Пример #1
0
def test_sarsa_lambda_continuous_nn_save(tmpdir):
    agent_path = tmpdir / 'agent_{}'.format(datetime.now().strftime("%H%M%S%f"))

    pi, _, mdp_continuous = initialize()
    mdp_continuous.seed(1)

    features = Features(
        n_outputs=mdp_continuous.info.observation_space.shape[0]
    )

    approximator_params = dict(
        input_shape=(features.size,),
        output_shape=(mdp_continuous.info.action_space.n,),
        network=Network,
        n_actions=mdp_continuous.info.action_space.n
    )
    agent_save = SARSALambdaContinuous(mdp_continuous.info, pi, TorchApproximator,
                                  Parameter(.1), .9, features=features,
                                  approximator_params=approximator_params)

    core = Core(agent_save, mdp_continuous)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    agent_save.save(agent_path)
    agent_load = Agent.load(agent_path)

    for att, method in vars(agent_save).items():
        save_attr = getattr(agent_save, att)
        load_attr = getattr(agent_load, att)

        tu.assert_eq(save_attr, load_attr)
Пример #2
0
def learn(alg, alg_params):
    mdp = LQR.generate(dimensions=1)
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    approximator_params = dict(input_dim=mdp.info.observation_space.shape)
    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape,
                             params=approximator_params)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape,
                      params=approximator_params)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    core.learn(n_episodes=10, n_episodes_per_fit=5)

    return policy
Пример #3
0
def experiment(alg, params, n_epochs, fit_per_run, ep_per_run):
    np.random.seed()

    # MDP
    mdp = LQR.generate(dimensions=1)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    policy = DeterministicPolicy(mu=approximator)

    mu = np.zeros(policy.weights_size)
    sigma = 1e-3 * np.eye(policy.weights_size)
    distribution = GaussianCholeskyDistribution(mu, sigma)

    # Agent
    agent = alg(mdp.info, distribution, policy, **params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_run)
    print('distribution parameters: ', distribution.get_parameters())
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    print('J at start : ' + str(np.mean(J)))

    for i in range(n_epochs):
        core.learn(n_episodes=fit_per_run * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset_eval = core.evaluate(n_episodes=ep_per_run)
        print('distribution parameters: ', distribution.get_parameters())
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        print('J at iteration ' + str(i) + ': ' + str(np.mean(J)))
Пример #4
0
def experiment():
    np.random.seed()

    # MDP
    mdp = generate_simple_chain(state_n=5, goal_states=[2], prob=.8, rew=1,
                                gamma=.9)

    # Policy
    epsilon = Parameter(value=.15)
    pi = EpsGreedy(epsilon=epsilon)

    # Agent
    learning_rate = Parameter(value=.2)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = QLearning(mdp.info, pi, **algorithm_params)

    # Core
    core = Core(agent, mdp)

    # Initial policy Evaluation
    dataset = core.evaluate(n_steps=1000)
    J = np.mean(compute_J(dataset, mdp.info.gamma))
    print('J start:', J)

    # Train
    core.learn(n_steps=10000, n_steps_per_fit=1)

    # Final Policy Evaluation
    dataset = core.evaluate(n_steps=1000)
    J = np.mean(compute_J(dataset, mdp.info.gamma))
    print('J final:', J)
Пример #5
0
def learn_lspi():
    np.random.seed(1)

    # MDP
    mdp = CartPole()

    # Policy
    epsilon = Parameter(value=1.)
    pi = EpsGreedy(epsilon=epsilon)

    # Agent
    basis = [PolynomialBasis()]
    features = Features(basis_list=basis)

    fit_params = dict()
    approximator_params = dict(input_shape=(features.size, ),
                               output_shape=(mdp.info.action_space.n, ),
                               n_actions=mdp.info.action_space.n)
    agent = LSPI(mdp.info,
                 pi,
                 approximator_params=approximator_params,
                 fit_params=fit_params,
                 features=features)

    # Algorithm
    core = Core(agent, mdp)

    # Train
    core.learn(n_episodes=10, n_episodes_per_fit=10)

    return agent
Пример #6
0
def experiment(algorithm_class, exp):
    np.random.seed()

