def test_multiple_sims(): # Ensure that creating new simulators still produces good renderings. xml = """ <mujoco> <asset> <texture name="t1" width="32" height="32" type="2d" builtin="flat" /> <material name="m1" texture="t1" /> </asset> <worldbody> <light diffuse=".5 .5 .5" pos="0 0 5" dir="0 0 -1" /> <camera name="topcam" pos="0 0 2.5" zaxis="0 0 1" /> <geom name="g1" pos="0 0 0" type="box" size="1 1 0.1" rgba="1 1 1 1" material="m1" /> </worldbody> </mujoco> """ model = load_model_from_xml(xml) random_state = np.random.RandomState(0) for i in range(3): sim = MjSim(model) sim.forward() modder = TextureModder(sim, random_state=random_state) for j in range(2): modder.rand_checker('g1') compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_multiple_sims.loop%d_%d.png' % (i, j))
def test(): from mujoco_py import load_model_from_xml, MjSim, MjViewer from mujoco_py.modder import TextureModder l, w, h, t, left, m = sample_cabinet() cab = build_cabinet(l, w, h, t, left) filename = 'test.urdf' with open(filename, "w") as text_file: text_file.write(cab.xml) # print(cab.xml) model = load_model_from_xml(cab.xml) sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) for name in sim.model.geom_names: modder.rand_all(name) t = 0 if cab.geom[3] == 1: sim.data.ctrl[0] = -0.2 else: sim.data.ctrl[0] = 0.2 while t < 1000: # for name in sim.model.geom_names: # modder.rand_all(name) sim.step() viewer.render() t += 1
def test_resetting(): # Ensure that resetting environment and creating new simulators # still produces good renderings. xml = """ <mujoco> <asset> <texture name="t1" width="32" height="32" type="2d" builtin="flat" /> <material name="m1" texture="t1" /> </asset> <worldbody> <light diffuse=".5 .5 .5" pos="0 0 5" dir="0 0 -1" /> <camera name="topcam" pos="0 0 2.5" zaxis="0 0 1" /> <geom name="g1" pos="0 0 0" type="{geom_type}" size="1 1 0.1" rgba="1 1 1 1" material="m1" /> </worldbody> </mujoco> """ def get_sim(seed): geom_type = ["box", "sphere"][seed % 2] model = load_model_from_xml(xml.format(geom_type=geom_type)) return MjSim(model) random_state = np.random.RandomState(0) for i in range(3): sim = get_sim(i - 1) sim.forward() modder = TextureModder(sim, random_state=random_state) for j in range(2): modder.rand_checker('g1') compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_resetting.loop%d_%d.png' % (i, j))
def test_multiple_sims(): # Ensure that creating new simulators still produces good renderings. xml = """ <mujoco> <asset> <texture name="t1" width="32" height="32" type="2d" builtin="flat" /> <material name="m1" texture="t1" /> </asset> <worldbody> <light diffuse=".5 .5 .5" pos="0 0 5" dir="0 0 -1" /> <camera name="topcam" pos="0 0 2.5" zaxis="0 0 1" /> <geom name="g1" pos="0 0 0" type="box" size="1 1 0.1" rgba="1 1 1 1" material="m1" /> </worldbody> </mujoco> """ model = load_model_from_xml(xml) random_state = np.random.RandomState(0) for i in range(3): sim = MjSim(model) sim.forward() modder = TextureModder(sim, random_state=random_state) for j in range(2): modder.rand_checker('g1') compare_imgs( sim.render(201, 205, camera_name="topcam"), 'test_multiple_sims.loop%d_%d.png' % (i, j))
def test(k=0): from mujoco_py import load_model_from_xml, MjSim, MjViewer from mujoco_py.modder import TextureModder l, w, h, t, left, m = sample_cabinet2() cab = build_cabinet2(l, w, h, t, left) # print(cab.xml) model = load_model_from_xml(cab.xml) sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) for name in sim.model.geom_names: modder.rand_all(name) set_two_door_control(sim) q1s = [] q2s = [] t = 0 # mode 0 indicates starting lc while t < 4000: # for name in sim.model.geom_names: # modder.rand_all(name) viewer.render() if t % 250 == 0: q1 = sim.data.qpos[0] q2 = sim.data.qpos[1] print(sim.data.qpos) q1s.append(q1) q2s.append(q2) sim.step() t += 1 # print(q1s) np.save('devdata/q1_' + str(k).zfill(3), q1s) np.save('devdata/q2_' + str(k).zfill(3), q2s)
def _env_setup(self, initial_qpos): self.id2obj = [self._geom2objid(i) for i in range(self.sim.model.ngeom)] for name, value in initial_qpos.items(): self.sim.data.set_joint_qpos(name, value) utils.reset_mocap_welds(self.sim) self.sim.forward() # Move end effector into position. gripper_target = np.array([-0.498, 0.005, -0.431 + self.gripper_extra_height]) + self.sim.data.get_site_xpos('robot0:grip') gripper_rotation = np.array([1., 0., 1., 0.]) self.sim.data.set_mocap_pos('robot0:mocap', gripper_target) self.sim.data.set_mocap_quat('robot0:mocap', gripper_rotation) for _ in range(10): self.sim.step() # Extract information for sampling goals. if not hasattr(self, 'initial_gripper_xpos'): self.initial_gripper_xpos = self.sim.data.get_site_xpos('robot0:grip').copy() self.height_offset = self.sim.data.get_site_xpos('object0')[2] # Change the colors to match the success conditions self.color_modder = TextureModder(self.sim) for i in range(self.sim.model.ngeom): obj_id = self.id2obj[i] if obj_id != None: name = self.sim.model.geom_id2name(i) if 'table' in name: color = np.asarray(COLORS_RGB[self.obj_colors[obj_id]]) self.color_modder.set_rgb(name, color * 2) else: self.color_modder.set_rgb(name, COLORS_RGB[self.obj_colors[obj_id]])
def __init__(self, model_path, dataset_name, use_procedural=False, cam_pos_file=None, cam_norm_pos_file=None): super().__init__(dataset_name, cam_pos_file=cam_pos_file, cam_norm_pos_file=cam_norm_pos_file) self.model = mujoco_py.load_model_from_path(model_path) self.sim = mujoco_py.MjSim(self.model) self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, None) self.cam_modder = CameraModder(self.sim) self.tex_modder = TextureModder(self.sim) self.use_procedural = use_procedural
def _re_init(self, xml): # TODO: Now, likely needs rank randomized_path = os.path.join(self.xml_dir, "randomizedgen3.xml") with open(randomized_path, 'wb') as fp: fp.write(xml.encode()) fp.flush() try: self.model = mujoco_py.load_model_from_path(randomized_path) except: print("Unable to load the xml file") self.sim = mujoco_py.MjSim(self.model, nsubsteps=self.n_substeps) self.modder = TextureModder(self.sim) self.mat_modder = MaterialModder(self.sim) self.light_modder = LightModder(self.sim) self.camera_modder = CameraModder(self.sim) self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self._env_setup(initial_qpos=self.initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) if self.viewer: self.viewer.update_sim(self.sim)
def test(): import cv2 from mujoco_py import load_model_from_xml, MjSim, MjViewer from mujoco_py.modder import TextureModder for i in range(100): l, w, h, t, left, m = sample_refrigerator(False) fridge = build_refrigerator(l, w, h, t, left, set_pose=(3.0, 0.0, -1.0), set_rot=(0, 0, 0, 1)) model = load_model_from_xml(fridge.xml) sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) set_two_door_control(sim, 'refrigerator') t = 0 while t < 2000: sim.step() viewer.render() t += 1
def __init__(self, model_path, initial_qpos, n_actions, n_substeps): if model_path.startswith('/'): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), 'assets', model_path) if not os.path.exists(fullpath): raise IOError('File {} does not exist'.format(fullpath)) model = mujoco_py.load_model_from_path(fullpath) self.sim = mujoco_py.MjSim(model, nsubsteps=n_substeps) #self.viewer = None # comment when using "human" self.viewer = mujoco_py.MjViewer( self.sim) #comment when using "rgb_array" self._viewers = {} self.modder = TextureModder(self.sim) self.visual_randomize = True self.mat_modder = MaterialModder(self.sim) self.light_modder = LightModder(self.sim) self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.visual_data_recording = True self._index = 0 self._label_matrix = [] self.seed() self._env_setup(initial_qpos=initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) self.goal = self._sample_goal() obs = self._get_obs() self.action_space = spaces.Box(-1., 1., shape=(n_actions, ), dtype='float32') self.observation_space = spaces.Dict( dict( desired_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), achieved_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), observation=spaces.Box(-np.inf, np.inf, shape=obs['observation'].shape, dtype='float32'), )) if self.viewer: self._viewer_setup()
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Get start state of params to slightly jitter later self.start_geo_size = self.model.geom_size.copy() self.start_geom_quat = self.model.geom_quat.copy() self.start_body_pos = self.model.body_pos.copy() self.start_body_quat = self.model.body_quat.copy() self.start_matid = self.model.geom_matid.copy() self.floor_offset = self.model.body_pos[self.model.body_name2id( 'floor')] self.rock_mod_cache = None self.tex_modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) # Set these both externally to visualize self.visualize = False self.viewer = None
def test(): # import transforms3d as tf3d from mujoco_py import load_model_from_xml, MjSim, MjViewer from mujoco_py.modder import TextureModder for i in range(200): l, w, h, t, left, m = sample_drawers() drawer = build_drawer(l, w, h, t, left) model = load_model_from_xml(drawer.xml) sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) for name in sim.model.geom_names: modder.rand_all(name) t = 0 sim.data.ctrl[0] = 0.05 while t < 1000: sim.step() viewer.render() t += 1
def test(): from mujoco_py import load_model_from_xml, MjSim, MjViewer from mujoco_py.modder import TextureModder l, w, h, t, left, m = sample_toaster() cab = build_toaster(l, w, h, t, left) # print(cab.xml) model = load_model_from_xml(cab.xml) sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) for name in sim.model.geom_names: modder.rand_all(name) t = 0 sim.data.ctrl[0] = 0.2 while t < 1000: # for name in sim.model.geom_names: # modder.rand_all(name) sim.step() viewer.render() t += 1
def __init__(self, env_file, random_color=None, random_num=5, debug=False, random_seed=0): self.env_file = env_file self.random_color = random_color self.random_num = random_num self.debug = debug self.model = load_model_from_path(env_file) self.sim = MjSim(self.model, nsubsteps=1) self.sim.model.vis.map.znear = 0.02 self.sim.model.vis.map.zfar = 50.0 self.cube_size = self.sim.model.geom_size[ self.model._geom_name2id['cube_0']] self.cuboid_size = self.sim.model.geom_size[ self.model._geom_name2id['cuboid_0']] self.cube_num = len( [i for i in self.sim.model.geom_names if 'cube_' in i]) self.cuboid_num = len( [i for i in self.sim.model.geom_names if 'cuboid_' in i]) if self.debug: print('total cube num:', self.cube_num) print('total cuboid num:', self.cuboid_num) self.max_num_per_type = max(self.cube_num, self.cuboid_num) self.center_bounds = [ -0.25, 0.25 ] # [0, self.cuboid_size[0] * self.max_num_per_type] self.pos_candidates = np.arange( self.center_bounds[0], self.center_bounds[1] + self.cube_size[0], self.cube_size[0]) self.modder = TextureModder(self.sim, random_state=random_seed) self.cur_id = {'cube': 0, 'cuboid': 0} self.viewer = None self.active_blocks = [] if random_color: self.reset_viewer()
