.backbone}" is ambiguous, please specify layers.'
            )

        else:
            raise NotImplementedError(f'no such backbone: {opt.backbone}')

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, sample, *arg):
        """
        给定一个batch的图像和gt, 更新网络权重, 仅在训练时使用.
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        labels = sample['labels']
        for label in labels:
            label += 1.  # effdet的label从1开始

        image, bboxes, labels = sample['image'], sample['bboxes'], sample[
            'labels']

        for b in range(len(image)):
            if len(bboxes[b]) == 0:  # 没有bbox,不更新参数
                return {}

        image = image.to(opt.device)
        bboxes = [bbox.to(opt.device).float() for bbox in bboxes]
        labels = [label.to(opt.device).float() for label in labels]
        image = list(im for im in image)

        b = len(bboxes)

        target = [{
            'boxes': bboxes[i],
            'labels': labels[i].long()
        } for i in range(b)]
        """
            target['boxes'] = boxes
            target['labels'] = labels
            # target['masks'] = None
            target['image_id'] = torch.tensor([index])
            target['area'] = area
            target['iscrowd'] = iscrowd
        """
        loss_dict = self.detector(image, target)

        loss = sum(l for l in loss_dict.values())

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward_test(self, image):  # test
        """给定一个batch的图像, 输出预测的[bounding boxes, labels和scores], 仅在验证和测试时使用"""
        image = list(im for im in image)

        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        with torch.no_grad():
            outputs = self.detector(image)

        for b in range(len(outputs)):  #
            output = outputs[b]
            boxes = output['boxes']
            labels = output['labels']
            scores = output['scores']
            boxes = boxes[scores > conf_thresh]
            labels = labels[scores > conf_thresh]
            labels = labels.detach().cpu().numpy()
            # for i in range(len(labels)):
            #     labels[i] = coco_90_to_80_classes(labels[i])

            labels = labels - 1
            scores = scores[scores > conf_thresh]

            batch_bboxes.append(boxes.detach().cpu().numpy())
            batch_labels.append(labels)
            batch_scores.append(scores.detach().cpu().numpy())

        return batch_bboxes, batch_labels, batch_scores

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #24
0
class Model(BaseModel):
    def __init__(self, config, **kwargs):
        super(Model, self).__init__(config, kwargs)
        self.config = config

        kargs = {}
        if 'SCALE' in config.DATA:
            scale = config.DATA.SCALE
            if isinstance(scale, int):
                min_size = scale
                max_size = int(min_size / 3 * 5)
            else:
                min_size, max_size = config.DATA.SCALE

            kargs = {
                'min_size': min_size,
                'max_size': max_size,
            }

        kargs.update({'box_nms_thresh': config.TEST.NMS_THRESH})

        # 多卡使用 SyncBN
        if is_distributed():
            kargs.update({'norm_layer': torch.nn.SyncBatchNorm})

        # 定义backbone和Faster RCNN模型
        if config.MODEL.BACKBONE is None or config.MODEL.BACKBONE.lower() in [
                'res50', 'resnet50'
        ]:
            # 默认是带fpn的resnet50
            self.detector = fasterrcnn_resnet50_fpn(pretrained=False, **kargs)

            in_features = self.detector.roi_heads.box_predictor.cls_score.in_features

            # replace the pre-trained head with a new one
            self.detector.roi_heads.box_predictor = FastRCNNPredictor(
                in_features, config.DATA.NUM_CLASSESS + 1)

        elif config.MODEL.BACKBONE.lower() in ['vgg16', 'vgg']:
            backbone = vgg16_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=config.DATA.NUM_CLASSESS +
                                       1,
                                       **kargs)

        elif config.MODEL.BACKBONE.lower() in ['res101', 'resnet101']:
            # 不带FPN的resnet101
            backbone = res101_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=config.DATA.NUM_CLASSESS +
                                       1,
                                       **kargs)

        elif config.MODEL.BACKBONE.lower() in ['res', 'resnet']:
            raise RuntimeError(
                f'backbone "{config.MODEL.BACKBONE}" is ambiguous, please specify layers.'
            )

        else:
            raise NotImplementedError(
                f'no such backbone: {config.MODEL.BACKBONE}')