    # MDP
    p = np.load('chain_structure/p.npy')
    rew = np.load('chain_structure/rew.npy')
    mdp = FiniteMDP(p, rew, gamma=.9)

    # Policy
    epsilon = Parameter(value=1.)
    pi = EpsGreedy(epsilon=epsilon)

    # Agent
    learning_rate = ExponentialParameter(value=1., exp=exp, size=mdp.info.size)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = algorithm_class(mdp.info, pi, **algorithm_params)

    # Algorithm
    collect_Q = CollectQ(agent.approximator)
    callbacks = [collect_Q]
    core = Core(agent, mdp, callbacks)

    # Train
    core.learn(n_steps=20000, n_steps_per_fit=1, quiet=True)

    Qs = collect_Q.get()

    return Qs
Пример #7
0
def test_sarsa_lambda_continuous_linear():
    pi, _, mdp_continuous = initialize()
    mdp_continuous.seed(1)
    n_tilings = 1
    tilings = Tiles.generate(n_tilings, [2, 2],
                             mdp_continuous.info.observation_space.low,
                             mdp_continuous.info.observation_space.high)
    features = Features(tilings=tilings)

    approximator_params = dict(
        input_shape=(features.size,),
        output_shape=(mdp_continuous.info.action_space.n,),
        n_actions=mdp_continuous.info.action_space.n
    )
    agent = SARSALambdaContinuous(mdp_continuous.info, pi, LinearApproximator,
                                  Parameter(.1), .9, features=features,
                                  approximator_params=approximator_params)

    core = Core(agent, mdp_continuous)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_w = np.array([-16.38428419, 0., -14.31250136, 0., -15.68571525, 0.,
                       -10.15663821, 0., -15.0545445, 0., -8.3683605, 0.])

    assert np.allclose(agent.Q.get_weights(), test_w)
Пример #8
0
def test_sarsa_lambda_continuous_linear():
    pi, _, mdp_continuous = initialize()
    mdp_continuous.seed(1)
    n_tilings = 1
    tilings = Tiles.generate(n_tilings, [2, 2],
                             mdp_continuous.info.observation_space.low,
                             mdp_continuous.info.observation_space.high)
    features = Features(tilings=tilings)

    approximator_params = dict(
        input_shape=(features.size, ),
        output_shape=(mdp_continuous.info.action_space.n, ),
        n_actions=mdp_continuous.info.action_space.n)
    agent = SARSALambdaContinuous(mdp_continuous.info,
                                  pi,
                                  LinearApproximator,
                                  Parameter(.1),
                                  .9,
                                  features=features,
                                  approximator_params=approximator_params)

    core = Core(agent, mdp_continuous)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_w = np.array([
        -16.62627886, 0., -13.03033079, 0., -15.93237930, 0., -9.72299176, 0.,
        -13.78884631, 0., -9.92157645, 0.
    ])

    assert np.allclose(agent.Q.get_weights(), test_w)
Пример #9
0
def test_true_online_sarsa_lambda():
    pi, _, mdp_continuous = initialize()
    mdp_continuous.seed(1)
    n_tilings = 1
    tilings = Tiles.generate(n_tilings, [2, 2],
                             mdp_continuous.info.observation_space.low,
                             mdp_continuous.info.observation_space.high)
    features = Features(tilings=tilings)

    approximator_params = dict(
        input_shape=(features.size, ),
        output_shape=(mdp_continuous.info.action_space.n, ),
        n_actions=mdp_continuous.info.action_space.n)
    agent = TrueOnlineSARSALambda(mdp_continuous.info,
                                  pi,
                                  Parameter(.1),
                                  .9,
                                  features=features,
                                  approximator_params=approximator_params)

    core = Core(agent, mdp_continuous)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_w = np.array([
        -17.30427303, 0., -13.54157504, 0., -16.82373134, 0., -10.29613337, 0.,
        -14.79470382, 0., -10.50654665, 0.
    ])

    assert np.allclose(agent.Q.get_weights(), test_w)
Пример #10
0
def learn(alg, alg_params):
    mdp = InvertedPendulum(horizon=50)
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.Adam,
                             'params': {
                                 'lr': 3e-4
                             }
                         },
                         loss=F.mse_loss,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    policy_params = dict(std_0=1., use_cuda=False)

