Пример #1
0
def inbetween(settings, m, savefile, d=0.5, f=0.5,
              Ka=None, Kb=None, nodes=None, radii=None,
              com_a=None, com_b=None, V=None, G=None, backfade=False):
    """
    Produce an inbetween frame, either by warping or blobbing.
    
    Usage
    -----
    >>> inbetween(settings, m, savefile, d, f)
    
    Returns
    -------
    File name of midpoint warp image in temporary folder.
    
    Notes
    -----
    Node trajectories and blob sizes (when not warping)
    must be precomputed. See *trajectory*.
    """
    
    # Key frame indices and output files
    a, b     = morph_key_indices(settings, m)
    folder_m = path.join(settings['temppath'], 'm{0:03d}'.format(m + 1))
    folder_a = path.join(settings['temppath'], 'k{0:03d}'.format(a + 1))
    folder_b = path.join(settings['temppath'], 'k{0:03d}'.format(b + 1))
    
    # Load images and trajectories
    if Ka    is None: Ka    = algo.load_rgba(settings['keyframes'][a])
    if Kb    is None: Kb    = algo.load_rgba(settings['keyframes'][b])
    if nodes is None: nodes = loadit(path.join(folder_m, 'nodes.csv'))
    
    # Center of mass is needed when we want arcs
    if settings['traject']['arc'][m]:
        if com_a is None: com_a = loadit(path.join(folder_a, 'com.json'))
        if com_b is None: com_b = loadit(path.join(folder_b, 'com.json'))
        if not settings['traject']['spin'][m]:
            com_a['a'], com_b['a'] = 0, 0
    else:
        com_a, com_b = None, None
    
    # To blob or not to blob?
    hardness = settings['render']['blobhardness']
    if settings['motion']['blob'][m] and radii is None:
        radii = loadit(path.join(folder_m, 'radii.csv'))
    
    # Time to do the deed
    T = algo.tween(Ka, Kb, nodes,
                   d=d, f=f, V=V, G=G,
                   com_a=com_a, com_b=com_b,
                   radii=radii, hardness=hardness, backfade=backfade)
    
    # Take the money and run
    fullfile = path.join(folder_m, savefile)
    qual = settings['render']['quality']
    algo.save_rgba(T, fullfile, qual)
Пример #2
0
##############
# Just Do It #
##############

# Make an announcement
print("")
print("MuddyMorph ProxiMatch Test")
print("==========================")
print("")
print("Image A\t{}".format(path.basename(key_a)))
print("Image B\t{}".format(path.basename(key_b)))
print("")

#%% Load images
print("Loading images ... ", end="")
Ka = algo.load_rgba(key_a)
Kb = algo.load_rgba(key_b)
print("done")

#%% Key point extraction
print("Extracting key points ... ", end="")
stopwatch = -time()
kp_a, dc_a = algo.cornercatch(Ka,
                              algorithm=algorithm,
                              target=target,
                              channel=channel,
                              blur=blur,
                              cutoff=cutoff,
                              orb_threshold=orb_threshold)
kp_b, dc_b = algo.cornercatch(Kb,
                              algorithm=algorithm,
Пример #3
0
import matplotlib.pyplot as plt

# Home grown
import muddymorph_algo as algo

###########
# Try-out #
###########

# Make an announcement
print("")
print("MuddyMorph Local Contrast Proto")
print("===============================")
print("")

B = algo.load_rgba(image)
D, _, _ = algo.edgy(B, channel=channel)

stopwatch = -time()
C = algo.loco(D, algorithm=algorithm, cutoff=cutoff, detail=detail)
stopwatch += time()

##########
# Review #
##########

print("Image  \t{}".format(path.basename(image)))
print("Channel\t{}".format(channel))
print("Cutoff \t{}".format(cutoff))
print("Detail \t{}".format(detail))
print("Min    \t{0:.3f}".format(C.min()))
Пример #4
0
se = settings['edge']

##################
# Test test test #
##################

# Make an announcement
print("")
print("MuddyMorph Warp Proto 2")
print("=======================")
print("")

# Load data
print("Loading images ... ", end="")
Ka = algo.load_rgba(settings['keyframes'][0])
Kb = algo.load_rgba(settings['keyframes'][1])
h, w = Ka.shape[:2]
print("done")