def __init__(self, model_path, initial_qpos, n_actions, n_substeps): if model_path.startswith('/'): fullpath = model_path else: fullpath = os.path.join(os.path.dirname(__file__), 'assets', model_path) if not os.path.exists(fullpath): raise IOError('File {} does not exist'.format(fullpath)) model = mujoco_py.load_model_from_path(fullpath) self.sim = mujoco_py.MjSim(model, nsubsteps=n_substeps) self.modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) self.viewer = None self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self.seed() self._env_setup(initial_qpos=initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) self.goal = self._sample_goal() obs = self._get_obs() self.action_space = spaces.Box(-1., 1., shape=(n_actions, ), dtype='float32') self.observation_space = spaces.Dict( dict( desired_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), achieved_goal=spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype='float32'), observation=spaces.Box(-np.inf, np.inf, shape=obs['observation'].shape, dtype='float32'), )) self.episodeAcs = [] self.episodeObs = [] self.episodeInfo = []
def visualize_prediction(scene_filename, gt_axes, pred_axes): tree = ET.parse(scene_filename) root = tree.getroot() # Load scene in mujoco model = load_model_from_path(scene_filename) sim = MjSim(model) modder = TextureModder(sim) # viewer=MjViewer(sim) # Plot GT axis and predicted axis # Take snapshot print("Should have saved a snapshot")
def __init__(self, env_params_dict, reset_state=None): hand_low = (-0.2, 0.4, 0.0) hand_high = (0.2, 0.8, 0.05) obj_low = (-0.3, 0.4, 0.1) obj_high = (0.3, 0.8, 0.3) dirname = '/'.join(os.path.abspath(__file__).split('/')[:-1]) params_dict = copy.deepcopy(env_params_dict) _hp = self._default_hparams() for name, value in params_dict.items(): print('setting param {} to value {}'.format(name, value)) _hp.set_hparam(name, value) if _hp.textured: filename = os.path.join( dirname, "assets/sawyer_xyz/sawyer_multiobject_textured.xml") else: filename = os.path.join( dirname, "assets/sawyer_xyz/sawyer_multiobject.xml") BaseMujocoEnv.__init__(self, filename, _hp) SawyerXYZEnv.__init__(self, frame_skip=5, action_scale=1. / 10, hand_low=hand_low, hand_high=hand_high, model_name=filename) if _hp.randomize_object_colors: from mujoco_py.modder import TextureModder self.texture_modder = TextureModder(self.sim) goal_low = self.hand_low goal_high = self.hand_high self._adim = 4 self._hp = _hp self.liftThresh = 0.04 self.max_path_length = 100 self.hand_init_pos = np.array((0, 0.6, 0.0))
def _re_init(self, xml): # TODO: Now, likely needs rank randomized_path = os.path.join(self.xml_dir, "randomizedgen3.xml") with open(randomized_path, 'wb') as fp: fp.write(xml.encode()) fp.flush() try: self.model = mujoco_py.load_model_from_path(randomized_path) except: print("Unable to load the xml file") self.sim = mujoco_py.MjSim(self.model, nsubsteps=self.n_substeps) self.modder = TextureModder(self.sim) self.visual_randomize = True self.metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': int(np.round(1.0 / self.dt)) } self._env_setup(initial_qpos=self.initial_qpos) self.initial_state = copy.deepcopy(self.sim.get_state()) # self.initial_state = copy.deepcopy(self.sim.get_state()) # self.data = self.sim.data # self.init_qpos = self.data.qpos.ravel().copy() # self.init_qvel = self.data.qvel.ravel().copy() # # observation = self.reset() # #observation, _reward, done, _info = self.step(np.zeros(4)) # #assert not done if self.viewer: self.viewer.update_sim(self.sim)
#!/usr/bin/env python3 """ Displays robot fetch at a disco party. """ from mujoco_py import load_model_from_path, MjSim, MjViewer from mujoco_py.modder import TextureModder import os model = load_model_from_path("../xmls/fetch/main.xml") pool = MjSimPool(model) modder = TextureModder(sim) pool = MjSimPool([MjSim(model) for _ in range(20)]) for i, sim in enumerate(pool.sims): sim.data.qpos[:] = 0.0 sim.data.qvel[:] = 0.0 sim.data.ctrl[:] = i # Advance all 20 simulations 100 times. for _ in range(100): pool.step() import ipdb; ipdb.set_trace() for i, sim in enumerate(pool.sims): print("%d-th sim qpos=%s" % (i, str(sim.data.qpos))) while True: for name in sim.model.geom_names: modder.rand_all(name)
class ArenaModder(BaseModder): """ Object to handle randomization of all relevant properties of Mujoco sim """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Get start state of params to slightly jitter later self.start_geo_size = self.model.geom_size.copy() self.start_geom_quat = self.model.geom_quat.copy() self.start_body_pos = self.model.body_pos.copy() self.start_body_quat = self.model.body_quat.copy() self.start_matid = self.model.geom_matid.copy() self.floor_offset = self.model.body_pos[self.model.body_name2id( 'floor')] self.rock_mod_cache = None self.tex_modder = TextureModder(self.sim) self.cam_modder = CameraModder(self.sim) self.light_modder = LightModder(self.sim) # Set these both externally to visualize self.visualize = False self.viewer = None def whiten_materials(self): self.tex_modder.whiten_materials() def randomize(self): self.mod_textures() self.mod_lights() self.mod_camera() self.mod_walls() self.mod_extras() self.mod_rocks() def mod_textures(self): """Randomize all the textures in the scene, including the skybox""" for name in self.sim.model.geom_names: if name != "billboard" and "light_disc" not in name: self.tex_modder.rand_all(name) ##texture_sizes = [32, 64, 128, 256, 512, 1024] ##gid = self.model.geom_name2id(name) ##mid = self.model.geom_matid[gid] ##tid = self.model.mat_texid[mid] ##self.model.tex_width[tid] = sample_from_list(texture_sizes) ##self.model.tex_height[tid] = 6 * self.model.tex_width[tid] self.tex_modder.rand_all('skybox') def mod_lights(self): """Randomize pos, direction, and lights""" # light stuff LIGHT_RX = Range(LEFTX, RIGHTX) LIGHT_RY = Range(BINY, DIGY) LIGHT_RZ = Range(AFZ, AFZ + ZHIGH) LIGHT_RANGE3D = Range3D(LIGHT_RX, LIGHT_RY, LIGHT_RZ) LIGHT_UNIF = Range3D(Range(0, 1), Range(0, 1), Range(0, 1)) for i, name in enumerate(self.model.light_names): lid = self.model.light_name2id(name) # random sample 80% of any given light being on self.light_modder.set_active(name, sample([0, 1]) < 0.8) #self.light_modder.set_active(name, 0) dir_xyz = sample_light_dir() self.light_modder.set_pos(name, sample_xyz(LIGHT_RANGE3D)) self.light_modder.set_dir(name, dir_xyz) self.light_modder.set_specular(name, sample_xyz(LIGHT_UNIF)) #self.light_modder.set_diffuse(name, sample_xyz(LIGHT_UNIF)) #self.light_modder.set_ambient(name, sample_xyz(LIGHT_UNIF)) #self.model.light_directional[lid] = sample([0,1]) < 0.01 def mod_camera(self): """Randomize pos, direction, and fov of camera""" # Params XOFF = 1.0 CAM_RX = Range(ACX - XOFF, ACX + XOFF) # center of arena +/- 0.5 CAM_RY = Range(BINY + 0.2, SZ_ENDY) CAM_RZ = Range(AFZ + ZLOW, AFZ + ZHIGH) CAM_RANGE3D = Range3D(CAM_RX, CAM_RY, CAM_RZ) CAM_RYAW = Range(-95, -85) CAM_RPITCH = Range(65, 90) CAM_RROLL = Range(85, 95) # this might actually be pitch? CAM_ANGLE3 = Range3D(CAM_RYAW, CAM_RPITCH, CAM_RROLL) # "The horizontal field of view is computed automatically given the # window size and the vertical field of view." - Mujoco # This range was calculated using: themetalmuncher.github.io/fov-calc/ # ZED has 110° hfov --> 78° vfov, Logitech C920 has 78° hfov ---> 49° vfov # These were rounded all the way down to 40° and up to 80°. It starts # to look a bit bad in the upper range, but I think it will help # generalization. CAM_RFOVY = Range(40, 80) # Actual mods self.cam_modder.set_pos('camera1', sample_xyz(CAM_RANGE3D)) self.cam_modder.set_quat('camera1', sample_quat(CAM_ANGLE3)) fovy = sample(CAM_RFOVY) self.cam_modder.set_fovy('camera1', fovy) def _set_visible(self, prefix, range_top, visible): """Helper function to set visibility of several objects""" if not visible: if range_top == 0: name = prefix gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 0.0 for i in range(range_top): name = "{}{}".format(prefix, i) gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 0.0 else: if range_top == 0: name = prefix gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 1.0 for i in range(range_top): name = "{}{}".format(prefix, i) gid = self.model.geom_name2id(name) self.model.geom_rgba[gid][-1] = 1.0 def mod_extra_distractors(self, visible=True): """mod rocks and tools on the side of the arena""" # TODO: I might consider changing these to look like rocks instead of # just random shapes. It just looks weird to me right now. Ok for now, # but it seems a bit off. N = 20 self._set_visible("side_obj", N, visible) if not visible: return Z_JITTER = 0.05 OBJ_XRANGE = Range(0.01, 0.1) OBJ_YRANGE = Range(0.01, 0.1) OBJ_ZRANGE = Range(0.01, 0.1) OBJ_SIZE_RANGE = Range3D(OBJ_XRANGE, OBJ_YRANGE, OBJ_ZRANGE) floor_gid = self.model.geom_name2id("floor") left_body_id = self.model.body_name2id("left_wall") left_geom_id = self.model.geom_name2id("left_wall") right_body_id = self.model.body_name2id("right_wall") right_geom_id = self.model.geom_name2id("right_wall") left_center = self.model.body_pos[left_body_id] left_geo = self.model.geom_size[left_geom_id] left_height = left_center[2] + left_geo[2] left_xrange = Range(left_center[0] - left_geo[0], left_center[0] + left_geo[0]) left_yrange = Range(left_center[1] - left_geo[1], left_center[1] + left_geo[1]) left_zrange = 0.02 + Range(left_height - Z_JITTER, left_height + Z_JITTER) left_range = Range3D(left_xrange, left_yrange, left_zrange) right_center = self.model.body_pos[right_body_id] right_geo = self.model.geom_size[right_geom_id] right_height = right_center[2] + right_geo[2] right_xrange = Range(right_center[0] - right_geo[0], right_center[0] + right_geo[0]) right_yrange = Range(right_center[1] - right_geo[1], right_center[1] + right_geo[1]) right_zrange = 0.02 + Range(right_height - Z_JITTER, right_height + Z_JITTER) right_range = Range3D(right_xrange, right_yrange, right_zrange) for i in range(N): name = "side_obj{}".format(i) obj_bid = self.model.body_name2id(name) obj_gid = self.model.geom_name2id(name) self.model.geom_quat[obj_gid] = random_quat() self.model.geom_size[obj_gid] = sample_xyz(OBJ_SIZE_RANGE) self.model.geom_type[obj_gid] = sample_geom_type() # 50% chance of invisible if sample([0, 1]) < 0.5: self.model.geom_rgba[obj_gid][-1] = 0.0 else: self.model.geom_rgba[obj_gid][-1] = 1.0 ## 50% chance of same color as floor and rocks if sample([0, 1]) < 0.5: self.model.geom_matid[obj_gid] = self.model.geom_matid[ floor_gid] else: self.model.geom_matid[obj_gid] = self.start_matid[obj_gid] # 10 always on the left, 10 always on the right if i < 10: self.model.body_pos[obj_bid] = sample_xyz(left_range) else: self.model.body_pos[obj_bid] = sample_xyz(right_range) def mod_extra_judges(self, visible=True): """mod NASA judges around the perimeter of the arena""" # TODO: might want to add regions on the sides of the arena, but these # may be covered by the distractors already N = 5 