Пример #1
0
def get_month_small_all_df(th = 7):
    p = m_Pool(64)
    ids = get_small_user_ids(th)
    all_df_list = p.map(get_month_by_id,ids)
    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
    return pd.concat(all_df_list)
Пример #2
0
def mearge_holiday_day_df_all():
    p = m_Pool(64)
    for day in range(1,31):
        p.apply_async(mearge_holiday_day_df,args=(day,))
        #p.apply_async(predict_using_prophet, args=(arg,))
    
    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
Пример #3
0
def mearge_holiday_month_df_all():
    holiday_df = get_holiday_df(1)
    festday_df = get_festday_df(1)
    p = m_Pool(64)
    for f_id,df_path in enumerate(get_month_df_path()):
        p.apply_async(mearge_holiday_month_df,(holiday_df,festday_df,f_id,df_path,))
    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
Пример #4
0
def mearge_prophet_holiday_month_df_all():
        
    all_df_list = []
    p = m_Pool(64)
    path_list = get_holiday_month_df_path()
    all_df_list = p.map(mearge_prophet_holiday_month_df,path_list)
    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
    '''
Пример #5
0
def get_month_all_df():
    
    p = m_Pool(64)
    path_list = get_prophet_holiday_month_df_path()
    all_df_list = p.map(get_month_by_path,path_list)
    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
    return pd.concat(all_df_list)
    '''
def make_history_month_features_all():
    pw_df_list = []
    dataset = get_dataset()
    dataset.power_consumption = dataset.power_consumption
    for user_id in get_user_id_list():
        print user_id
        if not check_empty(user_id):
            user_df = filter_user_id(dataset,
                                     user_id).resample('1D').mean().fillna(1)
            #add to list
            pw_df_list.append((user_id, user_df))
            #make_features(user_id,user_df)

    p = m_Pool(64)
    for arg in pw_df_list:
        p.apply_async(make_history_month_features, args=(arg))

    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
Пример #7
0
def predict_tf_all(path = None):
    result_list = []
    p = m_Pool(31)
    result_list = p.map(predict_tf_once,range(1,32))
    p.close()
    p.join()
    print 'writing...'
    result_df = pd.DataFrame(index = range(1))
    for day,result in result_list:
        day_s = str(day)
        if len(day_s)<=1:
            day_s = '0'+day_s
        result_df['201610'+day_s] = result
    result_df = result_df.T
    result_df.columns = ['predict_power_consumption']
    if path == None:
        date = str(pd.Timestamp(time.ctime())).replace(' ','_').replace(':','_')
        path = './result/'+date+'.csv'
    result_df.to_csv(path,index_label='predict_date')
    
    l = map(lambda day:pd.DataFrame.from_csv('./result/predict_part/%d.csv'%day),range(1,32))
    t = pd.concat(l)
    t.to_csv('./result/predict_part/'+date+'.csv')
Пример #8
0
def predict_tf_one_shop_all(shop_id,start_date = '2016-10-1'):
    p = m_Pool(30)
    for day in range(1,32):
        p.apply_async(predict_tf_one_shop,(day,1416,start_date))
    p.close()
    p.join()
Пример #9
0
 
 print 'Waiting for all subprocesses done...'
 p.close()
 p.join()
 '''
 
 def create_path():
     for path in _save_paths:
         if not os.path.exists(path):
             os.mkdir(path)
 create_path()
 def rebuild_predict_feature_all_mt(pos):
     func,path = zip(_create_feature_funcs,_save_paths)[pos]
     print path+':'
     rebuild_predict_feature_all(create_feature_func = func,save_path = path)
 p = m_Pool(3)
 for pos in range(_feature_length):
     print pos
     p.apply_async(rebuild_predict_feature_all_mt,args=(pos,))
     #time.sleep(10)
 
 print 'Waiting for all subprocesses done...'
 p.close()
 p.join()
 
 
 p = m_Pool(7)
 for day in range(1,32):
     print day
     p.apply_async(train_tf_once_percent,args=(day,))
     #time.sleep(10)
Пример #10
0
        user_df = dataset[dataset.user_id == user_id]
        assert user_df.power_consumption.sum() == len(user_df)
        return False
    a = pd.DataFrame.from_csv('./features/%d.csv' % user_id)
    assert a.ds.iloc[-1] == '2016-09-30'
    return True
    #return a.ds.iloc[-1] == '2016-09-30'


if __name__ == '__main__':
    dataset = get_dataset()
    '''for user_id in set(dataset.user_id):
        predict_using_prophet(dataset[dataset.user_id == user_id])
    '''

    p = m_Pool(64)
    for arg in set(dataset.user_id):
        arg_df = dataset[dataset.user_id == arg]
        p.apply_async(predict_using_prophet, args=(arg_df, ))
        #p.apply_async(predict_using_prophet, args=(arg,))

    print 'Waiting for all subprocesses done...'
    p.close()
    p.join()
    '''
    all_one_list = []
    for user_id in set(dataset.user_id):
        if not check(dataset,user_id):
            all_one_list.append(user_id)
    '''