# Edge detection
print("Edge detection ... ", end="")
Da, Sa, Ea = algo.edgy(Ka,
                       channel=se['channel'],
                       threshold=se['threshold'],
                       blur=se['blur'],
                       dolines=se['dolines'])
Db, Sb, Eb = algo.edgy(Kb,
                       channel=se['channel'],
                       threshold=se['threshold'],
                       blur=se['blur'],
Пример #5
0
# Keypoint detection
target = 2000
cutoff = 0.01
algorithm = 'orb'  # ORB / CENSURE
orb_threshold = 0.08
censure_mode = 'STAR'  # DoB / Octagon / STAR

# Dependencies
from time import time
import matplotlib.pyplot as plt
import muddymorph_algo as algo

# Load images
print("Loading images ... ", end="")
K = algo.load_rgba(imagefile)
print("done")

# Keypoint extraction
# Tweak these parameters for a few test cases,
# and decide which ones should become knobs in the user interface.
print("Keypoint extraction ... ", end="")
stopwatch = -time()
kp, descriptors = algo.cornercatch(K,
                                   target=target,
                                   algorithm=algorithm,
                                   channel=channel,
                                   blur=blur,
                                   cutoff=cutoff,
                                   orb_threshold=orb_threshold,
                                   censure_mode=censure_mode)
Пример #6
0
print('Looking for images ...', end='')
files_in = glob(path.join(folder_in, filepattern))
print('found {}\n'.format(len(files_in)))

# Process them pretty pictures, yee-haw!
progress = 1
stopwatch = -time()
for file_in in files_in:
    
    # Spread the word
    name = path.basename(file_in)
    msg = 'Processing [{progress}/{n}] {name} ... '
    print(msg.format(progress=progress, n=len(files_in), name=name), end='')
    
    # Load that image
    Mi = algo.load_rgba(file_in)
    
    # Crop away stripy artefacts
    if sum(sidecrop):
        Mi = Mi[:, +sidecrop[0]:-sidecrop[1]]
    
    # Border color
    boco = algo.bordercolor(Mi)
    boco = np.append(boco, 255)
    faco = boco if fadecolor is None else fadecolor
    faco = [f / 255. for f in faco]
    
    # Rescale to the specified height
    w, h = size_out
    if Mi.shape[0] == h:
        Mm = Mi
Пример #7
0
def trajectory(settings, m, recycle=False, thread=None, X=None, Y=None,
               Ka=None, Kb=None, Ea=None, Eb=None, com_a=None, com_b=None,
               kp_a=None, kp_b=None, dc_a=None, dc_b=None):
    """
    Figure out node trajectories for the given morph sequence *m*,
    based on silhouette map and corner descriptors.
    
    Two temporary analysis files are generated:
         - nodes.csv node trajectory coordinates.
         - move.png  node trajectory chart.
    
    Usage
    -----
    >>> nodes, Ka, Kb, com_a, com_b = trajectory(settings, m, recycle, thread)
    
    Parameters
    ----------
    recycle : bool, optional
        If set to True and if output exists from a previous run,
        then that will be recycled.
    thread : object, optional
        Send status reports back through this channel,
        presumably a PyQt Qthread activated by the grapical user interface.
        This can be any object though, as long as it contains:
            - *abort*. A boolean status flag (True/False) that signals whether
              the user has had enough, and pressed a cancel button or such.
            - *report*. A progress report signal.
              Must have a method *emit* that accepts strings
              (which will either an image file name or one-line status report).
    
    Returns
    -------
    None in case of user abort,
    node trajectory coordinate array otherwise.
    