        if opt.debug and is_first_gpu():
            print_network(self.detector)

        self.to(opt.device)
        # 多GPU支持
        if is_distributed():
            self.detector = torch.nn.parallel.DistributedDataParallel(
                self.detector,
                find_unused_parameters=False,
                device_ids=[opt.local_rank],
                output_device=opt.local_rank)
            # self.detector = torch.nn.parallel.DistributedDataParallel(self.detector, device_ids=[opt.local_rank], output_device=opt.local_rank)

        self.optimizer = get_optimizer(config, self.detector)
        self.scheduler = get_scheduler(config, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)

    def update(self, sample, *arg):
        """
        给定一个batch的图像和gt, 更新网络权重, 仅在训练时使用.
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        labels = sample['labels']
        for label in labels:
            label += 1.  # effdet的label从1开始

        image, bboxes, labels = sample['image'], sample['bboxes'], sample[
            'labels']

        for b in range(len(image)):
            if len(bboxes[b]) == 0:  # 没有bbox,不更新参数
                return {}

        #image = image.to(opt.device)
        bboxes = [bbox.to(opt.device).float() for bbox in bboxes]
        labels = [label.to(opt.device).float() for label in labels]
        image = list(im.to(opt.device) for im in image)

        b = len(bboxes)

        target = [{
            'boxes': bboxes[i],
            'labels': labels[i].long()
        } for i in range(b)]
        """
            target['boxes'] = boxes
            target['labels'] = labels
            # target['masks'] = None
            target['image_id'] = torch.tensor([index])
            target['area'] = area
            target['iscrowd'] = iscrowd
        """
        loss_dict = self.detector(image, target)

        loss = sum(l for l in loss_dict.values())

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward_test(self, image):  # test
        """给定一个batch的图像, 输出预测的[bounding boxes, labels和scores], 仅在验证和测试时使用"""
        #image = list(im for im in image)
        image = list(im.to(opt.device) for im in image)

        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        with torch.no_grad():
            outputs = self.detector(image)

        conf_thresh = self.config.TEST.CONF_THRESH

        for b in range(len(outputs)):  #
            output = outputs[b]
            boxes = output['boxes']
            labels = output['labels']
            scores = output['scores']
            boxes = boxes[scores > conf_thresh]
            labels = labels[scores > conf_thresh]
            labels = labels.detach().cpu().numpy()
            # for i in range(len(labels)):
            #     labels[i] = coco_90_to_80_classes(labels[i])

            labels = labels - 1
            scores = scores[scores > conf_thresh]

            batch_bboxes.append(boxes.detach().cpu().numpy())
            batch_labels.append(labels)
            batch_scores.append(scores.detach().cpu().numpy())

        return batch_bboxes, batch_labels, batch_scores

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #25
0
class Model(BaseModel):
    def __init__(self, opt, logger=None):
        super(Model, self).__init__(config, kwargs)
        self.opt = opt
        # cfgfile = 'yolo-voc.cfg'
        # self.detector = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
        # in_features = self.detector.roi_heads.box_predictor.cls_score.in_features
        #
        # # replace the pre-trained head with a new one
        # self.detector.roi_heads.box_predictor = FastRCNNPredictor(in_features, config.DATA.NUM_CLASSESS + 1)
        self.detector = yolov4(inference=True,
                               n_classes=config.DATA.NUM_CLASSESS)

        # """
        # 预训练模型
        # """
        # pretrained_dict = torch.load('pretrained/yolov4.pth')
        # self.detector.load_state_dict(pretrained_dict)

        self.yolov4loss = Yolo_loss(device=opt.device, batch=opt.batch_size)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        if opt.debug:
            print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)

    def update(self, sample, *arg):
        """
        给定一个batch的图像和gt, 更新网络权重, 仅在训练时使用.
        Args:
            sample: {'input': input_image [b, 3, height, width],
                   'bboxes': bboxes [b, None, 4],
                   'labels': labels [b, None],
                   'path': paths}
        """
        images = sample['image'].to(opt.device)
        bboxes = sample['yolo4_boxes'].to(opt.device)
        # bboxes = [torch.cat([box, label.unsqueeze(1)], dim=1).to(opt.device) for box, label in zip(sample['bboxes'],sample['labels'])]
        out = self.detector(images)
        loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2 = self.yolov4loss(
            out, bboxes)

