Пример #1
0
    def clear(self) -> None:
        """Reset the multiplication cache, and cache statistics to an initial state.
        The inital state, has constants 0 and 1 preloaded.
        """
        # Dictionaries keys in Python 3.8+ are in given in insertion order,
        # so we should insert 0 before 1.
        self.cache: Dict[int, Tuple[float, float, bool,
                                    Optional[List[Instruction]]]] = {
                                        1: (0, 0, True, [
                                            Instruction(
                                                "nop", 0,
                                                self.cpu_profile.costs["nop"])
                                        ]),
                                    }

        for num, name in ((0, "zero"), (-1, "negate")):
            cost: float = self.cpu_profile.costs.get(name, inf_cost)
            insts: Optional[List[Any]] = [Instruction(name, 0, cost)
                                          ] if cost != inf_cost else None
            self.cache[num] = (cost, cost, True, insts)

        # The following help with search statistics
        self.hits_exact = 0
        self.hits_partial = 0
        self.misses = 0
Пример #2
0
def search_negate(
    self,
    n: int,
    upper: float,
    lower: float,
    instrs: List[Instruction],
    candidate_instrs: List[Instruction],
) -> Tuple[float, List[Instruction]]:

    if n < 0 and self.cpu_model.can_negate():
        if self.debug:
            self.debug_msg(f"Looking at cached positive value {-n} of {n}")

        negate_cost = self.op_costs["negate"]
        lower += negate_cost
        if lower >= upper:
            # We have another cutoff
            if self.debug:
                self.debug_msg(
                    f"**alpha cutoff in negate for {n} in cost {lower} >= {upper}"
                )
                return upper, candidate_instrs

        cache_lower, cache_upper, finished, instrs = self.mult_cache[-n]
        if cache_upper == inf_cost:
            cache_upper, instrs = binary_sequence_inner(self, -n)

        cache_upper += negate_cost
        if cache_upper < upper:
            if self.debug:
                self.debug_msg(
                    f"Negation {n} update {cache_upper} < {upper} ...")
            instrs.append(Instruction("negate", 0, negate_cost))
            return cache_upper, instrs
    return upper, candidate_instrs
Пример #3
0
    def try_shift_op_factor(
        self,
        n: int,  # Number we are seeking
        factor: int,  # factor to try to divide "n" by
        op: str,  # operation after "shift"; either "add" or "subtract"
        shift_amount: int,  # shift amount used in shift operation
        upper: float,  # maximum allowed cost for an instruction sequence.
        lower: float,  # cost of instructions seen so far
        instrs: List[Instruction],  # We build on this.
        candidate_instrs: List[
            Instruction],  # If not empty, the best instruction sequence seen so for with cost "limit".
    ) -> Tuple[float, List[Instruction]]:
        if (n % factor) == 0:
            shift_cost = self.shift_cost(shift_amount)
            shift_op_cost = self.op_costs[op] + shift_cost

            # FIXME: figure out why lower != instruction_sequence_cost(instrs)
            lower = instruction_sequence_cost(instrs) + shift_op_cost

            if lower < upper:
                m = n // factor
                self.debug_msg(f"Trying factor {factor}...")
                try_cost, try_instrs = self.alpha_beta_search(
                    m, lower=lower, limit=(upper - (lower - shift_op_cost)))
                if try_cost < upper - lower:
                    try_instrs.append(
                        Instruction("shift", shift_amount, shift_cost))
                    try_instrs.append(
                        Instruction(op, FACTOR_FLAG, self.op_costs[op]))
                    try_cost += shift_op_cost
                    self.debug_msg(
                        f"*update {n} using factor {factor}; cost {try_cost} < previous limit {upper}"
                    )
                    self.mult_cache.update_field(n,
                                                 upper=try_cost,
                                                 instrs=try_instrs)
                    # Upper is the cost for the entire sequence; the remaining cost is in "lower".
                    # However, in candidate_cost we factored in the "shift_op_cost" so we need to remove that.
                    upper = try_cost
                    candidate_instrs = try_instrs
                pass
            pass
        return upper, candidate_instrs
Пример #4
0
 def make_odd(
     self, n: int, cost: float, result: List[Instruction]
 ) -> Tuple[int, float, int]:
     """Handle low-order 0's with a single shift.
        Note: those machines that can only do a single shift of one place
        or those machines whose time varies with the shift amount, that is covered
        by the self.shift_cost function
     """
     shift_amount, n = consecutive_zeros(n)
     if shift_amount:
         shift_cost = self.shift_cost(shift_amount)
         cost += shift_cost
         result.append(Instruction("shift", shift_amount, shift_cost))
         pass
     return (n, cost, shift_amount)
Пример #5
0
    def try_plus_offset(
        self,
        n: int,  # Number we are seeking
        increment: int,  # +1 or -1 for now
        limit: float,  # maximum allowed cost for an instruction sequence.
        lower: float,  # cost of instructions seen so far
        instrs: List[
            Instruction],  # If not empty, an instruction sequence with cost "limit".
        # We build on this.
        candidate_instrs: List[
            Instruction],  # The best current candidate sequencer. It or a different sequence is returned.
        op_flag,
    ) -> Tuple[float, List[Instruction]]:

        op_str = "add" if increment < 0 else "subtract"
        op_cost = self.op_costs[op_str]
        try_lower = lower + op_cost
        if try_lower < limit:
            n1 = n + increment

            cache_lower, neighbor_cost, finished, neighbor_instrs = self.mult_cache[
                n1]
            if not finished:
                if self.debug:
                    which = "lower" if n1 < n else "upper"
                    self.debug_msg(f"Trying {which} neighbor {n1} of {n}...")
                    pass

                neighbor_cost, neighbor_instrs = self.alpha_beta_search(
                    n1, try_lower, limit=limit)

            try_cost = neighbor_cost + op_cost

            if try_cost < limit:
                self.debug_msg(
                    f"*neighbor {n} update cost {try_cost}, previously {limit}."
                )
                limit = try_cost
                neighbor_instrs.append(Instruction(op_str, op_flag, op_cost))
                lower = min(self.mult_cache[n][0], try_cost)
                self.mult_cache.insert_or_update(n, lower, try_cost, False,
                                                 neighbor_instrs)
                candidate_instrs = neighbor_instrs
                pass

        return limit, candidate_instrs
Пример #6
0
    def alpha_beta_search(self, n: int, lower: float,
                          limit: float) -> Tuple[float, List[Instruction]]:
        """Alpha-beta search

        n: is the (sub-)multiplier we are seeking at this point in the
           search.  Note that it is *not* the initial multiplier
           sought.

        lower: is the cost used up until this point
               for the top-level searched multiplier. This number has
               to be added onto the cost for *n* when compared against
               the *limit* in order for multiplication via
               *n* to be considered a better sequence.

        limit: is the cost of the best sequence of instructions we've
               seen so far, and that is recorded in "results".  We get
               this value initially using the binary method, but it
               can be lowered as we find better sequences.

        We return the lowest cost we can find using "n" in the sequence. Note that we
        don't return the cost of computing "n", but rather of the total sequence. If
        you subtract the "lower" value *on entry* than that is the cost of computing "n".
        """

        self.debug_msg(
            f"alpha-beta search for {n} in at most {limit-lower} = max alotted cost: {limit}, incurred cost {lower}",
            2,
        )

        # FIXME: should be done in caller?
        cache_lower, cache_upper, finished, cache_instrs = self.mult_cache[n]
        if finished:
            self.debug_msg(
                f"alpha-beta using cache entry for {n} cost: {cache_upper}",
                -2)
            return cache_upper, [] if n == 1 else cache_instrs

        orig_n = n
        n, need_negation = self.need_negation(n)

        assert n > 0

        instrs: List[Instruction] = []
        m, shift_cost, shift_amount = self.make_odd(n, 0, instrs)

        lower += shift_cost
        if lower > limit:
            self.debug_msg(
                f"**alpha cutoff after shift for {n} incurred {lower} > {limit} alotted",
                -2,
            )
            return inf_cost, []

        # Make "m" negative if "n" was and search for that directly
        if need_negation:
            m = -m

        candidate_instrs: List[Instruction] = []

        # If we have caching enabled, m != 1 since caching will catch earlier.
        # However for saftey and extreme cases where we don't have caching,
        # we will test here.
        if m in (-1, 0, 1):
            _, limit, _, candidate_instrs = self.mult_cache[m]
            limit += shift_cost
            lower = limit
        else:

            # FIXME: might be "limit - shift" cost, but possibly a bug in
            # add/subtract one will prevent a needed cost update when this
            # happens. Investigate and fix.
            search_limit = limit

            for fn in self.search_methods:
                candidate_upper, candidate_instrs = fn(self, m, search_limit,
                                                       lower, instrs,
                                                       candidate_instrs)
                if candidate_upper + shift_cost < search_limit:
                    search_limit = candidate_upper
                    self.debug_msg(
                        f"*alpha-beta lowering limit of {m} cost to {search_limit} via search {fn.__name__}"
                    )
                    pass
                pass
            if search_limit < limit:
                limit = search_limit + shift_cost
            pass
        if candidate_instrs:
            if shift_amount:
                candidate_instrs.append(
                    Instruction("shift", shift_amount, shift_cost))
            limit = instruction_sequence_cost(candidate_instrs)
            self.mult_cache.insert_or_update(orig_n, limit, limit, True,
                                             candidate_instrs)
        else:
            candidate_instrs = cache_instrs

        if not candidate_instrs:
            self.debug_msg(
                f"**cutoffs before anything found for {orig_n}; check/update instructions used to {limit - lower}"
            )
            self.mult_cache.update_field(orig_n, lower=limit - lower)

        self.dedent()

        return limit, candidate_instrs
Пример #7
0
def binary_sequence_inner(
        self: MultConstClass,
        n: int) -> Tuple[float, List[Instruction]]:  # noqa: C901
    def append_instrs(cache_instrs: List[Instruction], bin_instrs,
                      cache_upper: float) -> float:
        cache_instrs.reverse()  # Because we compute in reverse order here
        bin_instrs += cache_instrs
        return cache_upper

    if n == 0:
        return (self.op_costs["zero"],
                [Instruction("zero", 0, self.op_costs["zero"])])
    orig_n = n

    n, need_negation = self.need_negation(n)

    assert n > 0

    bin_instrs: List[Instruction] = []
    cost: float = 0  # total cost of sequence

    while n > 1:

        if need_negation:
            cache_lower, cache_upper, finished, cache_instrs = self.mult_cache[
                -n]
            if cache_upper < inf_cost:
                cost += append_instrs(cache_instrs, bin_instrs, cache_upper)
                need_negation = False
                break

        cache_lower, cache_upper, finished, cache_instrs = self.mult_cache[n]
        if cache_upper < inf_cost:

            # If we were given a positive number, then we are done.
            # However if we were given a negative number, then from the
            # test above we now the negative version is not in the cache.
            # So we still have to continue in order to potentially find
            # a shorter sequence using a subtract.
            if not (need_negation and self.cpu_model.subtract_can_negate()):
                cost += append_instrs(cache_instrs, bin_instrs, cache_upper)
                break

        n, cost, shift_amount = self.make_odd(n, cost, bin_instrs)

        if n == 1:
            break

        # Handle low-order 1's via "adds", and also "subtracts" if subtracts are available.
        #
        one_run_count, m = consecutive_ones(n)
        try_reverse_subtract = need_negation and self.cpu_model.subtract_can_negate(
        )
        if self.cpu_model.can_subtract() and (one_run_count > 2
                                              or try_reverse_subtract):
            if try_reverse_subtract:
                cost += self.add_instruction(bin_instrs, "subtract",
                                             REVERSE_SUBTRACT_1)
                need_negation = False
            else:
                cost += self.add_instruction(bin_instrs, "subtract", OP_R1)

            n += 1
            pass
        else:
            cost += self.add_instruction(bin_instrs, "add", OP_R1)
            n -= 1
            pass
        pass

    bin_instrs.reverse()

    if need_negation:
        cost += self.add_instruction(bin_instrs, "negate", OP_R1)

    self.debug_msg(
        f"binary method for {orig_n} = {bin2str(orig_n)} has cost {cost}")
    self.mult_cache.update_sequence_partials(bin_instrs)
    return (cost, bin_instrs)
Пример #8
0
                pass
            else:
                print(f"unknown op {instr.op}")
            cost += instr.cost
            self.insert_or_update(n, 0, cost, False, instrs[0:i + 1])  # noqa
            pass


if __name__ == "__main__":
    multcache = MultCache()
    multcache.check()
    # Note: dictionaries keys in Python 3.8+ are in given in insertion order.
    assert list(multcache.keys()) == [1, 0, -1
                                      ], "We should have at least -1, 0 and 1"
    multcache.check()
    multcache.insert(0, 1, 1, True, [Instruction("zero", 0, 1)])
    multcache.check()
    multcache.insert_or_update(1, 0, 0, True, [Instruction("nop", 0, 0)])
    multcache.check()

    instrs = [
        Instruction("shift", 4),
        Instruction("add", 1),
        Instruction("shift", 2),
        Instruction("subtract", FACTOR_FLAG),
        Instruction("negate", 0),
    ]
    multcache.update_sequence_partials(instrs)
    multcache.check()
    from mult_by_const.io import dump
Пример #9
0
 def add_instruction(
     self, bin_instrs: List[Instruction], op_name: str, op_flag: int
 ) -> float:
     cost = self.op_costs[op_name]
     bin_instrs.append(Instruction(op_name, op_flag, cost))
     return cost