    Notes
    -----
    If silhouette map and corner keypoint coordinates are not available,
    then *silhouette* and *cornercatch* will be called to create these.
    """
    
    # Tell everyone about the fantastic voyage we are about to embark upon
    if count_morphs(settings) > 1:
        label = ' for morph {}'.format(m + 1)
    else:
        label = ''
    shoutout(msg='Detecting trajectories' + label, thread=thread)
    
    # Start the timer
    stopwatch = -time()

    # Key frame indices and output files
    a, b     = morph_key_indices(settings, m)
    folder_m = path.join(settings['temppath'], 'm{0:03d}'.format(m + 1))
    folder_a = path.join(settings['temppath'], 'k{0:03d}'.format(a + 1))
    folder_b = path.join(settings['temppath'], 'k{0:03d}'.format(b + 1))
    f1       = path.join(folder_m, 'move.png')
    f2       = path.join(folder_m, 'nodes.csv')
    
    # Assemble the settings
    s = settings['traject']
    docorners    = s['corners'   ][m]
    dosilhouette = s['silhouette'][m]
    arc          = s['arc'       ][m]
    spin         = s['spin'      ][m] and arc
    similim      = s['similim'   ][m] * 1e-2
    maxmove      = s['maxmove'   ][m] * 1e-2
    maxpoints    = s['maxpoints' ][m]
    neighbours   = s['neighbours'][m]
    
    # Detect silhouette of key frame A
    if Ka is None or Ea is None or com_a is None:
        msg = 'Extracting silhouette for key {}'.format(a + 1)
        shoutout(msg=msg, thread=thread)
        result = silhouette(settings, a, K=Ka, X=X, Y=Y, recycle=True)
        fsa, Ka, Ea, com_a = result
        shoutout(img=fsa, thread=thread)
        if thread and thread.abort: return
    
    # Detect silhouette of key frame B
    if Kb is None or Eb is None or com_b is None:
        msg = 'Extracting silhouette for key {}'.format(b + 1)
        shoutout(msg, thread=thread)
        result = silhouette(settings, b, K=Kb, X=X, Y=Y, recycle=True)
        fsb, Kb, Eb, com_b = result
        shoutout(img=fsb, thread=thread)
        if thread and thread.abort: return
    
    # Catch corners
    if docorners:
        shoutout('Catching corners for key {}'.format(a + 1), thread=thread)
        fca, kp_a, dc_a = cornercatch(settings, a, K=Ka, recycle=True)
        shoutout(img=fca, thread=thread)
        if thread and thread.abort: return

        shoutout('Catching corners for key {}'.format(b + 1), thread=thread)
        fcb, kp_b, dc_b = cornercatch(settings, b, K=Kb, recycle=True)
        shoutout(img=fcb, thread=thread)
        if thread and thread.abort: return
    
    # Nothing can beat the need for shear speed
    if recycle and path.isfile(f1) \
               and path.isfile(f2):
        shoutout(img=f1, thread=thread)
        nodes = loadit(f2)
        return nodes, Ka, Kb, com_a, com_b
    
    # Convert detail zone units from promille to pixels
    # FIXME: Remove this after testing new traject detail setting
    #se       = settings['edge'  ]
    #detail   = 0.5 * se['detail'][a] * 1e-3 + \
    #           0.5 * se['detail'][b] * 1e-3
    detail = settings['traject']['detail'][m] * 1e-3
    simisize = max(int(np.ceil(max(Ka.shape[:2]) * detail)) + 1, 4)
    
    # Show the nitty gritty details
    print(timestamp() + 'Similim  = {} %'   .format(s['similim'][m]))
    print(timestamp() + 'Detail   = {0:.3f}'.format(detail))
    print(timestamp() + 'Simisize = {} px'  .format(simisize))

    # Start with the foundation;
    # The four screen corners and center of mass
    if dosilhouette:
        if Ea is None: Ea = loadit(path.join(folder_a, 'edgy.png'))
        if Eb is None: Eb = loadit(path.join(folder_b, 'edgy.png'))
        
        if com_a is None: com_a = loadit(path.join(folder_a, 'com.json'))
        if com_b is None: com_b = loadit(path.join(folder_b, 'com.json'))
        
        nodes0 = algo.seed(*Ka.shape[:2], com_a, com_b)
        if not spin: com_a['a'], com_b['a'] = 0, 0
        
    else:
        nodes0 = algo.seed(*Ka.shape[:2])
        com_a  = dict(x=0, y=0, r=0, a=0.0)
        com_b  = dict(x=0, y=0, r=0, a=0.0)