        self.avg_meters.update({'loss': loss.item()})
        # 'loss_xy':loss_xy.item(), 'loss_wh':loss_wh.item(), 'loss_obj':loss_obj.item(),
        # 'loss_cls':loss_cls.item(), 'loss_l2':loss_l2.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward_test(self, image):
        """给定一个batch的图像, 输出预测的[bounding boxes, labels和scores], 仅在验证和测试时使用"""
        conf_thresh = 0.001
        nms_thresh = 0.45

        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        box_array, confs = self.detector(image)

        # [batch, num, 1, 4], num=16128
        box_array = box_array[:, :, 0]  #.detach().cpu().numpy()
        # [batch, num, num_classes]
        # confs = confs.detach().cpu().numpy()

        # ipdb.set_trace()

        # max_conf = np.max(confs, axis=2)
        # max_id = np.argmax(confs, axis=2)

        max_conf, max_id = torch.max(confs, dim=2)

        b = box_array.shape[0]

        for i in range(b):
            argwhere = max_conf[i] > conf_thresh
            l_box_array = box_array[i, argwhere, :]
            l_max_conf = max_conf[i, argwhere]
            l_max_id = max_id[i, argwhere]

            boxes = []
            labels = []
            scores = []

            for j in range(config.DATA.NUM_CLASSESS):

                cls_argwhere = l_max_id == j
                ll_box_array = l_box_array[cls_argwhere, :]
                ll_max_conf = l_max_conf[cls_argwhere]
                ll_max_id = l_max_id[cls_argwhere]

                # keep = nms_cpu(ll_box_array, ll_max_conf, nms_thresh)
                keep = nms(ll_box_array, ll_max_conf, nms_thresh)

                if (keep.shape[0] > 0):
                    ll_box_array = ll_box_array[keep]
                    ll_box_array = torch.clamp(ll_box_array, min=0, max=1)
                    ll_box_array[:, 0::2] *= opt.width
                    ll_box_array[:, 1::2] *= opt.height

                    ll_max_conf = ll_max_conf[keep]
                    ll_max_id = ll_max_id[keep]

                    boxes.extend(ll_box_array.detach().cpu().numpy().tolist())
                    labels.extend(ll_max_id.detach().cpu().numpy().tolist())
                    scores.extend(ll_max_conf.detach().cpu().numpy().tolist())
                else:
                    pass

            batch_bboxes.append(np.array(boxes))
            batch_labels.append(np.array(labels).astype(np.int32))
            batch_scores.append(np.array(scores))

        return batch_bboxes, batch_labels, batch_scores

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch, published=False):
        super(Model, self).save(which_epoch, published=published)
Пример #26
0
    def __init__(self, config, **kwargs):
        super(Model, self).__init__(config, kwargs)
        self.config = config

        kargs = {}
        if 'SCALE' in config.DATA:
            scale = config.DATA.SCALE
            if isinstance(scale, int):
                min_size = scale
                max_size = int(min_size / 3 * 5)
            else:
                min_size, max_size = config.DATA.SCALE

            kargs = {
                'min_size': min_size,
                'max_size': max_size,
            }

        kargs.update({'box_nms_thresh': config.TEST.NMS_THRESH})

        # 多卡使用 SyncBN
        if is_distributed():
            kargs.update({'norm_layer': torch.nn.SyncBatchNorm})

        # 定义backbone和Faster RCNN模型
        if config.MODEL.BACKBONE is None or config.MODEL.BACKBONE.lower() in [
                'res50', 'resnet50'
        ]:
            # 默认是带fpn的resnet50
            self.detector = fasterrcnn_resnet50_fpn(pretrained=False, **kargs)

            in_features = self.detector.roi_heads.box_predictor.cls_score.in_features

            # replace the pre-trained head with a new one
            self.detector.roi_heads.box_predictor = FastRCNNPredictor(
                in_features, config.DATA.NUM_CLASSESS + 1)