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    alg_params['critic_params'] = critic_params

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    core.learn(n_episodes=2, n_episodes_per_fit=1)

    return agent
Пример #11
0
def test_true_online_sarsa_lambda():
    pi, _, mdp_continuous = initialize()
    mdp_continuous.seed(1)
    n_tilings = 1
    tilings = Tiles.generate(n_tilings, [2, 2],
                             mdp_continuous.info.observation_space.low,
                             mdp_continuous.info.observation_space.high)
    features = Features(tilings=tilings)

    approximator_params = dict(
        input_shape=(features.size,),
        output_shape=(mdp_continuous.info.action_space.n,),
        n_actions=mdp_continuous.info.action_space.n
    )
    agent = TrueOnlineSARSALambda(mdp_continuous.info, pi,
                                  Parameter(.1), .9, features=features,
                                  approximator_params=approximator_params)

    core = Core(agent, mdp_continuous)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_w = np.array([-17.27410736, 0., -15.04386343, 0., -16.6551805, 0.,
                       -11.31383707, 0., -16.11782002, 0., -9.6927357, 0.])

    assert np.allclose(agent.Q.get_weights(), test_w)
Пример #12
0
def experiment(goal, use_muscles, n_epochs, n_steps, n_episodes_test):
    np.random.seed(1)

    # MDP
    gamma = 0.99
    horizon = 2000
    mdp = create_mdp(gamma, horizon, goal, use_muscles=use_muscles)

    # Agent
    agent = create_SAC_agent(mdp)

    # normalization callback
    normalizer = MinMaxPreprocessor(mdp_info=mdp.info)

    # plotting callback
    plotter = PlotDataset(mdp.info)

    # Algorithm(with normalization and plotting)
    core = Core(agent, mdp, callback_step=plotter, preprocessors=[normalizer])

    # training loop
    for n in range(n_epochs):
        core.learn(n_steps=n_steps, n_steps_per_fit=1)
        dataset = core.evaluate(n_episodes=n_episodes_test, render=True)
        print('Epoch: ', n, '  J: ', np.mean(compute_J(dataset, gamma)),
              '  Len_ep: ', int(np.round(np.mean(episodes_length(dataset)))))

    print('Press a button to visualize humanoid')
    input()
    core.evaluate(n_episodes=10, render=True)
Пример #13
0
def learn(alg, alg_params):
    mdp = CarOnHill()
    np.random.seed(1)

    # Policy
    epsilon = Parameter(value=1.)
    pi = EpsGreedy(epsilon=epsilon)

    # Approximator
    approximator_params = dict(input_shape=mdp.info.observation_space.shape,
                               n_actions=mdp.info.action_space.n,
                               n_estimators=50,
                               min_samples_split=5,
                               min_samples_leaf=2)
    approximator = ExtraTreesRegressor

    # Agent
    agent = alg(mdp.info,
                pi,
                approximator,
                approximator_params=approximator_params,
                **alg_params)

    # Algorithm
    core = Core(agent, mdp)

    # Train
    core.learn(n_episodes=5, n_episodes_per_fit=5)

    test_epsilon = Parameter(0.75)
    agent.policy.set_epsilon(test_epsilon)
    dataset = core.evaluate(n_episodes=2)

    return agent, np.mean(compute_J(dataset, mdp.info.gamma))
Пример #14
0
def test_true_online_sarsa_lambda_save(tmpdir):
    agent_path = tmpdir / 'agent_{}'.format(datetime.now().strftime("%H%M%S%f"))

    pi, _, mdp_continuous = initialize()
    mdp_continuous.seed(1)
    n_tilings = 1
    tilings = Tiles.generate(n_tilings, [2, 2],
                             mdp_continuous.info.observation_space.low,
                             mdp_continuous.info.observation_space.high)
    features = Features(tilings=tilings)