self._set_visible("judge", N, visible) if not visible: return JUDGE_XRANGE = Range(0.1, 0.2) JUDGE_YRANGE = Range(0.1, 0.2) JUDGE_ZRANGE = Range(0.75, 1.0) JUDGE_SIZE_RANGE = Range3D(JUDGE_XRANGE, JUDGE_YRANGE, JUDGE_ZRANGE) digwall_bid = self.model.body_name2id("dig_wall") digwall_gid = self.model.geom_name2id("dig_wall") digwall_center = self.model.body_pos[digwall_bid] digwall_geo = self.model.geom_size[digwall_gid] digwall_xrange = Range(-1.0 + digwall_center[0] - digwall_geo[0], 1.0 + digwall_center[0] + digwall_geo[0]) digwall_yrange = Range(digwall_center[1] + 0.5, digwall_center[1] + 1.5) digwall_zrange = JUDGE_ZRANGE - 0.75 digwall_range = Range3D(digwall_xrange, digwall_yrange, digwall_zrange) for i in range(N): name = "judge{}".format(i) judge_bid = self.model.body_name2id(name) judge_gid = self.model.geom_name2id(name) #self.model.geom_quat[judge_gid] = jitter_quat(self.start_geom_quat[judge_gid], 0.05) self.model.geom_quat[judge_gid] = random_quat() self.model.geom_size[judge_gid] = sample_xyz(JUDGE_SIZE_RANGE) self.model.geom_type[judge_gid] = sample_geom_type() if self.model.geom_type[judge_gid] == 3 or self.model.geom_type[ judge_gid] == 5: self.model.geom_size[judge_gid][1] = self.model.geom_size[ judge_gid][2] self.model.body_pos[judge_bid] = sample_xyz(digwall_range) # 50% chance of invisible self.model.geom_rgba[judge_gid][-1] = sample([0, 1]) < 0.5 def mod_extra_robot_parts(self, visible=True): """add distractor parts of robots in the lower area of the camera frame""" N = 3 self._set_visible("robot_part", N, visible) if not visible: return # Project difference into camera coordinate frame cam_pos = self.model.cam_pos[0] cam_quat = np.quaternion(*self.model.cam_quat[0]) lower_range = Range3D([0.0, 0.0], [-0.2, -0.3], [-0.2, -0.3]) lower_size = Range3D([0.2, 0.6], [0.01, 0.15], [0.01, 0.15]) lower_angle = Range3D([-85.0, -95.0], [-180, 180], [-85, -95]) upper_range = Range3D([-0.6, 0.6], [-0.05, 0.05], [-0.05, 0.05]) upper_size = Range3D([0.005, 0.05], [0.005, 0.05], [0.01, 0.3]) upper_angle = Range3D([-85.0, -95.0], [-180, 180], [-85, -95]) name = "robot_part0" lower_bid = self.model.body_name2id(name) lower_gid = self.model.geom_name2id(name) lower_pos = cam_pos + quaternion.rotate_vectors( cam_quat, sample_xyz(lower_range)) self.model.body_pos[lower_bid] = lower_pos self.model.geom_size[lower_gid] = sample_xyz(lower_size) self.model.geom_quat[lower_gid] = sample_quat(lower_angle) self.model.geom_type[lower_gid] = sample_geom_type(reject=["capsule"]) if self.model.geom_type[lower_gid] == 5: self.model.geom_size[lower_gid][0] = self.model.geom_size[ lower_gid][2] for i in range(1, 10): name = "robot_part{}".format(i) upper_bid = self.model.body_name2id(name) upper_gid = self.model.geom_name2id(name) upper_pos = lower_pos + sample_xyz(upper_range) self.model.body_pos[upper_bid] = upper_pos self.model.geom_size[upper_gid] = sample_xyz(upper_size) self.model.geom_type[upper_gid] = sample_geom_type() # 50% of the time, choose random angle instead reasonable angle if sample([0, 1]) < 0.5: self.model.geom_quat[upper_gid] = sample_quat(upper_angle) else: self.model.geom_quat[upper_gid] = random_quat() def mod_extra_arena_structure(self, visible=True): """add randomized structure of the arena in the background with pillars and a crossbar""" N = 16 self._set_visible("arena_structure", N, visible) if not visible: return STARTY = DIGY + 3.0 ENDY = DIGY + 5.0 XBAR_SIZE = Range3D([10.0, 20.0], [0.05, 0.1], [0.2, 0.5]) XBAR_RANGE = Range3D([0.0, 0.0], [STARTY, ENDY], [3.0, 5.0]) STRUCTURE_SIZE = Range3D([0.05, 0.1], [0.05, 0.1], [3.0, 6.0]) STRUCTURE_RANGE = Range3D([np.nan, np.nan], [STARTY, ENDY], [0.0, 0.0]) x_range = np.linspace(ACX - 10.0, ACX + 10.0, 15) # crossbar name = "arena_structure{}".format(N - 1) xbar_bid = self.model.body_name2id(name) xbar_gid = self.model.geom_name2id(name) self.model.geom_quat[xbar_gid] = jitter_quat( self.start_geom_quat[xbar_gid], 0.01) self.model.geom_size[xbar_gid] = sample_xyz(XBAR_SIZE) self.model.body_pos[xbar_bid] = sample_xyz(XBAR_RANGE) ### 10% chance of invisible ##if sample([0,1]) < 0.1: ## self.model.geom_rgba[xbar_gid][-1] = 0.0 ##else: ## self.model.geom_rgba[xbar_gid][-1] = 1.0 for i in range(N - 1): name = "arena_structure{}".format(i) arena_structure_bid = self.model.body_name2id(name) arena_structure_gid = self.model.geom_name2id(name) STRUCTURE_RANGE[0] = Range(x_range[i] - 0.1, x_range[i] + 0.1) self.model.geom_quat[arena_structure_gid] = jitter_quat( self.start_geom_quat[arena_structure_gid], 0.01) self.model.geom_size[arena_structure_gid] = sample_xyz( STRUCTURE_SIZE) self.model.body_pos[arena_structure_bid] = sample_xyz( STRUCTURE_RANGE) self.model.geom_matid[arena_structure_gid] = self.model.geom_matid[ xbar_gid] # 10% chance of invisible if sample([0, 1]) < 0.1: self.model.geom_rgba[arena_structure_gid][-1] = 0.0 else: self.model.geom_rgba[arena_structure_gid][-1] = 1.0 def mod_extra_arena_background(self, visible=True, N=10): """ """ self._set_visible("background", N, visible) if not visible: return BACKGROUND_XRANGE = Range(0.1, 0.5) BACKGROUND_YRANGE = Range(0.1, 0.5) BACKGROUND_ZRANGE = Range(0.1, 1.0) BACKGROUND_SIZE_RANGE = Range3D(BACKGROUND_XRANGE, BACKGROUND_YRANGE, BACKGROUND_ZRANGE) digwall_bid = self.model.body_name2id("dig_wall") digwall_gid = self.model.geom_name2id("dig_wall") c = digwall_center = self.model.body_pos[digwall_bid] background_range = Range3D([c[0] - 4.0, c[0] + 4.0], [c[1] + 8.0, c[1] + 12.0], [0.0, 5.0]) for i in range(N): name = "background{}".format(i) background_bid = self.model.body_name2id(name) background_gid = self.model.geom_name2id(name) self.model.geom_quat[background_gid] = random_quat() self.model.geom_size[background_gid] = sample_xyz( BACKGROUND_SIZE_RANGE) self.model.geom_type[background_gid] = sample_geom_type() self.model.body_pos[background_bid] = sample_xyz(background_range) def mod_extra_lights(self, visible=True): """""" #visible = False MODE_TARGETBODY = 3 STARTY = DIGY + 3.0 ENDY = DIGY + 5.0 LIGHT_RANGE = Range3D([ACX - 2.0, ACX + 2.0], [STARTY, ENDY], [3.0, 5.0]) any_washed = False for i in range(3): name = "extra_light{}".format(i) lid = self.model.light_name2id(name) self.model.light_active[lid] = visible if not visible: return self.model.light_pos[lid] = sample_xyz(LIGHT_RANGE) self.model.light_dir[lid] = sample_light_dir() self.model.light_directional[lid] = 0 ### 3% chance of directional light, washing out colors ### (P(at least 1 will be triggered) ~= 0.1) = 1 - 3root(p) washout = sample([0, 1]) < 0.03 any_washed = any_washed or washout self.model.light_directional[lid] = washout if any_washed: self.mod_extra_light_discs( visible=visible and sample([0, 1]) < 0.9) else: self.mod_extra_light_discs(visible=False) def mod_extra_light_discs(self, visible=True): """""" N = 10 self._set_visible("light_disc", N, visible) if not visible: return Z_JITTER = 0.05 DISC_XRANGE = Range(0.1, 4.0) DISC_YRANGE = Range(0.1, 4.0) DISC_ZRANGE = Range(0.1, 4.0) DISC_SIZE_RANGE = Range3D(DISC_XRANGE, DISC_YRANGE, DISC_ZRANGE) OUTR = 20.0 INR = 10.0 floor_bid = self.model.body_name2id("floor") c = self.model.body_pos[floor_bid] disc_xrange = Range(c[0] - OUTR, c[0] + OUTR) disc_yrange = Range(c[1], c[1] + OUTR) disc_zrange = Range(-5.0, 10.0) disc_range = Range3D(disc_xrange, disc_yrange, disc_zrange) for i in range(N): name = "light_disc{}".format(i) disc_bid = self.model.body_name2id(name) disc_gid = self.model.geom_name2id(name) disc_mid = self.model.geom_matid[disc_gid] self.model.geom_quat[disc_gid] = random_quat() self.model.geom_size[disc_gid] = sample_xyz(DISC_SIZE_RANGE) self.model.geom_type[disc_gid] = sample_geom_type() # keep trying to place the disc until it lands outside of blocking stuff # (they will land in a u shape, because they are sampled with a # constrain to not land in the middle) while True: xyz = sample_xyz(disc_range) if ((xyz[0] > (c[0] - INR) and xyz[0] < (c[0] + INR)) and (xyz[1] > (c[1] - INR) and xyz[1] < (c[1] + INR))): continue else: self.model.geom_pos[disc_gid] = xyz break # 50% chance of invisible if sample([0, 1]) < 0.5: self.model.geom_rgba[disc_gid][-1] = 0.0 else: self.model.geom_rgba[disc_gid][-1] = 1.0 def mod_extras(self, visible=True): """ Randomize extra properties of the world such as the extra rocks on the side of the arena wal The motivation for these mods are that it seems likely that these distractor objects, judges, etc, in the real images could degrade the performance of the detector. Artifacts: - Rocks and tools on edges of bin - NASA judges around the perimeter - Parts of the robot in the frame - Background arena structure and crowd - Bright light around edges of arena """ self.mod_extra_distractors(visible) self.mod_extra_robot_parts(visible) self.mod_extra_lights(visible) # 10% of the time, hide the other distractor pieces self.mod_extra_judges(visible=visible and sample([0, 1]) < 0.9) self.mod_extra_arena_structure( visible=visible and sample([0, 1]) < 0.9) self.mod_extra_arena_background( visible=visible and sample([0, 1]) < 0.9) def mod_walls(self): """ Randomize the x, y, and orientation of the walls slights. Also drastically randomize the height of the walls. In many cases they won't be seen at all. This will allow the model to generalize to scenarios without walls, or where the walls and geometry is slightly different than the sim model """ wall_names = ["left_wall", "right_wall", "bin_wall", "dig_wall"] for name in wall_names: geom_id = self.model.geom_name2id(name) body_id = self.model.body_name2id(name) jitter_x = Range(-0.2, 0.2) jitter_y = Range(-0.2, 0.2) jitter_z = Range(-0.75, 0.0) jitter3D = Range3D(jitter_x, jitter_y, jitter_z) self.model.body_pos[ body_id] = self.start_body_pos[body_id] + sample_xyz(jitter3D) self.model.body_quat[body_id] = jitter_quat( self.start_body_quat[body_id], 0.005) if sample([0, 1]) < 0.05: self.model.body_pos[body_id][2] = -2.0 def mod_dirt(self): """Randomize position and rotation of dirt""" # TODO: 50% chance to flip the dirt pile upsidedown, then we will have # to account for this in calculations # dirt stuff DIRT_RX = Range(0.0, 0.3) DIRT_RY = Range(0.0, 0.3) DIRT_RZ = Range(-0.05, 0.03) DIRT_RANGE3D = Range3D(DIRT_RX, DIRT_RY, DIRT_RZ) DIRT_RYAW = Range(-180, 180) DIRT_RPITCH = Range(-90.5, -89.5) DIRT_RROLL = Range(-0.5, 0.5) DIRT_ANGLE3 = Range3D(DIRT_RYAW, DIRT_RPITCH, DIRT_RROLL) dirt_bid = self.model.body_name2id("dirt") dirt_gid = self.model.geom_name2id("dirt") dirt_mid = self.model.geom_dataid[dirt_gid] # randomize position and yaw of dirt self.model.body_pos[dirt_bid] = self.start_body_pos[ dirt_bid] + sample_xyz(DIRT_RANGE3D) self.model.geom_quat[dirt_gid] = sample_quat(DIRT_ANGLE3) vert_adr = self.model.mesh_vertadr[dirt_mid] vert_num = self.model.mesh_vertnum[dirt_mid] mesh_verts = self.model.mesh_vert[vert_adr:vert_adr + vert_num] rot_quat = self.model.geom_quat[dirt_gid] rots = quaternion.rotate_vectors( np.quaternion(*rot_quat).normalized(), mesh_verts) mesh_abs_pos = self.floor_offset + self.model.body_pos[dirt_bid] + rots #xy_indexes = mesh_abs_pos[:, 0:2] #z_heights = mesh_abs_pos[:, 2] # Return a function that the user can call to get the approximate # height of an xy location def local_mean_height(xy): """ Take an xy coordinate, and the approximate z height of the mesh at that location. It works decently. Uses a weighted average mean of all points within a threshold of xy. """ # grab all mesh points within threshold euclidean distance of xy gt0_xyz = mesh_abs_pos[mesh_abs_pos[:, 2] > 0.01] eudists = np.sum(np.square(gt0_xyz[:, 0:2] - xy), axis=1) indices = eudists < 0.1 close_xyz = gt0_xyz[indices] # if there are any nearby points above 0 if np.count_nonzero(close_xyz[:, 2]) > 0: # weights for weighted sum. closer points to xy have higher weight weights = 1 / (eudists[indices]) weights = np.expand_dims(weights / np.sum(weights), axis=1) pos = np.sum(close_xyz * weights, axis=0) # show an "o" and a marker where the height is if self.visualize: self.viewer.add_marker(pos=pos, label="o", size=np.array([0.01, 0.01, 0.01]), rgba=np.array([0.0, 1.0, 0.0, 1.0])) # approximate z height of ground return pos[2] else: return 0 def always_zero(xy): return 0 dirt_height_xy = local_mean_height #dirt_height_xy = always_zero return dirt_height_xy def mod_rocks(self): """ Randomize the rocks so that the model will generalize to competition rocks This randomizations currently being done are: - Positions (within guesses of competition regions) - Orientations - Shuffling the 3 rock meshes so that they can be on the left, middle, or right - Generating new random rock meshes every n runs (with Blender) """ # Rock placement range parameters ROCK_LANEX = 0.4 # width parameters of x range OUTER_EXTRA = 0.5 # how much farther rocks should go out on the right and left lanes ROCK_BUFFX = 0.2 # distacne between rock lanes # How far into the obstacle zone the rocks should start. ROCK_START_OFFSET = 0.2 MID_START_OFFSET = 0.4 # bit more for middle rock ROCK_RY = Range(OBS_SY + ROCK_START_OFFSET, OBS_ENDY) MID_RY = Range(OBS_SY + MID_START_OFFSET, OBS_ENDY) ROCK_RZ = Range(AFZ - 0.02, AFZ + 0.2) # Position dependent ranges LEFT_RX = Range(-3 * ROCK_LANEX - OUTER_EXTRA, -ROCK_LANEX - ROCK_BUFFX) MID_RX = Range(-ROCK_LANEX, ROCK_LANEX) RIGHT_RX = Range(ROCK_BUFFX + ROCK_LANEX, 3 * ROCK_LANEX + OUTER_EXTRA) # Form full 3D sample range LEFT_ROCK_RANGE = Range3D(LEFT_RX, ROCK_RY, ROCK_RZ) MID_ROCK_RANGE = Range3D(MID_RX, MID_RY, ROCK_RZ) RIGHT_ROCK_RANGE = Range3D(RIGHT_RX, ROCK_RY, ROCK_RZ) ROCK_RANGES = [LEFT_ROCK_RANGE, MID_ROCK_RANGE, RIGHT_ROCK_RANGE] # actual mods rock_body_ids = {} rock_geom_ids = {} rock_mesh_ids = {} max_height_idxs = {} rot_cache = {} #max_height_xys = {} dirt_height_xy = self.mod_dirt() for name in self.model.geom_names: if name[:4] != "rock": continue geom_id = self.model.geom_name2id(name) body_id = self.model.body_name2id(name) mesh_id = self.model.geom_dataid[geom_id] rock_geom_ids[name] = geom_id rock_body_ids[name] = body_id rock_mesh_ids[name] = mesh_id # Rotate the rock and get the z value of the highest point in the # rotated rock mesh rot_quat = random_quat() vert_adr = self.model.mesh_vertadr[mesh_id] vert_num = self.model.mesh_vertnum[mesh_id] mesh_verts = self.model.mesh_vert[vert_adr:vert_adr + vert_num] rots = quaternion.rotate_vectors( np.quaternion(*rot_quat).normalized(), mesh_verts) self.model.geom_quat[geom_id] = rot_quat max_height_idx = np.argmax(rots[:, 2]) max_height_idxs[name] = max_height_idx rot_cache[name] = rots # Shuffle the positions of the rocks (l or m or r) shuffle_names = list(rock_body_ids.keys()) random.shuffle(shuffle_names) self.rock_mod_cache = [] for i in range(len(shuffle_names)): name = shuffle_names[i] rots = rot_cache[name] self.model.body_pos[rock_body_ids[name]] = np.array( sample_xyz(ROCK_RANGES[i])) max_height_idx = max_height_idxs[name] xyz_for_max_z = rots[max_height_idx] # xyz coords in global frame global_xyz = self.floor_offset + xyz_for_max_z + self.model.body_pos[ rock_body_ids[name]] gxy = global_xyz[0:2] max_height = global_xyz[2] if self.visualize: self.viewer.add_marker(pos=global_xyz, label="m", size=np.array([0.01, 0.01, 0.01]), rgba=np.array([0.0, 0.0, 1.0, 1.0])) dirt_z = dirt_height_xy(gxy) #dirt_z = 0 #print(name, dirt_z) z_height = max_height - dirt_z self.rock_mod_cache.append((name, z_height)) def get_ground_truth(self): """ self.rock_mod_cache set from self.mod_rocks Return 1d numpy array of 9 elements for positions of all 3 rocks including: - rock x dist from cam - rock y dist from cam - rock z height from arena floor """ cam_pos = self.model.cam_pos[0] #line_pos = self.floor_offset + np.array([0.0, 0.75, 0.0]) #self.viewer.add_marker(pos=line_pos) ##r0_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock0')] ##r1_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock1')] ##r2_pos = self.floor_offset + self.model.body_pos[self.model.body_name2id('rock2')] ##r0_diff = r0_pos - cam_pos ##r1_diff = r1_pos - cam_pos ##r2_diff = r2_pos - cam_pos ground_truth = np.zeros(9, dtype=np.float32) for i, slot in enumerate(self.rock_mod_cache): name = slot[0] z_height = slot[1] pos = self.floor_offset + self.model.body_pos[ self.model.body_name2id(name)] diff = pos - cam_pos # Project difference into camera coordinate frame cam_angle = quaternion.as_euler_angles( np.quaternion(*self.model.cam_quat[0]))[0] cam_angle += np.pi / 2 in_cam_frame = np.zeros_like(diff) x = diff[1] y = -diff[0] in_cam_frame[0] = x * np.cos(cam_angle) + y * np.sin(cam_angle) in_cam_frame[1] = -x * np.sin(cam_angle) + y * np.cos(cam_angle) in_cam_frame[2] = z_height # simple check that change of frame is mathematically valid assert (np.isclose(np.sum(np.square(diff[:2])), np.sum(np.square(in_cam_frame[:2])))) # swap positions to match ROS standard coordinates ground_truth[3 * i + 0] = in_cam_frame[0] ground_truth[3 * i + 1] = in_cam_frame[1] ground_truth[3 * i + 2] = in_cam_frame[2] text = "{0} x: {1:.2f} y: {2:.2f} height:{3:.2f}".format( name, ground_truth[3 * i + 0], ground_truth[3 * i + 1], z_height) ##text = "x: {0:.2f} y: {1:.2f} height:{2:.2f}".format(ground_truth[3*i+0], ground_truth[3*i+1], z_height) ##text = "height:{0:.2f}".format(z_height) if self.visualize: self.viewer.add_marker(pos=pos, label=text, rgba=np.zeros(4)) return ground_truth
def __init__( self, reward_info=None, frame_skip=50, pos_action_scale=4. / 100, randomize_goals=True, puck_goal_low=(-0.1, 0.5), puck_goal_high=(0.1, 0.7), hand_goal_low=(-0.1, 0.5), hand_goal_high=(0.1, 0.7), mocap_low=(-0.1, 0.5, 0.0), mocap_high=(0.1, 0.7, 0.5), # unused init_block_low=(-0.05, 0.55), init_block_high=(0.05, 0.65), fixed_puck_goal=(0.05, 0.6), fixed_hand_goal=(-0.05, 0.6), # multi-object num_objects=3, fixed_colors=True, seed=1, filename='sawyer_multiobj.xml', object_mass=1, # object_meshes=['Bowl', 'GlassBowl', 'LotusBowl01', 'ElephantBowl', 'RuggedBowl'], object_meshes=None, obj_classname=None, block_height=0.02, block_width=0.02, cylinder_radius=0.035, finger_sensors=False, maxlen=0.07, minlen=0.01, preload_obj_dict=None, reset_to_initial_position=True, object_low=(-np.inf, -np.inf, -np.inf), object_high=(np.inf, np.inf, np.inf), action_repeat=1, fixed_start=False, fixed_start_pos=(0, 0.6), goal_moves_one_object=True, num_scene_objects=[ 0, 1, 2 ], # list of number of objects that can appear per scene object_height=0.02, use_textures=False, init_camera=None, sliding_joints=False, ): if seed: np.random.seed(seed) self.env_seed = seed self.quick_init(locals()) self.reward_info = reward_info self.randomize_goals = randomize_goals self._pos_action_scale = pos_action_scale self.reset_to_initial_position = reset_to_initial_position self.init_block_low = np.array(init_block_low) self.init_block_high = np.array(init_block_high) self.puck_goal_low = np.array(puck_goal_low) self.puck_goal_high = np.array(puck_goal_high) self.hand_goal_low = np.array(hand_goal_low) self.hand_goal_high = np.array(hand_goal_high) self.fixed_puck_goal = np.array(fixed_puck_goal) self.fixed_hand_goal = np.array(fixed_hand_goal) self.mocap_low = np.array(mocap_low) self.mocap_high = np.array(mocap_high) self.object_low = np.array(object_low) self.object_high = np.array(object_high) self.action_repeat = action_repeat self.fixed_colors = fixed_colors self.goal_moves_one_object = goal_moves_one_object self.num_objects = num_objects self.num_scene_objects = num_scene_objects self.object_height = object_height self.fixed_start = fixed_start self.fixed_start_pos = np.array(fixed_start_pos) self.maxlen = maxlen self.use_textures = use_textures self.sliding_joints = sliding_joints self.cur_objects = np.array([0, 1, 2]) self.preload_obj_dict = preload_obj_dict self.num_cur_objects = 0 # Generate XML base_filename = asset_base_path + filename friction_params = (0.1, 0.1, 0.02) self.obj_stat_prop = create_object_xml( base_filename, num_objects, object_mass, friction_params, object_meshes, finger_sensors, maxlen, minlen, preload_obj_dict, obj_classname, block_height, block_width, cylinder_radius, use_textures, sliding_joints) gen_xml = create_root_xml(base_filename) MujocoEnv.__init__(self, gen_xml, frame_skip=frame_skip) clean_xml(gen_xml) if self.use_textures: self.modder = TextureModder(self.sim) self.state_goal = self.sample_goal_for_rollout() # MultitaskEnv.__init__(self, distance_metric_order=2) # MujocoEnv.__init__(self, gen_xml, frame_skip=frame_skip) self.action_space = Box( np.array([-1, -1]), np.array([1, 1]), ) self.num_objects = num_objects low = (self.num_scene_objects[0] + 1) * [-0.2, 0.5] high = (self.num_scene_objects[0] + 1) * [0.2, 0.7] self.obs_box = Box( np.array(low), np.array(high), ) goal_low = np.array( low) # np.concatenate((self.hand_goal_low, self.puck_goal_low)) goal_high = np.array( high) # np.concatenate((self.hand_goal_high, self.puck_goal_high)) self.goal_box = Box( goal_low, goal_high, ) self.total_objects = self.num_objects + 1 self.objects_box = Box( np.zeros((self.total_objects, )), np.ones((self.total_objects, )), ) self.observation_space = Dict([ ('observation', self.obs_box), ('state_observation', self.obs_box), ('desired_goal', self.goal_box), ('state_desired_goal', self.goal_box), ('achieved_goal', self.goal_box), ('state_achieved_goal', self.goal_box), ('objects', self.objects_box), ]) # hack for state-based experiments for other envs # self.observation_space = Box( # np.array([-0.2, 0.5, -0.2, 0.5, -0.2, 0.5]), # np.array([0.2, 0.7, 0.2, 0.7, 0.2, 0.7]), # ) # self.goal_space = Box( # np.array([-0.2, 0.5, -0.2, 0.5, -0.2, 0.5]), # np.array([0.2, 0.7, 0.2, 0.7, 0.2, 0.7]), # ) self.set_initial_object_positions() if use_textures: super().initialize_camera(init_camera) self.initialized_camera = init_camera self.reset() self.reset_mocap_welds()