        elif config.MODEL.BACKBONE.lower() in ['vgg16', 'vgg']:
            backbone = vgg16_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=config.DATA.NUM_CLASSESS +
                                       1,
                                       **kargs)

        elif config.MODEL.BACKBONE.lower() in ['res101', 'resnet101']:
            # 不带FPN的resnet101
            backbone = res101_backbone()
            self.detector = FasterRCNN(backbone,
                                       num_classes=config.DATA.NUM_CLASSESS +
                                       1,
                                       **kargs)

        elif config.MODEL.BACKBONE.lower() in ['res', 'resnet']:
            raise RuntimeError(
                f'backbone "{config.MODEL.BACKBONE}" is ambiguous, please specify layers.'
            )

        else:
            raise NotImplementedError(
                f'no such backbone: {config.MODEL.BACKBONE}')

        if opt.debug and is_first_gpu():
            print_network(self.detector)

        self.to(opt.device)
        # 多GPU支持
        if is_distributed():
            self.detector = torch.nn.parallel.DistributedDataParallel(
                self.detector,
                find_unused_parameters=False,
                device_ids=[opt.local_rank],
                output_device=opt.local_rank)
            # self.detector = torch.nn.parallel.DistributedDataParallel(self.detector, device_ids=[opt.local_rank], output_device=opt.local_rank)

        self.optimizer = get_optimizer(config, self.detector)
        self.scheduler = get_scheduler(config, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)
Пример #27
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.detector = get_net().to(device=opt.device)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, sample, *arg):
        """
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        loss = self.forward(sample)

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward(self, sample):
        labels = sample['labels']
        for i in range(len(labels)):
            labels[i] += 1  # effdet的label从1开始

        image, bboxes, labels = sample['image'], sample['bboxes'], sample[
            'labels']

        for bbox in bboxes:
            bbox[:, [0, 1, 2, 3]] = bbox[:, [1, 0, 3, 2]]  # yxyx

        image = image.to(opt.device)
        bboxes = [bbox.to(opt.device).float() for bbox in bboxes]
        labels = [label.to(opt.device).float() for label in labels]

        # import ipdb
        # ipdb.set_trace()
        loss, _, _ = self.detector(image, bboxes, labels)

        return loss

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        total_loss = 0.
        for i, sample in enumerate(dataloader):
            utils.progress_bar(i, len(dataloader), 'Eva... ')

            with torch.no_grad():
                loss = self.forward(sample)

            total_loss += loss.item()

        logger.info(
            f'Eva({data_name}) epoch {epoch}, total loss: {total_loss}.')

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #28
0
class Model(BaseModel):
    def __init__(self, config, **kwargs):
        super(Model, self).__init__(config, kwargs)
        self.config = config
        self.detector = SSDDetector(config).to(device=opt.device)
        #####################
        #    Init weights
        #####################
        # normal_init(self.detector)

        if opt.debug:
            print_network(self.detector)

        self.optimizer = get_optimizer(config, self.detector)
        self.scheduler = get_scheduler(config, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join('checkpoints', opt.tag)

        CENTER_VARIANCE = 0.1
        SIZE_VARIANCE = 0.2
        THRESHOLD = 0.5

        self.target_transform = SSDTargetTransform(
            PriorBox(config)(), CENTER_VARIANCE, SIZE_VARIANCE, THRESHOLD)

    def update(self, sample, *arg):
        """
        给定一个batch的图像和gt, 更新网络权重, 仅在训练时使用.
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        loss_dict = self.forward_train(sample)

        loss = sum(loss for loss in loss_dict.values())
        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward_train(self, sample):
        labels = sample['labels']
        for label in labels:
            label += 1.  # effdet的label从1开始

        image, bboxes, labels = sample['image'], sample['bboxes'], sample[
            'labels']

        image = image * 255
        sub = torch.Tensor([[123, 117, 104]]).view([1, 3, 1, 1])
        image -= sub

        for box in bboxes:
            box[:, 0::2] /= 512  # width
            box[:, 1::2] /= 512  # height

        for b in range(len(labels)):
            bboxes[b], labels[b] = self.target_transform(bboxes[b], labels[b])

