Пример #1
0
def startTrain():
    # Parameters
    # ==================================================
    del_all_flags(tf.flags.FLAGS)

    # Model Hyperparameters
    tf.flags.DEFINE_integer(
        "embedding_dim", 128,
        "Dimensionality of character embedding (default: 128)")
    tf.flags.DEFINE_string("filter_sizes", "3,4,5",
                           "Comma-separated filter sizes (default: '3,4,5')")
    tf.flags.DEFINE_integer(
        "num_filters", 128, "Number of filters per filter size (default: 128)")
    tf.flags.DEFINE_float("dropout_keep_prob", 0.5,
                          "Dropout keep probability (default: 0.5)")
    tf.flags.DEFINE_float("l2_reg_lambda", 0.0,
                          "L2 regularizaion lambda (default: 0.0)")

    # Training parameters
    tf.flags.DEFINE_integer("batch_size", 128, "Batch Size (default: 64)")
    tf.flags.DEFINE_integer("num_epochs", 200,
                            "Number of training epochs (default: 200)")
    tf.flags.DEFINE_integer(
        "evaluate_every", 100,
        "Evaluate model on dev set after this many steps (default: 100)")
    tf.flags.DEFINE_integer("checkpoint_every", 100,
                            "Save model after this many steps (default: 100)")
    # Misc Parameters
    tf.flags.DEFINE_boolean("allow_soft_placement", True,
                            "Allow device soft device placement")
    tf.flags.DEFINE_boolean("log_device_placement", False,
                            "Log placement of ops on devices")

    data_loader = MultiClassDataLoader(tf.flags, WordDataProcessor())
    data_loader.define_flags()

    FLAGS = tf.flags.FLAGS
    # FLAGS._parse_flags()
    FLAGS(sys.argv)
    print("\nParameters:")
    for attr, value in sorted(FLAGS.__flags.items()):
        print("{}={}".format(attr.upper(), value))
    print("")

    # Data Preparatopn
    # ==================================================

    # Load data
    print("Loading data...")
    x_train, y_train, x_dev, y_dev = data_loader.prepare_data()
    vocab_processor = data_loader.vocab_processor

    print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
    print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))

    # Training
    # ==================================================

    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            cnn = TextCNN(sequence_length=x_train.shape[1],
                          num_classes=y_train.shape[1],
                          vocab_size=len(vocab_processor.vocabulary_),
                          embedding_size=FLAGS.embedding_dim,
                          filter_sizes=list(
                              map(int, FLAGS.filter_sizes.split(","))),
                          num_filters=FLAGS.num_filters,
                          l2_reg_lambda=FLAGS.l2_reg_lambda)

            # Define Training procedure
            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer(1e-3)
            grads_and_vars = optimizer.compute_gradients(cnn.loss)
            train_op = optimizer.apply_gradients(grads_and_vars,
                                                 global_step=global_step)

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in grads_and_vars:
                if g is not None:
                    grad_hist_summary = tf.summary.histogram(
                        "{}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar(
                        "{}/grad/sparsity".format(v.name),
                        tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(
                os.path.join(os.path.curdir, "runs", timestamp))
            # out_dir = '/home/taihoinst/icrRest/labelTrain/runs/' + timestamp
            print("Writing to {}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

            # Train Summaries
            train_summary_op = tf.summary.merge(
                [loss_summary, acc_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(
                train_summary_dir, sess.graph)

            # Dev summaries
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir,
                                                       sess.graph)

            # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
            checkpoint_dir = os.path.abspath(
                os.path.join(out_dir, "checkpoints"))
            checkpoint_prefix = os.path.join(checkpoint_dir, "model")
            if not os.path.exists(checkpoint_dir):
                os.makedirs(checkpoint_dir)
            saver = tf.train.Saver(tf.global_variables())

