Пример #1
0
def main():
    #Parse arguments
    #----------------------------
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", default="CartPole-v0")
    parser.add_argument("--conti", action="store_true")
    parser.add_argument("--unwrap", action="store_true")
    args = parser.parse_args()

    #Parameters
    #----------------------------
    n_env = 8
    n_step = 128
    mb_size = n_env * n_step
    sample_mb_size = 64
    sample_n_epoch = 4
    clip_val = 0.2
    lamb = 0.95
    gamma = 0.99
    ent_weight = 0.0
    max_grad_norm = 0.5
    beta = 0.1
    lr = 1e-4
    n_iter = 30000
    disp_step = 30
    save_step = 300
    save_dir = "./save"
    device = "cuda:0"
    expert_path = "../save/{}_traj.pkl".format(args.env)

    #Create multiple environments
    #----------------------------
    env = MultiEnv([
        make_env(i,
                 env_id=args.env,
                 unwrap=args.unwrap,
                 rand_seed=int(time.time())) for i in range(n_env)
    ])

    if args.conti:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.shape[0]
    else:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.n

    runner = EnvRunner(env,
                       s_dim,
                       a_dim,
                       n_step,
                       gamma,
                       lamb,
                       device=device,
                       conti=args.conti)

    #Load expert trajectories
    #----------------------------
    if os.path.exists(expert_path):
        s_real, a_real = pkl.load(open(expert_path, "rb"))
        sa_real = []

        if args.conti:
            for i in range(len(s_real)):
                sa_real.append(np.concatenate([s_real[i], a_real[i]], 1))
        else:
            for i in range(len(s_real)):
                a_real_onehot = np.zeros((len(a_real[i]), a_dim),
                                         dtype=np.float32)

                for j in range(len(a_real[i])):
                    a_real_onehot[j, a_real[i][j]] = 1

                sa_real.append(np.concatenate([s_real[i], a_real_onehot], 1))

        sa_real = np.concatenate(sa_real, 0)
    else:
        print("ERROR: No expert trajectory file found")
        sys.exit(1)

    #Create model
    #----------------------------
    policy_net = PolicyNet(s_dim, a_dim, conti=args.conti).to(device)
    value_net = ValueNet(s_dim).to(device)
    dis_net = DiscriminatorNet(s_dim + a_dim).to(device)
    agent = PPO(policy_net,
                value_net,
                dis_net,
                a_dim,
                beta,
                lr,
                max_grad_norm,
                ent_weight,
                clip_val,
                sample_n_epoch,
                sample_mb_size,
                mb_size,
                device=device,
                conti=args.conti)

    #Load model
    #----------------------------
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    if os.path.exists(os.path.join(save_dir, "{}.pt".format(args.env))):
        print("Loading the model ... ", end="")
        checkpoint = torch.load(
            os.path.join(save_dir, "{}.pt".format(args.env)))
        policy_net.load_state_dict(checkpoint["PolicyNet"])
        value_net.load_state_dict(checkpoint["ValueNet"])
        dis_net.load_state_dict(checkpoint["DiscriminatorNet"])
        agent.beta = checkpoint["beta"]
        start_it = checkpoint["it"]
        print("Done.")
    else:
        start_it = 0

    #Start training
    #----------------------------
    t_start = time.time()
    policy_net.train()
    value_net.train()

    for it in range(start_it, n_iter):
        #Run the environment
        with torch.no_grad():
            mb_obs, mb_actions, mb_old_a_logps, mb_values, mb_returns = runner.run(
                policy_net, value_net, dis_net)
            mb_advs = mb_returns - mb_values
            mb_advs = (mb_advs - mb_advs.mean()) / (mb_advs.std() + 1e-6)

        #Train
        pg_loss, v_loss, ent, dis_loss, dis_real, dis_fake, avg_kl = agent.train(
            policy_net, value_net, dis_net, mb_obs, mb_actions, mb_values,
            mb_advs, mb_returns, mb_old_a_logps, sa_real)

        #Print the result
        if it % disp_step == 0:
            agent.lr_decay(it, n_iter)
            policy_net.eval()
            value_net.eval()
            n_sec = time.time() - t_start
            fps = int((it - start_it) * n_env * n_step / n_sec)
            mean_true_return, std_true_return, mean_return, std_return, mean_len = runner.get_performance(
            )
            policy_net.train()
            value_net.train()

            print("[{:5d} / {:5d}]".format(it, n_iter))
            print("----------------------------------")
            print("Timesteps        = {:d}".format((it - start_it) * mb_size))
            print("Elapsed time     = {:.2f} sec".format(n_sec))
            print("FPS              = {:d}".format(fps))
            print("actor loss       = {:.6f}".format(pg_loss))
            print("critic loss      = {:.6f}".format(v_loss))
            print("dis loss         = {:.6f}".format(dis_loss))
            print("entropy          = {:.6f}".format(ent))
            print("avg_kl           = {:.6f}".format(avg_kl))
            print("beta             = {:.6f}".format(agent.beta))
            print("mean true return = {:.6f}".format(mean_true_return))
            print("mean return      = {:.6f}".format(mean_return))
            print("mean length      = {:.2f}".format(mean_len))
            print("dis_real         = {:.3f}".format(dis_real))
            print("dis_fake         = {:.3f}".format(dis_fake))
            print()