    # Use CoM as repellant for edge nodes
    base = nodes0[4:]
    if thread and thread.abort: return
    
    # Match corners
    if docorners:
        shoutout('Matching corners' + label, thread=thread)
        if Ka is None: Ka = algo.load_rgba(settings['keyframes'][a])
        if Kb is None: Kb = algo.load_rgba(settings['keyframes'][b])
        
        catcher = settings['edge']['cornercatcher']
        catch_a = path.join(folder_a, catcher[a].lower())
        catch_b = path.join(folder_b, catcher[b].lower())
        
        if kp_a is None: kp_a = loadit(catch_a + '.csv')
        if kp_b is None: kp_b = loadit(catch_b + '.csv')
        if dc_a is None: dc_a = loadit(catch_a + '.png')
        if dc_b is None: dc_b = loadit(catch_b + '.png')
        
        nodes1, simi1 = algo.matchpoint(Ka, Kb, kp_a, kp_b, dc_a, dc_b,
                                        simisize=simisize, similim=similim)
        
        base = np.row_stack((base, nodes1))
        if thread and thread.abort: return
    
    # Extract and match silhouette key points
    if dosilhouette:
        shoutout('Matching silhouettes' + label, thread=thread)
        spawnpoints = min(1000, *settings['traject']['maxpoints'])
        
        sp_a = algo.spawn(Ea, base[:, [0, 1]], spawnpoints, r_min=simisize)
        sp_b = algo.spawn(Eb, base[:, [2, 3]], spawnpoints, r_min=simisize)
        n_half = int(spawnpoints / 2)
        
        nodes2, simi2 = algo.proximatch(Ka, Kb, Ea, sp_a, sp_b, com_a, com_b,
                                        neighbours=neighbours, n=n_half,
                                        simisize=simisize, similim=similim)
        
        nodes3, simi3 = algo.proximatch(Kb, Ka, Eb, sp_b, sp_a, com_b, com_a,
                                        neighbours=neighbours, n=n_half,
                                        simisize=simisize, similim=similim)
        
        try:
            nodes4 = np.row_stack((nodes2, nodes3[:, [2, 3, 0, 1]]))
            simi4 = np.append(simi2, simi3)
        except IndexError:
            nodes4, simi4 = nodes2, simi2
        if thread and thread.abort: return
    
    # Combine the results. One big happy family!
    if dosilhouette and docorners:
        nodez = np.row_stack((nodes1, nodes4))
        simiz = np.append(simi1, simi4)
    elif dosilhouette:
        nodez, simiz = nodes4, simi4
    elif docorners:
        nodez, simiz = nodes1, simi1
    else:
        nodez = []
    
    # Combine duplicates
    if len(nodez):
        shoutout('Combining duplicate trajectories' + label, thread=thread)
        nodez, simiz = algo.gettogether(nodez, simiz, simisize)
    
    # Discard excessive moves
    if len(nodez):
        shoutout('Discarding excessive moves' + label, thread=thread)
        diago = np.ceil(np.sqrt(Ka.shape[0] ** 2 + \
                                Ka.shape[1] ** 2))
        
        lim   = int(maxmove * diago)        
        keep  = algo.notsofast(nodez, lim, com_a, com_b)
        nodez = nodez[keep]
        simiz = simiz[keep]
        
        # Are we doing sensible things in this joint?
        print(timestamp() + 'Max move = {} px'.format(lim))
        if thread and thread.abort: return
    
    # In case of crossing paths discard the longest trajectory
    if len(nodez):
        shoutout('Discarding crossing paths' + label, thread=thread)
        keep = np.zeros_like(nodez, dtype=bool)
        repeat = 1
        while np.any(~keep) and repeat <= 10:
            if thread and thread.abort: return
            keep    = algo.straightenup(nodez)
            nodez   = nodez[keep]
            simiz   = simiz[keep]
            repeat += 1
    
    # Cherry pick nodes with the highest similarity score
    if len(nodez) > maxpoints:
        shoutout('Cherry picking' + label, thread=thread)
        seq   = np.argsort(simiz)[::-1]
        nodez = nodez[seq][:maxpoints]
        simiz = simiz[seq][:maxpoints]
    
    # Pack it all together into one cozy bundle
    if len(nodes0) and len(nodez):
        nodes = np.row_stack((nodes0, nodez))
    elif len(nodes0):
        nodes = nodes0
    else:
        nodes = nodez
    
