def train_pnet(model_store_path, end_epoch,imdb, batch_size,frequent=10,base_lr=0.01,use_cuda=True): if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = PNet(is_train=True, use_cuda=use_cuda) net.train() if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data=TrainImageReader(imdb,12,batch_size,shuffle=True) frequent = 10 for cur_epoch in range(1,end_epoch+1): train_data.reset() # shuffle for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor) im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) # gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() # gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label,cls_pred) box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss*1.0+box_offset_loss*0.5 if batch_idx %frequent==0: accuracy=compute_accuracy(cls_pred,gt_label) show1 = accuracy.data.cpu().numpy() show2 = cls_loss.data.cpu().numpy() show3 = box_offset_loss.data.cpu().numpy() # show4 = landmark_loss.data.cpu().numpy() show5 = all_loss.data.cpu().numpy() print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "%(datetime.datetime.now(),cur_epoch,batch_idx, show1,show2,show3,show5,base_lr)) optimizer.zero_grad() all_loss.backward() optimizer.step() torch.save(net.state_dict(), os.path.join(model_store_path,"pnet_epoch_%d.pt" % cur_epoch)) torch.save(net, os.path.join(model_store_path,"pnet_epoch_model_%d.pkl" % cur_epoch))
def train_pnet(model_store_path, end_epoch, imdb, batch_size, frequent=50, base_lr=0.01, use_cuda=True): if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() net = PNet(is_train=True, use_cuda=use_cuda) checkpoint = torch.load('model_store/pnet_epoch_4.pt') net.load_state_dict(checkpoint) net.train() if use_cuda: net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=base_lr) train_data = TrainImageReader(imdb, 12, batch_size, shuffle=True) for cur_epoch in range(1, end_epoch + 1): train_data.reset() accuracy_list = [] cls_loss_list = [] bbox_loss_list = [] # landmark_loss_list=[] for batch_idx, (image, (gt_label, gt_bbox, gt_landmark)) in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i, :, :, :]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor).float() im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) # gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) if use_cuda: im_tensor = im_tensor.cuda() gt_label = gt_label.cuda() gt_bbox = gt_bbox.cuda() # gt_landmark = gt_landmark.cuda() cls_pred, box_offset_pred = net(im_tensor) # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred) cls_loss = lossfn.cls_loss(gt_label, cls_pred) box_offset_loss = lossfn.box_loss(gt_label, gt_bbox, box_offset_pred) # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred) all_loss = cls_loss * 1.0 + box_offset_loss * 0.5 if batch_idx % frequent == 0: accuracy = compute_accuracy(cls_pred, gt_label) # show1 = accuracy.data.tolist()[0] # show2 = cls_loss.data.tolist()[0] # show3 = box_offset_loss.data.tolist()[0] # show5 = all_loss.data.tolist()[0] show1 = accuracy.item() show2 = cls_loss.item() show3 = box_offset_loss.item() show5 = all_loss.item() print( "%s : Epoch: %d, Step: %d, accuracy: %.4f, det loss: %.4f, bbox loss: %.4f, all_loss: %.4f, lr:%s " % (datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, base_lr)) accuracy_list.append(accuracy) cls_loss_list.append(cls_loss) bbox_loss_list.append(box_offset_loss) optimizer.zero_grad() all_loss.backward() optimizer.step() accuracy_avg = torch.mean(torch.tensor(accuracy_list)) cls_loss_avg = torch.mean(torch.tensor(cls_loss_list)) bbox_loss_avg = torch.mean(torch.tensor(bbox_loss_list)) # landmark_loss_avg = torch.mean(torch.cat(landmark_loss_list)) # show6 = accuracy_avg.data.tolist()[0] # show7 = cls_loss_avg.data.tolist()[0] # show8 = bbox_loss_avg.data.tolist()[0] show6 = accuracy_avg.item() show7 = cls_loss_avg.item() show8 = bbox_loss_avg.item() print("Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s" % (cur_epoch, show6, show7, show8)) # state = {'net': net.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': cur_epoch} torch.save( net.state_dict(), os.path.join(model_store_path, "pnet_epoch_%d.pt" % cur_epoch)) torch.save( net, os.path.join(model_store_path, "pnet_epoch_model_%d.pkl" % cur_epoch))