    approximator_params = dict(
        input_shape=(features.size,),
        output_shape=(mdp_continuous.info.action_space.n,),
        n_actions=mdp_continuous.info.action_space.n
    )
    agent_save = TrueOnlineSARSALambda(mdp_continuous.info, pi,
                                  Parameter(.1), .9, features=features,
                                  approximator_params=approximator_params)

    core = Core(agent_save, mdp_continuous)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    agent_save.save(agent_path)
    agent_load = Agent.load(agent_path)

    for att, method in vars(agent_save).items():
        save_attr = getattr(agent_save, att)
        load_attr = getattr(agent_load, att)

        tu.assert_eq(save_attr, load_attr)
Пример #15
0
def test_collect_Q():
    np.random.seed(88)
    mdp = GridWorld(3, 3, (2, 2))

    eps = Parameter(0.1)
    pi = EpsGreedy(eps)
    alpha = Parameter(0.1)
    agent = SARSA(mdp.info, pi, alpha)

    callback_q = CollectQ(agent.Q)
    callback_max_q = CollectMaxQ(agent.Q, np.array([2]))

    core = Core(agent, mdp, callbacks=[callback_q, callback_max_q])

    core.learn(n_steps=1000, n_steps_per_fit=1, quiet=True)

    V_test = np.array([2.4477574, 0.02246188, 1.6210059, 6.01867052])
    V = callback_q.get()[-1]

    assert np.allclose(V[0, :], V_test)

    V_max = np.array([np.max(x[2, :], axis=-1) for x in callback_q.get()])
    max_q = np.array(callback_max_q.get())

    assert np.allclose(V_max, max_q)
Пример #16
0
def test_sarsa_lambda_continuous_nn():
    pi, _, mdp_continuous = initialize()
    mdp_continuous.seed(1)

    features = Features(
        n_outputs=mdp_continuous.info.observation_space.shape[0]
    )

    approximator_params = dict(
        input_shape=(features.size,),
        output_shape=(mdp_continuous.info.action_space.n,),
        network=Network,
        n_actions=mdp_continuous.info.action_space.n
    )
    agent = SARSALambdaContinuous(mdp_continuous.info, pi, TorchApproximator,
                                  Parameter(.1), .9, features=features,
                                  approximator_params=approximator_params)

    core = Core(agent, mdp_continuous)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_w = np.array([-0.18968964, 0.4296857, 0.52967095, 0.5674884,
                       -0.12784956, -0.10572472, -0.14546978, -0.67001086,
                       -0.93925357])

    assert np.allclose(agent.Q.get_weights(), test_w)
Пример #17
0
def test_lspi():
    np.random.seed(1)

    # MDP
    mdp = CartPole()

    # Policy
    epsilon = Parameter(value=1.)
    pi = EpsGreedy(epsilon=epsilon)

    # Agent
    basis = [PolynomialBasis()]
    features = Features(basis_list=basis)

    fit_params = dict()
    approximator_params = dict(input_shape=(features.size, ),
                               output_shape=(mdp.info.action_space.n, ),
                               n_actions=mdp.info.action_space.n)
    agent = LSPI(mdp.info,
                 pi,
                 approximator_params=approximator_params,
                 fit_params=fit_params,
                 features=features)

    # Algorithm
    core = Core(agent, mdp)

    # Train
    core.learn(n_episodes=10, n_episodes_per_fit=10)

    w = agent.approximator.get_weights()
    w_test = np.array([-1.00749128, -1.13444655, -0.96620322])

    assert np.allclose(w, w_test)
Пример #18
0
def experiment(algorithm_class, exp):
    np.random.seed()

    # MDP
    mdp = GridWorldVanHasselt()

    # Policy
    epsilon = ExponentialParameter(value=1,
                                   exp=.5,
                                   size=mdp.info.observation_space.size)
    pi = EpsGreedy(epsilon=epsilon)

    # Agent
    learning_rate = ExponentialParameter(value=1, exp=exp, size=mdp.info.size)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = algorithm_class(mdp.info, pi, **algorithm_params)