        image = image.to(opt.device)
        bboxes = torch.stack(bboxes).to(opt.device)
        labels = torch.stack(labels).long().to(opt.device)

        targets = {'boxes': bboxes, 'labels': labels}

        loss_dict = self.detector(image, targets=targets)

        return loss_dict

    def forward_test(self, image):
        """给定一个batch的图像, 输出预测的[bounding boxes, labels和scores], 仅在验证和测试时使用"""
        conf_thresh = 0.000

        batch_bboxes = []
        batch_labels = []
        batch_scores = []
        """
        图像预处理
        """
        image = image * 255
        sub = torch.Tensor([[123, 117, 104]]).cuda().view([1, 3, 1, 1])
        image -= sub

        outputs = self.detector(image)
        """
        nms阈值设置在 .box_head/inference.py
        """
        for b in range(len(outputs)):  #
            output = outputs[b]
            boxes = output['boxes']
            labels = output['labels']
            scores = output['scores']
            labels = labels - 1
            batch_bboxes.append(boxes.detach().cpu().numpy())
            batch_labels.append(labels.detach().cpu().numpy())
            batch_scores.append(scores.detach().cpu().numpy())

        return batch_bboxes, batch_labels, batch_scores

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch, published=False):
        super(Model, self).save(which_epoch, published)
Пример #29
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        
        # 根据YoloV2和YoloV3使用不同的配置文件
        if opt.model == 'Yolo2':
            cfgfile = 'configs/yolo2-voc.cfg'
        elif opt.model == 'Yolo3':
            cfgfile = 'configs/yolo3-coco.cfg'

        # 初始化detector
        self.detector = Darknet(cfgfile, device=opt.device).to(opt.device)
        print_network(self.detector)

        # 在--load之前加载weights文件(可选)
        if opt.weights:
            utils.color_print('Load Yolo weights from %s.' % opt.weights, 3)
            self.detector.load_weights(opt.weights)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, sample, *args):
        """
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        loss_layers = self.detector.loss_layers
        org_loss = []

        image = sample['image'].to(opt.device)  # target domain
        target = sample['yolo_boxes'].to(opt.device)

        detection_output = self.detector(image)  # 在src domain上训练检测

        for i, l in enumerate(loss_layers):
            ol=l(detection_output[i]['x'], target)
            org_loss.append(ol)

        loss = sum(org_loss)

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()

        nn.utils.clip_grad_norm_(self.detector.parameters(), 10000)
        self.optimizer.step()

        org_loss.clear()

        gc.collect()
        return {}

    def forward(self, image):
        """
        Args:
            image: [b, 3, h, w] Tensor
        """
        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        if self.detector.net_name() == 'region':  # region_layer
            shape = (0, 0)
        else:
            shape = (opt.width, opt.height)

        num_classes = self.detector.num_classes

        outputs = self.detector(image)

        outputs = get_all_boxes(outputs, shape, conf_thresh, num_classes,
                                  device=opt.device, only_objectness=False,
                                  validation=True)

        # ipdb.set_trace()

        for b in range(image.shape[0]):
            preds = outputs[b]
            preds = preds[preds[:, 4] > conf_thresh]

            boxes = preds[:, :4]
            det_conf = preds[:, 4]
            cls_conf = preds[:, 5:]

            b, c, h, w = image.shape

            boxes = xywh_to_xyxy(boxes, w, h)  # yolo的xywh转成输出的xyxy

            nms_indices = nms(boxes, det_conf, nms_thresh)
            if len(nms_indices) == 0:
                batch_bboxes.append(np.array([[]], np.float32))
                batch_labels.append(np.array([], np.int32))
                batch_scores.append(np.array([], np.float32))
                continue

            boxes, det_conf, cls_conf = keep(nms_indices, [boxes, det_conf, cls_conf])
            max_conf, labels = torch.max(cls_conf, 1)

            scores = det_conf * max_conf

            if not DO_FAST_EVAL:  # 只保留概率最高的类,能够加快eval速度但会降低精度
                repeat_boxes = boxes.repeat([num_classes, 1])
                repeat_det_conf = det_conf.repeat(num_classes)
                repeat_conf = cls_conf.transpose(1, 0).contiguous().view(-1)
                repeat_labels = torch.linspace(0, num_classes-1, num_classes).repeat(boxes.shape[0], 1).transpose(1, 0).contiguous().view(-1)