            # Write vocabulary
            vocab_processor.save(os.path.join(out_dir, "vocab"))

            # Initialize all variables
            sess.run(tf.global_variables_initializer())

            def train_step(x_batch, y_batch):
                """
                A single training step
                """
                feed_dict = {
                    cnn.input_x: x_batch,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
                }
                _, step, summaries, loss, accuracy = sess.run([
                    train_op, global_step, train_summary_op, cnn.loss,
                    cnn.accuracy
                ], feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(
                    time_str, step, loss, accuracy))
                train_summary_writer.add_summary(summaries, step)

            def dev_step(x_batch, y_batch, writer=None):
                """
                Evaluates model on a dev set
                """
                feed_dict = {
                    cnn.input_x: x_batch,
                    cnn.input_y: y_batch,
                    cnn.dropout_keep_prob: 1.0
                }
                step, summaries, loss, accuracy = sess.run(
                    [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(
                    time_str, step, loss, accuracy))
                if writer:
                    writer.add_summary(summaries, step)

            # Generate batches
            batches = data_helpers.batch_iter(list(zip(x_train, y_train)),
                                              FLAGS.batch_size,
                                              FLAGS.num_epochs)
            # Training loop. For each batch...
            for batch in batches:
                x_batch, y_batch = zip(*batch)
                train_step(x_batch, y_batch)
                current_step = tf.train.global_step(sess, global_step)
                if current_step % FLAGS.evaluate_every == 0:
                    print("\nEvaluation:")
                    dev_step(x_dev, y_dev, writer=dev_summary_writer)
                    print("")
                if current_step % FLAGS.checkpoint_every == 0:
                    path = saver.save(sess,
                                      checkpoint_prefix,
                                      global_step=current_step)
                    print("Saved model checkpoint to {}\n".format(path))
Пример #2
0
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 50,
                        "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer(
    "evaluate_every", 100,
    "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100,
                        "Save model after this many steps (default: 100)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True,
                        "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", True,
                        "Log placement of ops on devices")

data_loader = MultiClassDataLoader(tf.flags, WordDataProcessor())
data_loader.define_flags()

FLAGS = tf.flags.FLAGS
FLAGS(sys.argv)
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
    print("{}={}".format(attr.upper(), value))
print("")

# Data Preparatopn
# ==================================================

# Load data
print("Loading data...")
x_train, y_train, x_dev, y_dev = data_loader.prepare_data()
vocab_processor = data_loader.vocab_processor
Пример #3
0
def startEval(ocrData):
    # Parameters
    # ==================================================
    del_all_flags(tf.flags.FLAGS)

    ocrData = json.loads(
        '[{"location":"1018,240,411,87","text":"APEX"},{"location":"1019,338,409,23","text":"Partner of Choice"},{"location":"1562,509,178,25","text":"Voucher No"},{"location":"1562,578,206,25","text":"Voucher Date"},{"location":"206,691,274,27","text":"4153 Korean Re"},{"location":"208,756,525,34","text":"Proportional Treaty Statement"},{"location":"1842,506,344,25","text":"BV/HEO/2018/05/0626"},{"location":"1840,575,169,25","text":"01105/2018"},{"location":"206,848,111,24","text":"Cedant"},{"location":"206,908,285,24","text":"Class of Business"},{"location":"210,963,272,26","text":"Period of Quarter"},{"location":"207,1017,252,31","text":"Period of Treaty"},{"location":"206,1066,227,24","text":"Our Reference"},{"location":"226,1174,145,31","text":"Currency"},{"location":"227,1243,139,24","text":"Premium"},{"location":"226,1303,197,24","text":"Commission"},{"location":"226,1366,107,24","text":"Claims"},{"location":"227,1426,126,24","text":"Reserve"},{"location":"227,1489,123,24","text":"Release"},{"location":"227,1549,117,24","text":"Interest"},{"location":"227,1609,161,31","text":"Brokerage"},{"location":"233,1678,134,24","text":"Portfolio"},{"location":"227,1781,124,24","text":"Balance"},{"location":"574,847,492,32","text":": Solidarity- First Insurance 2018"},{"location":"574,907,568,32","text":": Marine Cargo Surplus 2018 - Inward"},{"location":"598,959,433,25","text":"01-01-2018 TO 31-03-2018"},{"location":"574,1010,454,25","text":": 01-01-2018 TO 31-12-2018"},{"location":"574,1065,304,25","text":": APEX/BORD/2727"},{"location":"629,1173,171,25","text":"JOD 1.00"},{"location":"639,1239,83,25","text":"25.53"},{"location":"639,1299,64,25","text":"5.74"},{"location":"639,1362,64,25","text":"0.00"},{"location":"639,1422,64,25","text":"7.66"},{"location":"639,1485,64,25","text":"0.00"},{"location":"639,1545,64,25","text":"0.00"},{"location":"639,1605,64,25","text":"0.64"},{"location":"648,1677,64,25","text":"0.00"},{"location":"641,1774,81,25","text":"11 .49"},{"location":"1706,1908,356,29","text":"APEX INSURANCE"}]'
    )
    # print('============startEval================')
    # ocrData = json.loads(ocrData)
    # print(ocrData)
    # Eval Parameters
    tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
    tf.flags.DEFINE_string("checkpoint_dir", "",
                           "Checkpoint directory from training run")
    tf.flags.DEFINE_boolean("eval_train", False,
                            "Evaluate on all training data")