class SawyerMultiobjectEnv(MujocoEnv, Serializable, MultitaskEnv): INIT_HAND_POS = np.array([0, 0.4, 0.02]) def __init__( self, reward_info=None, frame_skip=50, pos_action_scale=4. / 100, randomize_goals=True, puck_goal_low=(-0.1, 0.5), puck_goal_high=(0.1, 0.7), hand_goal_low=(-0.1, 0.5), hand_goal_high=(0.1, 0.7), mocap_low=(-0.1, 0.5, 0.0), mocap_high=(0.1, 0.7, 0.5), # unused init_block_low=(-0.05, 0.55), init_block_high=(0.05, 0.65), fixed_puck_goal=(0.05, 0.6), fixed_hand_goal=(-0.05, 0.6), # multi-object num_objects=3, fixed_colors=True, seed=1, filename='sawyer_multiobj.xml', object_mass=1, # object_meshes=['Bowl', 'GlassBowl', 'LotusBowl01', 'ElephantBowl', 'RuggedBowl'], object_meshes=None, obj_classname=None, block_height=0.02, block_width=0.02, cylinder_radius=0.035, finger_sensors=False, maxlen=0.07, minlen=0.01, preload_obj_dict=None, reset_to_initial_position=True, object_low=(-np.inf, -np.inf, -np.inf), object_high=(np.inf, np.inf, np.inf), action_repeat=1, fixed_start=False, fixed_start_pos=(0, 0.6), goal_moves_one_object=True, num_scene_objects=[ 0, 1, 2 ], # list of number of objects that can appear per scene object_height=0.02, use_textures=False, init_camera=None, sliding_joints=False, ): if seed: np.random.seed(seed) self.env_seed = seed self.quick_init(locals()) self.reward_info = reward_info self.randomize_goals = randomize_goals self._pos_action_scale = pos_action_scale self.reset_to_initial_position = reset_to_initial_position self.init_block_low = np.array(init_block_low) self.init_block_high = np.array(init_block_high) self.puck_goal_low = np.array(puck_goal_low) self.puck_goal_high = np.array(puck_goal_high) self.hand_goal_low = np.array(hand_goal_low) self.hand_goal_high = np.array(hand_goal_high) self.fixed_puck_goal = np.array(fixed_puck_goal) self.fixed_hand_goal = np.array(fixed_hand_goal) self.mocap_low = np.array(mocap_low) self.mocap_high = np.array(mocap_high) self.object_low = np.array(object_low) self.object_high = np.array(object_high) self.action_repeat = action_repeat self.fixed_colors = fixed_colors self.goal_moves_one_object = goal_moves_one_object self.num_objects = num_objects self.num_scene_objects = num_scene_objects self.object_height = object_height self.fixed_start = fixed_start self.fixed_start_pos = np.array(fixed_start_pos) self.maxlen = maxlen self.use_textures = use_textures self.sliding_joints = sliding_joints self.cur_objects = np.array([0, 1, 2]) self.preload_obj_dict = preload_obj_dict self.num_cur_objects = 0 # Generate XML base_filename = asset_base_path + filename friction_params = (0.1, 0.1, 0.02) self.obj_stat_prop = create_object_xml( base_filename, num_objects, object_mass, friction_params, object_meshes, finger_sensors, maxlen, minlen, preload_obj_dict, obj_classname, block_height, block_width, cylinder_radius, use_textures, sliding_joints) gen_xml = create_root_xml(base_filename) MujocoEnv.__init__(self, gen_xml, frame_skip=frame_skip) clean_xml(gen_xml) if self.use_textures: self.modder = TextureModder(self.sim) self.state_goal = self.sample_goal_for_rollout() # MultitaskEnv.__init__(self, distance_metric_order=2) # MujocoEnv.__init__(self, gen_xml, frame_skip=frame_skip) self.action_space = Box( np.array([-1, -1]), np.array([1, 1]), ) self.num_objects = num_objects low = (self.num_scene_objects[0] + 1) * [-0.2, 0.5] high = (self.num_scene_objects[0] + 1) * [0.2, 0.7] self.obs_box = Box( np.array(low), np.array(high), ) goal_low = np.array( low) # np.concatenate((self.hand_goal_low, self.puck_goal_low)) goal_high = np.array( high) # np.concatenate((self.hand_goal_high, self.puck_goal_high)) self.goal_box = Box( goal_low, goal_high, ) self.total_objects = self.num_objects + 1 self.objects_box = Box( np.zeros((self.total_objects, )), np.ones((self.total_objects, )), ) self.observation_space = Dict([ ('observation', self.obs_box), ('state_observation', self.obs_box), ('desired_goal', self.goal_box), ('state_desired_goal', self.goal_box), ('achieved_goal', self.goal_box), ('state_achieved_goal', self.goal_box), ('objects', self.objects_box), ]) # hack for state-based experiments for other envs # self.observation_space = Box( # np.array([-0.2, 0.5, -0.2, 0.5, -0.2, 0.5]), # np.array([0.2, 0.7, 0.2, 0.7, 0.2, 0.7]), # ) # self.goal_space = Box( # np.array([-0.2, 0.5, -0.2, 0.5, -0.2, 0.5]), # np.array([0.2, 0.7, 0.2, 0.7, 0.2, 0.7]), # ) self.set_initial_object_positions() if use_textures: super().initialize_camera(init_camera) self.initialized_camera = init_camera self.reset() self.reset_mocap_welds() def initialize_camera(self, init_fctn): if self.use_textures: # do nothing, because the camera was already initialized assert init_fctn == self.initialized_camera, "cameras do not match" else: super().initialize_camera(init_fctn) @property def model_name(self): return get_asset_full_path( 'sawyer_xyz/sawyer_push_and_reach_mocap_goal_hidden.xml') def viewer_setup(self): self.viewer.cam.trackbodyid = 0 self.viewer.cam.distance = 1.0 # robot view # rotation_angle = 90 # cam_dist = 1 # cam_pos = np.array([0, 0.5, 0.2, cam_dist, -45, rotation_angle]) # 3rd person view cam_dist = 0.3 rotation_angle = 270 cam_pos = np.array([0, 1.0, 0.5, cam_dist, -45, rotation_angle]) # top down view # cam_dist = 0.2 # rotation_angle = 0 # cam_pos = np.array([0, 0, 1.5, cam_dist, -90, rotation_angle]) for i in range(3): self.viewer.cam.lookat[i] = cam_pos[i] self.viewer.cam.distance = cam_pos[3] self.viewer.cam.elevation = cam_pos[4] self.viewer.cam.azimuth = cam_pos[5] self.viewer.cam.trackbodyid = -1 def step(self, a): a = np.clip(a, -1, 1) mocap_delta_z = 0.06 - self.data.mocap_pos[0, 2] new_mocap_action = np.hstack((a, np.array([mocap_delta_z]))) u = np.zeros(7) try: for _ in range(self.action_repeat): self.mocap_set_action(new_mocap_action[:3] * self._pos_action_scale) self.do_simulation(u, self.frame_skip) except mujoco_py.builder.MujocoException: pass # self.render() qpos = self.data.qpos.flat.copy() qvel = self.data.qvel.flat.copy() for i in range(self.num_objects): #if i in self.cur_objects: x = 7 + i * 7 y = 10 + i * 7 qpos[x:y] = np.clip(qpos[x:y], self.object_low, self.object_high) self.set_state(qpos, qvel) endeff_pos = self.get_endeff_pos() hand_distance = np.linalg.norm(self.get_hand_goal_pos() - endeff_pos) object_distances = {} touch_distances = {} # import ipdb; ipdb.set_trace() # for i in range(self.num_objects): # if i in self.cur_objects: i = 0 object_name = "object%d_distance" % i object_distance = np.linalg.norm( self.get_object_goal_pos(i) - self.get_object_pos(i)) object_distances[object_name] = object_distance touch_name = "touch%d_distance" % i touch_distance = np.linalg.norm(endeff_pos - self.get_object_pos(i)) touch_distances[touch_name] = touch_distance objects = {} # for i in range(self.num_objects): distances = [] cur_object_list = self.cur_objects.tolist() for i in self.cur_objects: j = cur_object_list.index(i) object_goal = self.get_object_goal_pos(j) object_pos = self.get_object_pos(i) object_distance = np.linalg.norm(object_pos - object_goal) distances.append(object_distance) object_distances["current_object_distance"] = np.mean(distances) b = np.zeros((self.num_objects + 1)) b[0] = 1 # the arm for i in self.cur_objects: b[i + 1] = 1 for i in range(self.num_objects): objects["object%d" % i] = b[i + 1] info = dict( hand_distance=hand_distance, success=float( hand_distance + sum(object_distances.values()) < 0.06), **object_distances, **touch_distances, **objects, objects_present=b, ) obs = self._get_obs() # reward = self.compute_reward(obs, u, obs, self._goal_xyxy) reward = self.compute_rewards(a, obs, info) done = False return obs, reward, done, info def mocap_set_action(self, action): pos_delta = action[None] new_mocap_pos = self.data.mocap_pos + pos_delta new_mocap_pos[0, :] = np.clip(new_mocap_pos[0, :], self.mocap_low, self.mocap_high) self.data.set_mocap_pos('mocap', new_mocap_pos) self.data.set_mocap_quat('mocap', np.array([1, 0, 1, 0])) def _get_obs(self): e = self.get_endeff_pos()[:2] bs = [] for i in range(self.num_objects): if i in self.cur_objects: b = self.get_object_pos(i)[:2] bs.append(b) b = np.concatenate(bs) x = np.concatenate((e, b)) g = self.state_goal o = np.zeros((self.total_objects)) o[0] = 1 # the hand for i in self.cur_objects: o[i + 1] = 1 new_obs = dict( observation=x, state_observation=x, desired_goal=g, state_desired_goal=g, achieved_goal=x, state_achieved_goal=x, objects=o, ) return new_obs def get_object_pos(self, id): mujoco_id = self.model.body_names.index('object' + str(id)) return self.data.body_xpos[mujoco_id].copy()[:2] def get_endeff_pos(self): return self.data.body_xpos[self.endeff_id].copy()[:2] def get_hand_goal_pos(self): return self.state_goal[:2] def get_object_goal_pos(self, i): x = 2 + 2 * i y = 4 + 2 * i return self.state_goal[x:y] @property def endeff_id(self): return self.model.body_names.index('leftclaw') def set_object_xy(self, i, pos): qpos = self.data.qpos.flat.copy() qvel = self.data.qvel.flat.copy() x = 7 + i * 7 y = 10 + i * 7 z = 14 + i * 7 qpos[x:y] = np.hstack((pos.copy(), np.array([self.object_height]))) qpos[y:z] = np.array([1, 0, 0, 0]) x = 7 + i * 6 y = 13 + i * 6 qvel[x:y] = 0 self.set_state(qpos, qvel) def set_object_xys(self, positions): qpos = self.data.qpos.flat.copy() qvel = self.data.qvel.flat.copy() for i, pos in enumerate(positions): x = 7 + i * 7 y = 10 + i * 7 z = 14 + i * 7 qpos[x:y] = np.hstack((pos.copy(), np.array([self.object_height]))) qpos[y:z] = np.array([1, 0, 0, 0]) x = 7 + i * 6 y = 13 + i * 6 qvel[x:y] = 0 self.set_state(qpos, qvel) def reset_mocap_welds(self): """Resets the mocap welds that we use for actuation.""" sim = self.sim if sim.model.nmocap > 0 and sim.model.eq_data is not None: for i in range(sim.model.eq_data.shape[0]): if sim.model.eq_type[i] == mujoco_py.const.EQ_WELD: sim.model.eq_data[i, :] = np.array( [0., 0., 0., 1., 0., 0., 0.]) sim.forward() def reset_mocap2body_xpos(self): # move mocap to weld joint self.data.set_mocap_pos( 'mocap', np.array([self.data.body_xpos[self.endeff_id]]), ) self.data.set_mocap_quat( 'mocap', np.array([self.data.body_xquat[self.endeff_id]]), ) def set_initial_object_positions(self): n_o = np.random.choice(self.num_scene_objects) n_o = len(self.num_scene_objects) self.num_cur_objects = n_o #self.cur_objects = np.random.choice(self.num_objects, n_o, replace=False) #self.cur_objects = [0, 1, 2] while True: pos = [ self.INIT_HAND_POS[:2], ] for i in range(n_o): if self.fixed_start: r = self.fixed_start_pos else: r = np.random.uniform(self.puck_goal_low, self.puck_goal_high) pos.append(r) touching = [] for i in range(n_o + 1): for j in range(i): t = np.linalg.norm(pos[i] - pos[j]) <= self.maxlen touching.append(t) if not any(touching): break pos.reverse() positions = [] for i in range(self.num_objects): z = 10 + 10 * i positions.append(np.array([z, z])) for i in range(n_o): j = self.cur_objects[i] positions[j] = pos[i] self.set_object_xys(positions) def reset(self): if self.use_textures: for i in range(self.num_objects): self.modder.rand_rgb('object%d' % i) velocities = self.data.qvel.copy() angles = self.data.qpos.copy() angles[:7] = np.array(self.init_angles[:7]) # just