                boxes, det_conf, cls_conf, labels = keep(repeat_conf>cls_thresh, [repeat_boxes, repeat_det_conf, repeat_conf, repeat_labels])
                scores = det_conf * cls_conf

            batch_bboxes.append(to_numpy(boxes))
            batch_labels.append(to_numpy(labels, np.int32))
            batch_scores.append(to_numpy(scores))

        return batch_bboxes, batch_labels, batch_scores


    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)
Пример #30
0
class Model(BaseModel):
    def __init__(self, opt):
        super(Model, self).__init__()
        self.opt = opt
        self.detector = torchvision.models.detection.fasterrcnn_resnet50_fpn(
            pretrained=False)
        # self.detector = FasterRCNN_VGG()
        in_features = self.detector.roi_heads.box_predictor.cls_score.in_features

        # replace the pre-trained head with a new one
        self.detector.roi_heads.box_predictor = FastRCNNPredictor(
            in_features, opt.num_classes + 1)
        print_network(self.detector)

        self.optimizer = get_optimizer(opt, self.detector)
        self.scheduler = get_scheduler(opt, self.optimizer)

        self.avg_meters = ExponentialMovingAverage(0.95)
        self.save_dir = os.path.join(opt.checkpoint_dir, opt.tag)

    def update(self, sample, *arg):
        """
        Args:
            sample: {'input': a Tensor [b, 3, height, width],
                   'bboxes': a list of bboxes [[N1 × 4], [N2 × 4], ..., [Nb × 4]],
                   'labels': a list of labels [[N1], [N2], ..., [Nb]],
                   'path': a list of paths}
        """
        labels = sample['labels']
        for label in labels:
            label += 1.  # effdet的label从1开始

        image, bboxes, labels = sample['image'], sample['bboxes'], sample[
            'labels']

        if len(bboxes[0]) == 0:  # 没有bbox,不更新参数
            return {}

        image = image.to(opt.device)
        bboxes = [bbox.to(opt.device).float() for bbox in bboxes]
        labels = [label.to(opt.device).float() for label in labels]
        image = list(im for im in image)

        b = len(bboxes)

        target = [{
            'boxes': bboxes[i],
            'labels': labels[i].long()
        } for i in range(b)]
        """
            target['boxes'] = boxes
            target['labels'] = labels
            # target['masks'] = None
            target['image_id'] = torch.tensor([index])
            target['area'] = area
            target['iscrowd'] = iscrowd
        """
        loss_dict = self.detector(image, target)

        loss = sum(l for l in loss_dict.values())

        self.avg_meters.update({'loss': loss.item()})

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        return {}

    def forward(self, image):  # test
        conf_thresh = 0.5

        image = list(im for im in image)

        batch_bboxes = []
        batch_labels = []
        batch_scores = []

        with torch.no_grad():
            outputs = self.detector(image)

        for b in range(len(outputs)):  #
            output = outputs[b]
            boxes = output['boxes']
            labels = output['labels']
            scores = output['scores']
            boxes = boxes[scores > conf_thresh]
            labels = labels[scores > conf_thresh]
            labels = labels.detach().cpu().numpy()
            # for i in range(len(labels)):
            #     labels[i] = coco_90_to_80_classes(labels[i])

            labels = labels - 1
            scores = scores[scores > conf_thresh]

            batch_bboxes.append(boxes.detach().cpu().numpy())
            batch_labels.append(labels)
            batch_scores.append(scores.detach().cpu().numpy())

        return batch_bboxes, batch_labels, batch_scores

    def inference(self, x, progress_idx=None):
        raise NotImplementedError

    def evaluate(self, dataloader, epoch, writer, logger, data_name='val'):
        return self.eval_mAP(dataloader, epoch, writer, logger, data_name)

    def load(self, ckpt_path):
        return super(Model, self).load(ckpt_path)

    def save(self, which_epoch):
        super(Model, self).save(which_epoch)