    # Save the harvest
    saveit(nodes, f2)
    if thread and thread.abort: return
    
    # Fade to gray baby
    shoutout('Making trajectory chart' + label, thread=thread)
    channel_a = settings['edge']['channel'][a]
    channel_b = settings['edge']['channel'][b]
    if channel_a.lower().startswith('a'): channel_a = 'lightness'
    if channel_b.lower().startswith('a'): channel_b = 'lightness'
    Ga = algo.desaturate(Ka, channel_a)
    Gb = algo.desaturate(Kb, channel_b)
    
    # Produce a tingly trajectory chart       
    fig = algo.big_figure('MuddyMorph - Trajectories', *Ga.shape)
    if arc:
        comp_a, comp_b = com_a, com_b
    else:
        comp_a, comp_b = None, None
    try:
        tweens = settings['motion']['inbetweens'][m]
    except IndexError:
        tweens = algo.most_frequent_value(settings['motion']['inbetweens'])
    algo.movemap(Ga, Gb, nodes, comp_a, comp_b, tweens=tweens)
    plt.axis('off')
    plt.savefig(f1, **chartopts)
    plt.close(fig)
    
    # Our work here is done
    stopwatch += time()
    msg = 'Trajectory extraction took ' + duration(stopwatch)
    shoutout(msg, f1, thread)
    return nodes, Ka, Kb, com_a, com_b
Пример #8
0
def cornercatch(settings, k, recycle=True, K=None):
    """
    Detect corner key points for key frame *k*.
    These analysis files are generated:
         - In case of ORB; orb.csv, orb.png, orb_p.png.
         - In case of CENSURE; censure.csv, censure.png, censure_p.png.
    
    The full file name of the diagnostics diagram is returned for previewing.
    
    Usage
    -----
    >>> f, kp, dc = cornercatch(settings, k)
    
    Returns
    -------
    1. Filename of diagnostics chart
    2. Key point coordinates (None in case of file recycle).
    3. Key point binary descriptors (None in case of file recycle).
    """
    print(timestamp() + 'Collecting corners for key {}'.format(k))
    
    # Algorithm flavour and save file base
    catcher = settings['edge']['cornercatcher'][k]
    folder  = path.join(settings['temppath'], 'k{0:03d}'.format(k + 1))
    base    = path.join(folder, catcher.lower())
    f1      = base + '_p.png'
    f2      = base + '.csv'
    f3      = base + '.png'
    
    # Do we need to do anything at all?
    if recycle and path.isfile(f1) \
               and path.isfile(f2) \
               and path.isfile(f3): return f1, None, None
    
    # Collect the other parameters
    blur        = settings['edge']['blur'][k]
    spawnpoints = min(1000, *settings['traject']['maxpoints'])
    channel     = settings['edge']['channel'][k]
    if channel.lower().startswith('a'): channel = 'lightness'
    
    # Say it like it is
    msg = '{} corner extraction for key {}'
    print(timestamp() + msg.format(catcher, k + 1))

    # Load bitmap
    if K is None: K = algo.load_rgba(settings['keyframes'][k])
    
    # Do dat ting
    kp, dc = algo.cornercatch(K, channel=channel, algorithm=catcher,
                              target=spawnpoints, blur=blur)
    
    # Save the harvest
    saveit(kp, base + '.csv')
    saveit(dc, base + '.png')
    
    # Produce a simple diagnostics chart (just a bunch of orange dots)
    G   = algo.desaturate(K, channel, blur=blur)
    fig = algo.big_figure('MuddyMorph - Corner key points', *G.shape)
    
    plt.imshow(G, cmap=plt.cm.gray, vmin=0, vmax=1)
    plt.plot(kp[:, 0], kp[:, 1], '.', markersize=7, color=(1., .5, 0.))
    plt.axis('image')
    plt.axis('off')
    plt.savefig(f1, **chartopts)
    plt.close(fig)
    
    return f1, kp, dc
Пример #9
0
def silhouette(settings, k, recycle=False, K=None, X=None, Y=None,
               showsil=True, showedge=True, showcom=True):
    """
    Perform silhouette extraction and contour detection for frame *k*.
    These analysis files are generated:

         - silly.png  silhouette shape binary map.
         - edgy.png   silhouette edges binary map.
         - com.json   silhouette center of mass properties.
         - shape.png  silhouette detection diagram (returned for preview).
    