change robot joints self.set_state(angles.flatten(), velocities.flatten()) for _ in range(10): self.data.set_mocap_pos('mocap', self.INIT_HAND_POS) self.data.set_mocap_quat('mocap', np.array([1, 0, 1, 0])) # set_state resets the goal xy, so we need to explicit set it again # if self.reset_to_initial_position: # self.set_initial_object_positions() self.set_initial_object_positions() self.state_goal = self.sample_goal_for_rollout() self.reset_mocap_welds() # import ipdb; ipdb.set_trace() # for i in range(self.num_objects): # obj_id = self.model.body_names.index('object0') # xpos = self.data.body_xpos[obj_id] # xquat = self.data.body_xquat[obj_id] # self.data.set_joint_qpos(xpos) #self.set_initial_object_positions() return self._get_obs() def compute_rewards(self, action, obs, info=None): # objects_present = info['objects_present'].reshape(-1, self.num_objects + 1, 1) ob_p = obs['state_achieved_goal'].reshape(-1, self.num_cur_objects + 1, 2) goal = obs['state_desired_goal'].reshape(-1, self.num_cur_objects + 1, 2) # th = objects_present*ob_p != 0 # ob = ob_p[:, th[0][:, 0]] distances = np.linalg.norm(ob_p - goal, axis=2)[:, 1:] return -distances # def compute_reward(self, action, obs, info=None): # r = -np.linalg.norm(obs['state_achieved_goal'] - obs['state_desired_goal']) # return r def compute_her_reward_np(self, ob, action, next_ob, goal, env_info=None): return self.compute_reward(ob, action, next_ob, goal, env_info=env_info) @property def init_angles(self): return [ 1.78026069e+00, -6.84415781e-01, -1.54549231e-01, 2.30672090e+00, 1.93111471e+00, 1.27854012e-01, 1.49353907e+00, 1.80196716e-03, 7.40415706e-01, 2.09895360e-02, 9.99999990e-01, 3.05766105e-05, -3.78462492e-06, 1.38684523e-04, -3.62518873e-02, 6.13435141e-01, 2.09686080e-02, 7.07106781e-01, 1.48979724e-14, 7.07106781e-01, -1.48999170e-14, 0, 0.6, 0.02, 1, 0, 1, 0, ] def log_diagnostics(self, paths, logger=None, prefix=""): if logger is None: return statistics = OrderedDict() # for stat_name in [ # 'hand_distance', # 'success', # ] + [ # "object%d_distance" % i for i in range(self.num_objects) # ] + [ # "touch%d_distance" % i for i in range(self.num_objects) # ] + [ # "object%d" % i for i in range(self.num_objects) # ]: # stat_name = stat_name # stat = get_stat_in_paths(paths, 'env_infos', stat_name) # statistics.update(create_stats_ordered_dict( # '%s %s' % (prefix, stat_name), # stat, # always_show_all_stats=True, # )) # statistics.update(create_stats_ordered_dict( # 'Final %s %s' % (prefix, stat_name), # [s[-1] for s in stat], # always_show_all_stats=True, # )) for key, value in statistics.items(): logger.record_tabular(key, value) """ Multitask functions """ @property def goal_dim(self) -> int: return 4 def sample_goals(self, batch_size): goals = np.random.uniform( self.goal_box.low, self.goal_box.high, size=(batch_size, self.goal_box.low.size), ) return { 'desired_goal': goals, 'state_desired_goal': goals, } def sample_goal_for_rollout(self): n = len(self.cur_objects) if self.randomize_goals: if self.goal_moves_one_object: hand = np.random.uniform(self.hand_goal_low, self.hand_goal_high) bs = [] for i in range(self.num_objects): if i in self.cur_objects: b = self.get_object_pos(i)[:2] bs.append(b) if n: r = np.random.choice(self.cur_objects) # object to move pos = bs + [ self.INIT_HAND_POS[:2], ] while True: bs[r] = np.random.uniform(self.puck_goal_low, self.puck_goal_high) touching = [] for i in range(n + 1): if i != r: t = np.linalg.norm(pos[i] - bs[r]) <= self.maxlen touching.append(t) if not any(touching): break puck = np.concatenate(bs) else: hand = np.random.uniform(self.hand_goal_low, self.hand_goal_high) puck = np.concatenate([ np.random.uniform(self.puck_goal_low, self.puck_goal_high) for i in range(n) ]) else: hand = self.fixed_hand_goal.copy() puck = self.fixed_puck_goal.copy() g = np.hstack((hand, puck)) return g # OLD SET GOAL # def set_goal(self, goal): # MultitaskEnv.set_goal(self, goal) # self.set_goal_xyxy(goal) # # hack for VAE # self.set_to_goal(goal) def get_goal(self): return { 'desired_goal': self.state_goal, 'state_desired_goal': self.state_goal, } def set_goal(self, goal): self.state_goal = goal['state_desired_goal'] def set_to_goal(self, goal): state_goal = goal['state_desired_goal'] self.set_hand_xy(state_goal[:2]) # disappear all the objects for i in range(self.num_objects): z = 10 + 10 * i self.set_object_xy(i, np.array([z, z])) # set the goal positions of only the current objects for i, j in enumerate(self.cur_objects): x = 2 + 2 * i y = 4 + 2 * i self.set_object_xy(j, state_goal[x:y]) def convert_obs_to_goals(self, obs): return obs def set_hand_xy(self, xy): for _ in range(10): self.data.set_mocap_pos('mocap', np.array([xy[0], xy[1], 0.02])) self.data.set_mocap_quat('mocap', np.array([1, 0, 1, 0])) u = np.zeros(7) self.do_simulation(u, self.frame_skip) def get_env_state(self): joint_state = self.sim.get_state() mocap_state = self.data.mocap_pos, self.data.mocap_quat state = joint_state, mocap_state return copy.deepcopy(state) def set_env_state(self, state): joint_state, mocap_state = state self.sim.set_state(joint_state) mocap_pos, mocap_quat = mocap_state self.data.set_mocap_pos('mocap', mocap_pos) self.data.set_mocap_quat('mocap', mocap_quat) self.sim.forward()
def take_images(self, filename, obj, writer, img_idx=0, debug=False): model = load_model_from_path(filename) sim = MjSim(model) modder= TextureModder(sim) # viewer=MjViewer(sim) # this f*****g line has caused me so much pain. embedding = np.append(obj.type, obj.geom.reshape(-1)) if obj.type == 4 or obj.type == 5: # MULTI CABINET: get double the params. axis1, door1 = transform_param(obj.params[0][0],obj.params[0][1], obj) axis2, door2 = transform_param(obj.params[1][0],obj.params[1][1], obj) axes = np.append(axis1,axis2) doors = np.append(door1,door2) params = np.append(axes,doors) set_two_door_control(sim, 'cabinet2' if obj.type == 4 else 'refrigerator') n_qpos_variables = 2 else: n_qpos_variables = 1 if obj.type == 1: sim.data.ctrl[0] = 0.05 elif obj.geom[3] == 1: sim.data.ctrl[0] = -0.2 else: sim.data.ctrl[0] = 0.2 params = get_cam_relative_params2(obj) # if 1DoF, params is length 10. If 2DoF, params is length 20. embedding_and_params = np.concatenate((embedding, params, obj.pose, obj.rotation)) # print('nqpos', n_qpos_variables) # print(self.img_idx, obj.pose) # print(embedding_and_params.shape) t = 0 while t<4000: sim.forward() sim.step() if t%250==0: ######################### IMG_WIDTH = calibrations.sim_width IMG_HEIGHT = calibrations.sim_height ######################### img, depth = sim.render(IMG_WIDTH, IMG_HEIGHT, camera_name='external_camera_0', depth=True) depth = vertical_flip(depth) real_depth = buffer_to_real(depth, 12.0, 0.1) norm_depth = real_depth / 12.0 if self.masked: # remove background mask = norm_depth > 0.99 norm_depth = (1-mask)*norm_depth if self.debugging: # save image to disk for visualization # img = cv2.resize(img, (IMG_WIDTH,IMG_HEIGHT)) img = vertical_flip(img) img = white_bg(img) imgfname = os.path.join(self.savedir, 'img'+str(self.img_idx).zfill(6)+'.png') depth_imgfname = os.path.join(self.savedir, 'depth_img'+str(self.img_idx).zfill(6)+'.png') integer_depth = norm_depth * 255 cv2.imwrite(imgfname, img) cv2.imwrite(depth_imgfname, integer_depth) # noise_img = sp_noise(img,0.1) # cv2.imwrite(imgfname, noise_img) # noise_integer_depth = sp_noise(integer_depth,0.1) # cv2.imwrite(depth_imgfname, noise_integer_depth) # if IMG_WIDTH != 192 or IMG_HEIGHT != 108: # depth = cv2.resize(norm_depth, (192,108)) depthfname = os.path.join(self.savedir,'depth'+str(self.img_idx).zfill(6) + '.pt') torch.save(torch.tensor(norm_depth.copy()), depthfname) row = np.append(embedding_and_params, sim.data.qpos[:n_qpos_variables]) # print(row.shape) writer.writerow(row) self.img_idx += 1 t += 1
# sim = MjSim(model) env = gym.make('FetchPickAndPlace-v1') # exit() # env.sim = sim sim = env.sim viewer = MjRenderContextOffscreen(sim) viewer.cam.fixedcamid = 3 viewer.cam.type = const.CAMERA_FIXED env.env._viewers['rgb_array'] = viewer im = env.render(mode="rgb_array") plt.imshow(im) plt.show() modder = TextureModder(sim) # modder = CameraModder(sim) modder.whiten_materials() # modder = MaterialModder(sim) t = 1 # viewer.cam.fixedcamid = 3 # viewer.cam.type = const.CAMERA_FIXED while True: randomize_textures(sim) # randomize_lights(sim) if t % 10 == 0: randomize_camera(viewer)
def test_textures(): model = load_model_from_xml(BASIC_MODEL_XML) sim = MjSim(model) sim.forward() compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_textures.premod.png') random_state = np.random.RandomState(0) modder = TextureModder(sim, random_state=random_state) modder.whiten_materials() modder.whiten_materials(['g1', 'g2']) modder.set_rgb('g1', (255, 0, 0)) modder.set_rgb('g2', (0, 255, 0)) modder.set_rgb('g3', (0, 0, 255)) modder.set_rgb('g4', (255, 0, 255)) compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_textures.rgb.png') modder.set_checker('g1', (255, 0, 0), (0, 255, 0)) modder.set_gradient('g2', (0, 255, 0), (0, 0, 255), vertical=True) modder.set_gradient('g3', (255, 255, 0), (0, 0, 255), vertical=False) modder.set_noise('g4', (0, 0, 255), (255, 0, 0), 0.1) compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_textures.variety.png') modder.rand_checker('g1') modder.rand_gradient('g2') modder.rand_noise('g3') modder.rand_rgb('g4') compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_textures.rand_specific.png') modder.rand_all('g1') modder.rand_all('g2') modder.rand_all('g3') modder.rand_all('g4') compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_textures.rand_all.png') modder.rand_checker('g1') modder.rand_checker('g2') modder.rand_checker('g3') modder.rand_checker('g4') mat_modder = MaterialModder(sim, random_state=random_state) mat_modder.rand_texrepeat('g1') mat_modder.rand_texrepeat('g2') mat_modder.rand_texrepeat('g3') mat_modder.rand_texrepeat('g4') compare_imgs(sim.render(201, 205, camera_name="topcam"), 'test_textures.rand_texrepeat.png')