        #Save model
        if it % save_step == 0:
            print("Saving the model ... ", end="")
            torch.save(
                {
                    "beta": agent.beta,
                    "it": it,
                    "PolicyNet": policy_net.state_dict(),
                    "ValueNet": value_net.state_dict(),
                    "DiscriminatorNet": dis_net.state_dict()
                }, os.path.join(save_dir, "{}.pt".format(args.env)))
            print("Done.")
            print()

    env.close()
Пример #2
0
		print("----------------------------------")
		print("Total timestep = {:d}".format(it * mb_size))
		print("Elapsed time = {:.2f} sec".format(n_sec))
		print("FPS = {:d}".format(fps))
		print("pg_loss = {:.6f}".format(cur_pg_loss))
		print("v_loss = {:.6f}".format(cur_v_loss))
		print("mean_total_reward = {:.6f}".format(mean_return))
		print("mean_len = {:.2f}".format(mean_len))
		print("logstd = {:.6f}".format(logstd_cur[0, 0]))
		print()

	#Save
	if it % save_step == 0 and it > global_step:
		print("Saving the model ... ", end="")
		saver.save(sess, save_dir+"/model.ckpt", global_step=it)

		for mean, std in zip(mean_returns, std_returns):
			return_fp.write("{:f},{:f}\n".format(mean, std))
		
		return_fp.flush()
		mean_returns.clear()
		std_returns.clear()
		print("Done.")
		print()

env.close()
return_fp.close()
print("Saving the model ... ", end="")
saver.save(sess, save_dir+"/model.ckpt", global_step=n_iter+global_step)
print("Done.")
print()
Пример #3
0
def main():
    #Parse arguments
    #----------------------------
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", default="CartPole-v0")
    parser.add_argument("--conti", action="store_true")
    parser.add_argument("--unwrap", action="store_true")
    args = parser.parse_args()

    #Parameters
    #----------------------------
    n_env = 8
    n_step = 128
    mb_size = n_env * n_step
    sample_mb_size = 64
    sample_n_epoch = 4
    clip_val = 0.2
    lamb = 0.95
    gamma = 0.99
    ent_weight = 0.0
    max_grad_norm = 0.5
    lr = 1e-4
    n_iter = 30000
    disp_step = 30
    save_step = 300
    save_dir = "./save"
    device = "cuda:0"

    #Create multiple environments
    #----------------------------
    env = MultiEnv([
        make_env(i,
                 env_id=args.env,
                 unwrap=args.unwrap,
                 rand_seed=int(time.time())) for i in range(n_env)
    ])

    if args.conti:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.shape[0]
    else:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.n

    runner = EnvRunner(env,
                       s_dim,
                       a_dim,
                       n_step,
                       gamma,
                       lamb,
                       device=device,
                       conti=args.conti)

    #Create model
    #----------------------------
    policy_net = PolicyNet(s_dim, a_dim, conti=args.conti).to(device)
    value_net = ValueNet(s_dim).to(device)
    agent = PPO(policy_net,
                value_net,
                lr,
                max_grad_norm,
                ent_weight,
                clip_val,
                sample_n_epoch,
                sample_mb_size,
                mb_size,
                device=device)

    #Load model
    #----------------------------
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    if os.path.exists(os.path.join(save_dir, "{}.pt".format(args.env))):
        print("Loading the model ... ", end="")
        checkpoint = torch.load(
            os.path.join(save_dir, "{}.pt".format(args.env)))
        policy_net.load_state_dict(checkpoint["PolicyNet"])
        value_net.load_state_dict(checkpoint["ValueNet"])
        start_it = checkpoint["it"]
        print("Done.")
    else:
        start_it = 0

    #Start training
    #----------------------------
    t_start = time.time()
    policy_net.train()
    value_net.train()

    for it in range(start_it, n_iter):
        #Run the environment
        with torch.no_grad():
            mb_obs, mb_actions, mb_old_a_logps, mb_values, mb_returns = runner.run(
                policy_net, value_net)
            mb_advs = mb_returns - mb_values
            mb_advs = (mb_advs - mb_advs.mean()) / (mb_advs.std() + 1e-6)

        #Train
        pg_loss, v_loss, ent = agent.train(policy_net, value_net, mb_obs,
                                           mb_actions, mb_values, mb_advs,
                                           mb_returns, mb_old_a_logps)

        #Print the result
        if it % disp_step == 0:
            agent.lr_decay(it, n_iter)
            policy_net.eval()
            value_net.eval()
            n_sec = time.time() - t_start
            fps = int((it - start_it) * n_env * n_step / n_sec)
            mean_return, std_return, mean_len = runner.get_performance()
            policy_net.train()
            value_net.train()

            print("[{:5d} / {:5d}]".format(it, n_iter))
            print("----------------------------------")
            print("Timesteps    = {:d}".format((it - start_it) * mb_size))
            print("Elapsed time = {:.2f} sec".format(n_sec))
            print("FPS          = {:d}".format(fps))
            print("actor loss   = {:.6f}".format(pg_loss))
            print("critic loss  = {:.6f}".format(v_loss))
            print("entropy      = {:.6f}".format(ent))
            print("mean return  = {:.6f}".format(mean_return))
            print("mean length  = {:.2f}".format(mean_len))
            print()

        #Save model
        if it % save_step == 0:
            print("Saving the model ... ", end="")
            torch.save(
                {
                    "it": it,
                    "PolicyNet": policy_net.state_dict(),
                    "ValueNet": value_net.state_dict()
                }, os.path.join(save_dir, "{}.pt".format(args.env)))
            print("Done.")
            print()

    env.close()