    Usage
    -----
    >>> f, K, E, com = silhouette(settings, k)
    
    Returns
    -------
    1. Filename of diagnostics chart
    2. Key frame bitmap
    3. Edge map
    4. Center of mass properties
    """
    
    # This is where the action is
    folder = path.join(settings['temppath'], 'k{0:03d}'.format(k + 1))  
    f = path.join(folder, 'shape.png')

    # Fetch ingredients
    se = settings['edge']
    sr = settings['render']
    bc = None if sr['autoback'] else sr['backcolor']
    
    if K is None: K = algo.load_rgba(settings['keyframes'][k])
    
    # Do we need to do anything at all?
    if recycle and path.isfile(f) and \
                   path.isfile(path.join(folder, 'com.json' )) and \
                   path.isfile(path.join(folder, 'silly.png')) and \
                   path.isfile(path.join(folder, 'edgy.png' )):
        return f, K, None, None

    # Make mesh grid
    if X is None or Y is None: X, Y = algo.grid(K)
    
    # Extract silhouette
    D, S, E = algo.edgy(K, 
                        backcolor = bc,
                        linecolor = sr['linecolor'],
                        dolines   = sr['lineart'  ],
                        threshold = se['threshold'][k] * 0.01,
                        channel   = se['channel'  ][k],
                        doscharr  = se['scharr'   ][k],
                        blur      = se['blur'     ][k],
                        invert    = se['invert'   ][k])
    
    # Center of mass measurement
    com = algo.commie(S, X=X, Y=Y, verbose=False)
    
    # Save the harvest
    saveit(com, path.join(folder, 'com.json' ))
    saveit(S  , path.join(folder, 'silly.png'))
    saveit(E  , path.join(folder, 'edgy.png' ))
    
    # Combine all results into one classy chart
    Sp   = S   if showsil  else None
    Ep   = E   if showedge else None
    comp = com if showcom  else None
    fig  = algo.big_figure('MuddyMorph - Silhouette Chart', *E.shape)
    
    algo.edgeplot(D, Sp, Ep, comp, X=X, Y=Y)
    plt.axis('off')
    plt.savefig(f, **chartopts)
    plt.close(fig)
    
    return f, K, E, com
Пример #10
0
def motion(settings, m, recycle_nodes=True, recycle_frames=True, thread=None,
           Ka=None, Kb=None, nodes=None, radii=None,
           com_a=None, com_b=None, X=None, Y=None, V=None, G=None):
    """
    Generate a series of bitmaps that together form a morph sequence.
    
    Usage
    -----
    >>> movie = motion(settings, m)
    
    Parameters
    ----------
    See *default_settings* for info on settings,
    and *trajectory* for details regarding thread.
    
    Notes
    -----
    - Start and stop key frames are included.
      This way it is easy to generate a preview per sequence.
    - Missing analysis data will be generated by invoking *trajectory*.
    - For the generation of single inbetween frames see *inbetween*.
    
    Returns
    -------
    A list of saved bitmaps.
    """
    
    # And so it begins
    movie = []
    n_m   = count_morphs(settings)
    msg   = 'Making motion for morph {}'.format(m + 1)
    shoutout(msg=msg, thread=thread)
    stopwatch = -time()
    
    # Prepare for battle
    frames   = np.arange(settings['motion']['inbetweens'][m] + 2)
    t        = 1. * frames / max(frames)
    d        = algo.motion_profile(t , settings['motion']['profile'][m])
    f        = algo.fade_profile(t, d, settings['motion']['fade'][m] * 0.01)
    a, b     = morph_key_indices(settings, m)
    comfiles = path.join(settings['temppath'], 'k{0:03d}', 'com.json')
    folder   = path.join(settings['temppath'], 'm{0:03d}'.format(m + 1))
    