class BlockWordEnv: def __init__(self, env_file, random_color=None, random_num=5, debug=False, random_seed=0): self.env_file = env_file self.random_color = random_color self.random_num = random_num self.debug = debug self.model = load_model_from_path(env_file) self.sim = MjSim(self.model, nsubsteps=1) self.sim.model.vis.map.znear = 0.02 self.sim.model.vis.map.zfar = 50.0 self.cube_size = self.sim.model.geom_size[ self.model._geom_name2id['cube_0']] self.cuboid_size = self.sim.model.geom_size[ self.model._geom_name2id['cuboid_0']] self.cube_num = len( [i for i in self.sim.model.geom_names if 'cube_' in i]) self.cuboid_num = len( [i for i in self.sim.model.geom_names if 'cuboid_' in i]) if self.debug: print('total cube num:', self.cube_num) print('total cuboid num:', self.cuboid_num) self.max_num_per_type = max(self.cube_num, self.cuboid_num) self.center_bounds = [ -0.25, 0.25 ] # [0, self.cuboid_size[0] * self.max_num_per_type] self.pos_candidates = np.arange( self.center_bounds[0], self.center_bounds[1] + self.cube_size[0], self.cube_size[0]) self.modder = TextureModder(self.sim, random_state=random_seed) self.cur_id = {'cube': 0, 'cuboid': 0} self.viewer = None self.active_blocks = [] if random_color: self.reset_viewer() def reset(self): self.sim.reset() self.sim.step() self.active_blocks = [] self.cur_id = {'cube': 0, 'cuboid': 0} if self.random_color: self.randomize_color() if self.viewer is not None: self.reset_viewer() def randomize_color(self): self.modder.whiten_materials() for name in self.sim.model.geom_names: if 'table' in name: continue self.modder.rand_all(name) def simulate_one_epoch(self): self.gen_constrained_ran_bk_configs() imgs = [] for i in range(self.random_num): img = self.get_img() imgs.append(img.copy()) self.randomize_color() stable = self.check_stability(render=False) return imgs, stable def step(self): self.sim.step() def forward(self): self.sim.forward() def get_active_bk_states(self): bk_poses = [] for bk_name in self.active_blocks: pose = self.sim.data.get_joint_qpos(bk_name) bk_poses.append(pose) return np.array(bk_poses) def check_stability(self, render=False): self.sim.step() prev_poses = self.get_active_bk_states() for i in range(400): self.sim.step() if render: self.render() post_poses = self.get_active_bk_states() diff = np.abs(post_poses - prev_poses) diff_norm = np.linalg.norm(diff[:, :3], axis=1) if self.debug: print('prev:') print(prev_poses[:, :3]) print('post') print(post_poses[:, :3]) print('diff norm:', diff_norm) stable = np.all(diff_norm < 0.01) if self.debug: print('Current configuration stable:', stable) return stable def render(self): if self.viewer is None: self.reset_viewer() self.viewer.render() def reset_viewer(self): self.viewer = MjViewer(self.sim) self.viewer.cam.lookat[:3] = np.array([0, 0, 0.1]) self.viewer.cam.distance = 2 self.viewer.cam.elevation = -20 def move_given_block(self, name, target_pos): prev_pose = self.sim.data.get_joint_qpos(name) post_pose = prev_pose.copy() post_pose[:3] = target_pos self.sim.data.set_joint_qpos(name, post_pose) self.active_blocks.append(name) if self.debug: print('{0:s} pose after moving:'.format(name), post_pose) def move_given_blocks(self, block_dict): for bk_name, pos in block_dict.items(): self.move_given_block(bk_name, pos) def move_block_for_demo(self, name, target_pos): prev_pose = self.sim.data.get_joint_qpos(name) if self.debug: print('{0:s} pose before moving:'.format(name), prev_pose) post_pose = prev_pose.copy() planned_path = [] up_steps = 20 h_steps = 30 down_steps = 20 planned_path.append(prev_pose.copy()) for i in range(up_steps): tmp_pose = planned_path[-1].copy() tmp_pose[2] += (0.45 - prev_pose[2]) / float(up_steps) planned_path.append(tmp_pose.copy()) for i in range(h_steps + 1): tmp_pose = planned_path[-1].copy() tmp_pose[0] = (target_pos[0] - prev_pose[0]) * i / h_steps + prev_pose[0] tmp_pose[1] = (target_pos[1] - prev_pose[1]) * i / h_steps + prev_pose[1] planned_path.append(tmp_pose.copy()) for i in range(down_steps): tmp_pose = planned_path[-1].copy() tmp_pose[2] -= (0.45 - target_pos[2]) / float(down_steps) planned_path.append(tmp_pose.copy()) post_pose[:3] = target_pos planned_path.append(post_pose.copy()) for pos in planned_path: self.sim.data.set_joint_qpos(name, pos) time.sleep(0.02) self.sim.forward() self.render() self.active_blocks.append(name) if self.debug: print('{0:s} pose after moving:'.format(name), post_pose) def move_blocks_for_demo(self, block_dict): name = list(block_dict.keys())[0] target_pos = block_dict[name] initial_poses = {} for key in block_dict.keys(): initial_poses[key] = self.sim.data.get_joint_qpos(key) prev_pose = self.sim.data.get_joint_qpos(name) if self.debug: print('{0:s} pose before moving:'.format(name), prev_pose) post_pose = prev_pose.copy() planned_delta_path = [] planned_path = [] up_steps = 20 h_steps = 30 down_steps = 20 planned_path.append(prev_pose.copy()) planned_delta_path.append(np.zeros_like(prev_pose)) for i in range(up_steps): tmp_pose = planned_path[-1].copy() tmp_pose[2] += (0.45 - prev_pose[2]) / float(up_steps) planned_delta_path.append(tmp_pose - planned_path[-1]) planned_path.append(tmp_pose.copy()) for i in range(h_steps + 1): tmp_pose = planned_path[-1].copy() tmp_pose[0] = (target_pos[0] - prev_pose[0]) * i / h_steps + prev_pose[0] tmp_pose[1] = (target_pos[1] - prev_pose[1]) * i / h_steps + prev_pose[1] planned_delta_path.append(tmp_pose - planned_path[-1]) planned_path.append(tmp_pose.copy()) for i in range(down_steps): tmp_pose = planned_path[-1].copy() tmp_pose[2] -= (0.45 - target_pos[2]) / float(down_steps) planned_delta_path.append(tmp_pose - planned_path[-1]) planned_path.append(tmp_pose.copy()) post_pose[:3] = target_pos planned_delta_path.append(post_pose - planned_path[-1]) planned_path.append(post_pose.copy()) for delta_pos in planned_delta_path: for bk_name, target_bk_pos in block_dict.items(): initial_poses[bk_name] = initial_poses[bk_name] + delta_pos self.sim.data.set_joint_qpos(bk_name, initial_poses[bk_name]) time.sleep(0.02) self.sim.forward() self.render() self.active_blocks.append(name) if self.debug: print('{0:s} pose after moving:'.format(name), self.sim.data.get_joint_qpos(name)) def move_block(self, target_pos, bk_type='cube'): # center bounds: [0, 0.1 * 30] assert bk_type == 'cube' or bk_type == 'cuboid' bk_name = '{0:s}_{1:d}'.format(bk_type, self.cur_id[bk_type]) prev_pose = self.sim.data.get_joint_qpos(bk_name) post_pose = prev_pose.copy() post_pose[:3] = target_pos self.sim.data.set_joint_qpos(bk_name, post_pose) self.active_blocks.append(bk_name) if self.debug: print( '{0:s}_{1:d} pose after moving:'.format( bk_type, self.cur_id[bk_type]), post_pose) self.cur_id[bk_type] += 1 def get_img(self): # return self.get_img_demo() img = self.sim.render(camera_name='camera', width=600, height=600, depth=False) img = np.flipud(img) resized_img = cv2.resize(img[0:500, 50:550], (224, 224), cv2.INTER_AREA) return resized_img def get_img_demo(self): img = self.sim.render(camera_name='camera', width=1200, height=700, depth=False) img = np.flipud(img) img = img[:, :, ::-1] return img def build_tower(self): layer_num = 1 for i in range(20): z = (2 * layer_num - 1) * self.cube_size[2] y = 0 x = 0 target_pos = np.array([x, y, z]) self.move_block(target_pos, bk_type='cube') layer_num += 1 def gen_ran_bk_configs(self, render=False): while True: cuboid_num = np.random.choice(5, 1)[0] cube_num = np.random.choice(15, 1)[0] if cuboid_num > 0 or cube_num > 0: break total_num = cuboid_num + cube_num blocks = [0] * cube_num + [1] * cuboid_num permuted_blocks = np.random.permutation(blocks) cur_x = self.center_bounds[0] layer_num = 1 for i in range(total_num): bk = permuted_blocks[i] bk_type = 'cube' if bk == 0 else 'cuboid' bk_size = self.cube_size if bk == 0 else self.cuboid_size z = (2 * layer_num - 1) * self.cube_size[2] y = 0 if self.center_bounds[1] - cur_x < bk_size[0]: layer_num += 1 cur_x = self.center_bounds[0] continue else: bk_lower_limit = cur_x + bk_size[0] pos_candidates = self.pos_candidates[ self.pos_candidates >= bk_lower_limit] x = np.random.choice(pos_candidates, 1)[0] cur_x = x + bk_size[0] target_pos = np.array([x, y, z]) self.move_block(target_pos, bk_type=bk_type) self.sim.forward() if render: self.render() def gen_constrained_ran_bk_configs(self, render=False): # prob = np.exp(-0.1 * np.arange(30)) while True: cuboid_num = np.random.choice(5, 1)[0] cube_num = np.random.choice(15, 1)[0] if cuboid_num > 0 or cube_num > 0: break if self.debug: print('Selected cube num:', cube_num) print('Selected cuboid num:', cuboid_num) total_num = cuboid_num + cube_num blocks = [0] * cube_num + [1] * cuboid_num permuted_blocks = np.random.permutation(blocks) cur_x = self.center_bounds[0] layer_num = 1 layer_pos_candidates = self.pos_candidates.copy() filled_segs = [] for i in range(total_num): bk = permuted_blocks[i] bk_type = 'cube' if bk == 0 else 'cuboid' bk_size = self.cube_size if bk == 0 else self.cuboid_size z = (2 * layer_num - 1) * self.cube_size[2] y = 0 bk_lower_limit = cur_x + bk_size[0] pos_candidates = layer_pos_candidates[ layer_pos_candidates >= bk_lower_limit] if pos_candidates.size < 1: layer_num += 1 cur_x = self.center_bounds[0] layer_pos_candidates = self.pos_candidates.copy() good_ids = np.zeros_like(layer_pos_candidates, dtype=bool) for seg in filled_segs: good_ids = np.logical_or( good_ids, np.logical_and(layer_pos_candidates >= seg[0], layer_pos_candidates <= seg[1])) layer_pos_candidates = layer_pos_candidates[good_ids] if self.debug: print('Layer [{0:d}] pos candidates num: {1:d}'.format( layer_num, layer_pos_candidates.size)) if layer_pos_candidates.size < 1: break filled_segs = [] continue else: x = np.random.choice(pos_candidates, 1)[0] cur_x = x + bk_size[0] target_pos = np.array([x, y, z]) self.move_block(target_pos, bk_type=bk_type) filled_segs.append([x - bk_size[0], cur_x]) self.sim.forward() if render: self.render()
def render_callback(sim, viewer): global modder if modder is None: modder = TextureModder(sim) for name in sim.model.geom_names: modder.rand_all(name)
import numpy as np from mujoco_py import load_model_from_path, MjSim, MjViewer from mujoco_py.modder import TextureModder env_file = 'block_world.xml' model = load_model_from_path(env_file) sim = MjSim(model, nsubsteps=1) sim.model.vis.map.znear = 0.02 sim.model.vis.map.zfar = 50.0 modder = TextureModder(sim) viewer = MjViewer(sim) viewer.cam.lookat[:3] = np.array([0, 0, 0.1]) viewer.cam.distance = 2 viewer.cam.elevation = -20 # sim.model.body_pos[1] = np.array([0.6, 0.6, 4]) sim.reset() cube_pose = sim.data.get_joint_qpos('cube_0') cube_pose[:3] = np.array([0, 0, 0.02]) sim.data.set_joint_qpos('cube_0', cube_pose) cube_pose = sim.data.get_joint_qpos('cuboid_0') cube_pose[:3] = np.array([0., 0, 0.06]) sim.data.set_joint_qpos('cuboid_0', cube_pose) cube_pose = sim.data.get_joint_qpos('cube_1') cube_pose[:3] = np.array([0.12, 0, 0.02]) sim.data.set_joint_qpos('cube_1', cube_pose) cube_pose = sim.data.get_joint_qpos('cube_2') cube_pose[:3] = np.array([0.08, 0, 0.10]) sim.data.set_joint_qpos('cube_2', cube_pose)
#!/usr/bin/env python3 """ Displays robot fetch at a disco party. """ from mujoco_py import load_model_from_path, MjSim, MjViewer from mujoco_py.modder import TextureModder import os model = load_model_from_path("xmls/fetch/main.xml") sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) t = 0 while True: for name in sim.model.geom_names: modder.rand_all(name) viewer.render() t += 1 if t > 100 and os.getenv('TESTING') is not None: break