    # Misc Parameters
    tf.flags.DEFINE_boolean("allow_soft_placement", True,
                            "Allow device soft device placement")
    tf.flags.DEFINE_boolean("log_device_placement", False,
                            "Log placement of ops on devices")

    data_loader = MultiClassDataLoader(tf.flags, WordDataProcessor())
    data_loader.define_flags()

    FLAGS = tf.flags.FLAGS
    # FLAGS._parse_flags()
    FLAGS(sys.argv)
    print("\nParameters:")
    for attr, value in sorted(FLAGS.__flags.items()):
        print("{}={}".format(attr.upper(), value))
    print("")

    if FLAGS.eval_train:
        x_raw, y_test = data_loader.load_data_and_labels()
        y_test = np.argmax(y_test, axis=1)
    else:
        # x_raw, y_test = data_loader.load_dev_data_and_labels()
        x_raw, y_test = data_loader.load_dev_data_and_labels_json(ocrData)
        y_test = np.argmax(y_test, axis=1)

    # checkpoint_dir이 없다면 가장 최근 dir 추출하여 셋팅
    if FLAGS.checkpoint_dir == "":
        all_subdirs = [
            "./runs/" + d for d in os.listdir('./runs/.')
            if os.path.isdir("./runs/" + d)
        ]
        latest_subdir = max(all_subdirs, key=os.path.getmtime)
        FLAGS.checkpoint_dir = latest_subdir + "/checkpoints/"

    # Map data into vocabulary
    vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab")
    vocab_processor = data_loader.restore_vocab_processor(vocab_path)
    x_test = np.array(list(vocab_processor.transform(x_raw)))

    print("\nEvaluating...\n")

    # Evaluation
    # ==================================================
    checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
    graph = tf.Graph()
    with graph.as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph(
                "{}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)

            # Get the placeholders from the graph by name
            input_x = graph.get_operation_by_name("input_x").outputs[0]
            # input_y = graph.get_operation_by_name("input_y").outputs[0]
            dropout_keep_prob = graph.get_operation_by_name(
                "dropout_keep_prob").outputs[0]

            # Tensors we want to evaluate
            predictions = graph.get_operation_by_name(
                "output/predictions").outputs[0]

            # Generate batches for one epoch
            batches = data_helpers.batch_iter(list(x_test),
                                              FLAGS.batch_size,
                                              1,
                                              shuffle=False)

            # Collect the predictions here
            all_predictions = []

            for x_test_batch in batches:
                batch_predictions = sess.run(predictions, {
                    input_x: x_test_batch,
                    dropout_keep_prob: 1.0
                })
                all_predictions = np.concatenate(
                    [all_predictions, batch_predictions])

    # Print accuracy if y_test is defined
    if y_test is not None:
        correct_predictions = float(sum(all_predictions == y_test))
        print("Total number of test examples: {}".format(len(y_test)))
        print("Accuracy: {:g}".format(correct_predictions /
                                      float(len(y_test))))

    # Save the evaluation to a csv
    class_predictions = data_loader.class_labels(all_predictions.astype(int))
    predictions_human_readable = np.column_stack(
        (np.array(x_raw), class_predictions))
    out_path = os.path.join(FLAGS.checkpoint_dir, "../../../",
                            "prediction.csv")
    print("Saving evaluation to {0}".format(out_path))

    for i in predictions_human_readable:
        for row in ocrData:
            if i[0].lower() == row['text'].lower():
                row['colLbl'] = i[1]

    print(ocrData)
    return ocrData