    # Fetch the basic ingredients for inbetweening
    if Ka is None: Ka   = algo.load_rgba(settings['keyframes'][a])
    if Kb is None: Kb   = algo.load_rgba(settings['keyframes'][b])
    if X  is None: X, Y = algo.grid(Ka)
    if G  is None: G    = background(settings, Ka)
    if V  is None: V    = vinny(settings, Ka)
    if thread and thread.abort: return
    
    # Load precomputed goodies if we are allowed to
    if recycle_nodes:
        file_nodes = path.join(folder, 'nodes.csv')
        file_com_a = comfiles.format(a + 1)
        file_com_b = comfiles.format(b + 1)
        if nodes is None and path.isfile(file_nodes): nodes = loadit(file_nodes)
        if com_a is None and path.isfile(file_com_a): com_a = loadit(file_com_a)
        if com_b is None and path.isfile(file_com_b): com_b = loadit(file_com_b)
        if thread and thread.abort: return
    
    # Is stuff still missing? Then go and compute
    if nodes is None or com_a is None or com_b is None:
        result = trajectory(settings, m, recycle_nodes, thread, X=X, Y=Y,
                            Ka=Ka, Kb=Kb, com_a=com_a, com_b=com_b)
        
        if result is None or (thread and thread.abort): return
        nodes, _, _, com_a, com_b = result
    
    # Blob sizes
    if radii is None:
        radii = blobbify(settings, nodes,
                         com_a, com_b, m, *Ka.shape[:2])
    
    # If both key frames are opaque, then so should be all inbetweens
    backfade = algo.is_opaque(Ka) and algo.is_opaque(Kb)

    # Hop through the frames
    for i in frames:
        if thread and thread.abort: return
        
        basename = 'f{0:03d}.{1}'.format(i + 1, settings['render']['ext'])
        savefile = path.join(folder, basename)
        
        # Remember frame for playback or export
        movie.append(savefile)
        
        # Can we recycle existing material?
        if recycle_frames and path.isfile(savefile): continue
    
        # Time for a short newsflash
        if n_m > 1:
            msg = 'Generating morph {} frame {}'.format(m + 1, i + 1)
        else:
            msg = 'Generating frame {}'.format(i + 1)
        shoutout(msg, thread=thread)

        # Copy or generate the file we need
        if t[i] == 0 and can_copy_key(settings, a):
            msg  = 'Copying ' + semi_short_file_name(settings['keyframes'][a])
            msg += ' to '     + semi_short_file_name(savefile)
            print(timestamp() + msg)
            copyfile(settings['keyframes'][a], savefile)

        elif t[i] == 1 and can_copy_key(settings, b):
            msg  = 'Copying ' + semi_short_file_name(settings['keyframes'][b])
            msg += ' to '     + semi_short_file_name(savefile)
            print(timestamp() + msg)
            copyfile(settings['keyframes'][b], savefile)

        else:
            msg = 'Generating {0} with t={1:.0f}%, d={2:.0f}%, f={3:.0f}%'
            msg = msg.format(semi_short_file_name(savefile),
                             t[i]*100, d[i]*100, f[i]*100)
            print(timestamp() + msg)
            
            inbetween(settings, m, savefile, d=d[i], f=f[i],
                      Ka=Ka, Kb=Kb, nodes=nodes, radii=radii,
                      com_a=com_a, com_b=com_b, V=V, G=G, backfade=backfade)

        # Show the frame
        shoutout(img=savefile, thread=thread)

    # Peace out
    stopwatch += time()
    msg = 'Inbetweening took ' + duration(stopwatch)
    shoutout(msg, thread=thread)
    return movie
Пример #11
0

##################
# Test test test #
##################


# Make an announcement
print("")
print("MuddyMorph Spawn Test")
print("=====================")
print("")

# Load data
print("Loading image ... ", end="")
K = algo.load_rgba(settings['keyframes'][0])
h, w = K.shape[:2]
print("done")

# Edge detection
print("Edge detection ... ", end="")
D, S, E = algo.edgy(K,
                    channel   = se['channel'  ],
                    threshold = se['threshold'],
                    blur      = se['blur'     ],
                    dolines   = se['dolines'  ])
print("done")

# CoM detection
com  = algo.commie(S)
base = algo.seed(com, com, *S.shape)[:, :2]