""" Simulation of Nasa Hand """ from mujoco_py import load_model_from_path, MjSim, MjViewer from mujoco_py.modder import TextureModder import hand_sim_mj.utils.util_parser_disp as util import os import time # constants # load the dynamic model model_xml_path = os.path.join(os.environ[util.SIM_ENV_VAR], 'xml/nasa_hand/main.xml') model = load_model_from_path(model_xml_path) sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) # set initial joint valuse # sim.data.set_joint_qpos('palm_slide_X', 0.001) # sim.data.set_joint_qpos('palm_slide_Y', 0.001) # sim.data.set_joint_qpos('palm_slide_Z', 0.001) # A = PyKDL.Rotation.RotX(0/180*util.PI) # q = A.GetQuaternion() # sim.data.set_joint_qpos('palm_ball_joint', q) sim.data.set_joint_qpos('finger1_roll_joint', 1.0) sim.data.set_joint_qpos('finger1_prox_joint', 0.0) sim.data.set_joint_qpos('finger1_dist_joint', 0.0) sim.data.set_joint_qpos('finger2_roll_joint', -1.0) sim.data.set_joint_qpos('finger2_prox_joint', 0.0) sim.data.set_joint_qpos('finger2_dist_joint', 0.0) sim.data.set_joint_qpos('thumb_prox_joint', 0.0) sim.data.set_joint_qpos('thumb_dist_joint', 0.0)
""" Displays robot fetch at a disco party. """ from mujoco_py import load_model_from_path, MjSim, MjViewer from mujoco_py.modder import TextureModder, MaterialModder import os from gym import utils from gym.envs.robotics import gen3_env MODEL_XML_PATH = "/home/rjangir/workSpace/gen3-mujoco/gym/gym/envs/robotics/assets/gen3/sideways_fold.xml" model = load_model_from_path(MODEL_XML_PATH) #model = load_model_from_path("xmls/fetch/main.xml") sim = MjSim(model) viewer = MjViewer(sim) modder = TextureModder(sim) #matModder = MaterialModder(sim) #specularity, shininess, reflectance t = 0 while True: #print("body names", sim.model.name_skinadr, sim.model.skin_matid[0]) skin_mat = sim.model.skin_matid[0] #print("skin mat texture", sim.model.mat_texid[skin_mat], sim.model.tex_type[sim.model.mat_texid[skin_mat]]) for name in sim.model.geom_names: modder.whiten_materials() modder.set_checker(name, (255, 0, 0), (0, 0, 0)) modder.rand_all(name) modder.set_checker('skin', (255, 0, 0), (0, 0, 0)) modder.rand_all('skin') viewer.render()
class BlocksEnv(robot_env.RobotEnv): """Superclass for all Fetch environments. """ def __init__( self, model_path, n_substeps, gripper_extra_height, block_gripper, has_object, target_in_the_air, target_offset, obj_range, target_range, distance_threshold, initial_qpos, reward_type, num_blocks ): """Initializes a new Fetch environment. Args: model_path (string): path to the environments XML file n_substeps (int): number of substeps the simulation runs on every call to step gripper_extra_height (float): additional height above the table when positioning the gripper block_gripper (boolean): whether or not the gripper is blocked (i.e. not movable) or not has_object (boolean): whether or not the environment has an object target_in_the_air (boolean): whether or not the target should be in the air above the table or on the table surface target_offset (float or array with 3 elements): offset of the target obj_range (float): range of a uniform distribution for sampling initial object positions target_range (float): range of a uniform distribution for sampling a target distance_threshold (float): the threshold after which a goal is considered achieved initial_qpos (dict): a dictionary of joint names and values that define the initial configuration reward_type ('sparse' or 'dense'): the reward type, i.e. sparse or dense """ self.gripper_extra_height = gripper_extra_height self.block_gripper = block_gripper self.target_in_the_air = target_in_the_air self.target_offset = target_offset self.obj_range = obj_range self.target_range = target_range self.distance_threshold = distance_threshold # This should always be sparse self.reward_type = reward_type # The number of objects present in the scene # Now this number is fixed self.num_objs = num_blocks + 2 self.obj_colors = self._sample_colors() # This is the goal vector that we define for this task self.achieved_goal = -1 * np.ones([self.num_objs, self.num_objs]) self.has_succeeded = False self.id2obj = None # For curriculum learning self.difficulty = 0 super(BlocksEnv, self).__init__( model_path=model_path, n_substeps=n_substeps, n_actions=4, initial_qpos=initial_qpos) def _sample_from_table(self): return np.asarray([TABLE_X + self.np_random.uniform(-TABLE_W, TABLE_W), TABLE_Y + self.np_random.uniform(-TABLE_H, TABLE_H)]) # For curriculum learning def increase_difficulty(self): raise NotImplementedError() def get_difficulty(self): return self.difficulty # Configure the environment for testing def set_test(self): raise NotImplementedError() def _sample_colors(self): raise NotImplementedError() def _geom2objid(self, i): name = self.sim.model.geom_id2name(i) # First object is reserved for the gripper # and the second object is reserved for the table if name != None: if "finger" in name: return 0 elif name == "table": return 1 elif "object" in name: return int(name[6:]) + 2 return None def _check_goal(self): for i in range(self.num_objs): for j in range(self.num_objs): if (self.achieved_goal[i][j] != self.achieved_goal[j][i]): return False return True # GoalEnv methods # ---------------------------- # Goal is defined as a matrix of touching conditions # -1 for never touched, 1 for is touching, 0 for touched but not touching # In the desired goal we simply input 1 for the blocks we want touching # and -1 for blocks we never want touch, and 0 for the blocks we don't care # In this setting, if the achieved goal aligns with the desired goal # their dot product should equal to the number of non-zero elements def compute_reward(self, achieved_goal, goal, info): # Compute distance between goal and the achieved goal. # goal_len = min(achieved_goal.shape[0], goal.shape[0]) # achieved_goal = achieved_goal[:goal_len] # goal = goal[:goal_len] d = np.sum(achieved_goal * goal, axis=-1) c = np.count_nonzero(goal, axis=-1) return -(d != c).astype(np.float32) # RobotEnv methods # ---------------------------- def _step_callback(self): if self.block_gripper: self.sim.data.set_joint_qpos('robot0:l_gripper_finger_joint', 0.) self.sim.data.set_joint_qpos('robot0:r_gripper_finger_joint', 0.) self.sim.forward() # Update achieved goal for i in range(self.num_objs): for j in range(self.num_objs): if (self.achieved_goal[i][j] == 1): self.achieved_goal[i][j] = 0 d = self.sim.data for i in range(d.ncon): con = d.contact[i] i1 = con.geom1 i2 = con.geom2 obj1 = self.id2obj[i1] obj2 = self.id2obj[i2] if (obj1 != None and obj2 != None): self.achieved_goal[obj1][obj2] = 1 self.achieved_goal[obj2][obj1] = 1 # No changes here def _set_action(self, action): assert action.shape == (4,) action = action.copy() # ensure that we don't change the action outside of this scope pos_ctrl, gripper_ctrl = action[:3], action[3] pos_ctrl *= 0.05 # limit maximum change in position rot_ctrl = [1., 0., 1., 0.] # fixed rotation of the end effector, expressed as a quaternion gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl]) assert gripper_ctrl.shape == (2,) if self.block_gripper: gripper_ctrl = np.zeros_like(gripper_ctrl) action = np.concatenate([pos_ctrl, rot_ctrl, gripper_ctrl]) # Apply action to simulation. utils.ctrl_set_action(self.sim, action) utils.mocap_set_action(self.sim, action) def _get_obs(self): # positions grip_pos = self.sim.data.get_site_xpos('robot0:grip') dt = self.sim.nsubsteps * self.sim.model.opt.timestep grip_velp = self.sim.data.get_site_xvelp('robot0:grip') * dt robot_qpos, robot_qvel = utils.robot_get_obs(self.sim) object_pos, object_rot, object_velp, object_velr, object_rel_pos = [], [], [], [], [] gripper_state = robot_qpos[-2:] gripper_vel = robot_qvel[-2:] * dt # change to a scalar if the gripper is made symmetric obs = [] for i in range(self.num_objs-2): obj_name = 'object{}'.format(i) temp_pos = self.sim.data.get_site_xpos(obj_name) # rotations temp_rot = rotations.mat2euler(self.sim.data.get_site_xmat(obj_name)) # velocities temp_velp = self.sim.data.get_site_xvelp(obj_name) * dt temp_velr = self.sim.data.get_site_xvelr(obj_name) * dt # gripper state temp_rel_pos = temp_pos - grip_pos temp_velp -= grip_velp block_obs = np.concatenate([temp_pos.ravel(), temp_rel_pos.ravel(), temp_rot.ravel(), temp_velp.ravel(), temp_velr.ravel()]) obs = np.concatenate([obs, block_obs]) assert(self._check_goal()) achieved_goal = self.achieved_goal.copy().ravel() obs = np.concatenate([grip_pos, gripper_state, grip_velp, gripper_vel, obs]) return { 'observation': obs.copy(), 'achieved_goal': achieved_goal.copy(), 'desired_goal': self.goal.copy(), } def _viewer_setup(self): body_id = self.sim.model.body_name2id('robot0:gripper_link') lookat = self.sim.data.body_xpos[body_id] for idx, value in enumerate(lookat): self.viewer.cam.lookat[idx] = value self.viewer.cam.distance = 2.5 self.viewer.cam.azimuth = 132. self.viewer.cam.elevation = -14. def _render_callback(self): # Visualize target. # sites_offset = (self.sim.data.site_xpos - self.sim.model.site_pos).copy() # site_id = self.sim.model.site_name2id('target0') # self.sim.model.site_pos[site_id] = self.goal - sites_offset[0] # self.sim.forward() pass def _reset_sim(self, test=False): self.sim.set_state(self.initial_state) # Randomize colors for each object self.obj_colors = self._sample_colors() # Randomize start position of each object self._randomize_objects(test) self.sim.forward() self.has_succeeded = False return True def _randomize_objects(self, test=False): raise NotImplementedError() def _sample_goal(self): C = self.obj_colors goal = [] for i in range(self.num_objs): for j in range(self.num_objs): if ((C[i] == RED and C[j] == BLUE) or (C[i] == BLUE and C[j] == RED)): goal.append(-1) elif ((C[i] == GREEN and C[j] == BLUE) or (C[i] == BLUE and C[j] == GREEN)): goal.append(1) else: goal.append(0) return np.asarray(goal) def _is_success(self, achieved_goal, desired_goal): # Override whatever input it gives achieved_goal, desired_goal = self.achieved_goal.ravel(), self.goal r = self.compute_reward(achieved_goal, desired_goal, None) if r == 0: self.has_succeeded = True return self.has_succeeded def _env_setup(self, initial_qpos): self.id2obj = [self._geom2objid(i) for i in range(self.sim.model.ngeom)] for name, value in initial_qpos.items(): self.sim.data.set_joint_qpos(name, value) utils.reset_mocap_welds(self.sim) self.sim.forward() # Move end effector into position. gripper_target = np.array([-0.498, 0.005, -0.431 + self.gripper_extra_height]) + self.sim.data.get_site_xpos('robot0:grip') gripper_rotation = np.array([1., 0., 1., 0.]) self.sim.data.set_mocap_pos('robot0:mocap', gripper_target) self.sim.data.set_mocap_quat('robot0:mocap', gripper_rotation) for _ in range(10): self.sim.step() # Extract information for sampling goals. if not hasattr(self, 'initial_gripper_xpos'): self.initial_gripper_xpos = self.sim.data.get_site_xpos('robot0:grip').copy() self.height_offset = self.sim.data.get_site_xpos('object0')[2] # Change the colors to match the success conditions self.color_modder = TextureModder(self.sim) for i in range(self.sim.model.ngeom): obj_id = self.id2obj[i] if obj_id != None: name = self.sim.model.geom_id2name(i) if 'table' in name: color = np.asarray(COLORS_RGB[self.obj_colors[obj_id]]) self.color_modder.set_rgb(name, color * 2) else: self.color_modder.set_rgb(name, COLORS_RGB[self.obj_colors[obj_id]])