    # Algorithm
    start = mdp.convert_to_int(mdp._start, mdp._width)
    collect_max_Q = CollectMaxQ(agent.Q, start)
    collect_dataset = CollectDataset()
    callbacks = [collect_dataset, collect_max_Q]
    core = Core(agent, mdp, callbacks)

    # Train
    core.learn(n_steps=10000, n_steps_per_fit=1, quiet=True)

    _, _, reward, _, _, _ = parse_dataset(collect_dataset.get())
    max_Qs = collect_max_Q.get()

    return reward, max_Qs
Пример #19
0
def experiment(n_epochs, n_episodes):
    np.random.seed()

    logger = Logger(COPDAC_Q.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + COPDAC_Q.__name__)

    # MDP
    n_steps = 5000
    mdp = InvertedPendulum(horizon=n_steps)

    # Agent
    n_tilings = 10
    alpha_theta = Parameter(5e-3 / n_tilings)
    alpha_omega = Parameter(0.5 / n_tilings)
    alpha_v = Parameter(0.5 / n_tilings)
    tilings = Tiles.generate(n_tilings, [10, 10],
                             mdp.info.observation_space.low,
                             mdp.info.observation_space.high + 1e-3)

    phi = Features(tilings=tilings)

    input_shape = (phi.size, )

    mu = Regressor(LinearApproximator,
                   input_shape=input_shape,
                   output_shape=mdp.info.action_space.shape)

    sigma = 1e-1 * np.eye(1)
    policy = GaussianPolicy(mu, sigma)

    agent = COPDAC_Q(mdp.info,
                     policy,
                     mu,
                     alpha_theta,
                     alpha_omega,
                     alpha_v,
                     value_function_features=phi,
                     policy_features=phi)

    # Train
    dataset_callback = CollectDataset()
    visualization_callback = Display(agent._V, mu,
                                     mdp.info.observation_space.low,
                                     mdp.info.observation_space.high, phi, phi)
    core = Core(agent, mdp, callbacks_fit=[dataset_callback])

    for i in trange(n_epochs, leave=False):
        core.learn(n_episodes=n_episodes, n_steps_per_fit=1, render=False)
        J = compute_J(dataset_callback.get(), gamma=1.0)
        dataset_callback.clean()
        visualization_callback()
        logger.epoch_info(i + 1, R_mean=np.sum(J) / n_steps / n_episodes)

    logger.info('Press a button to visualize the pendulum...')
    input()
    sigma = 1e-8 * np.eye(1)
    policy.set_sigma(sigma)
    core.evaluate(n_steps=n_steps, render=True)
Пример #20
0
def experiment(alg, env_id, horizon, gamma, n_epochs, n_steps, n_steps_per_fit,
               n_episodes_test, alg_params, policy_params):
    print(alg.__name__)

    mdp = Gym(env_id, horizon, gamma)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.Adam,
                             'params': {
                                 'lr': 3e-4
                             }
                         },
                         loss=F.mse_loss,
                         n_features=32,
                         batch_size=64,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    alg_params['critic_params'] = critic_params

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    dataset = core.evaluate(n_episodes=n_episodes_test, render=False)

    J = np.mean(compute_J(dataset, mdp.info.gamma))
    R = np.mean(compute_J(dataset))
    E = agent.policy.entropy()

    tqdm.write('END OF EPOCH 0')
    tqdm.write('J: {}, R: {}, entropy: {}'.format(J, R, E))
    tqdm.write(
        '##################################################################################################'
    )

    for it in trange(n_epochs):
        core.learn(n_steps=n_steps, n_steps_per_fit=n_steps_per_fit)
        dataset = core.evaluate(n_episodes=n_episodes_test, render=False)

        J = np.mean(compute_J(dataset, mdp.info.gamma))
        R = np.mean(compute_J(dataset))
        E = agent.policy.entropy()

        tqdm.write('END OF EPOCH ' + str(it + 1))
        tqdm.write('J: {}, R: {}, entropy: {}'.format(J, R, E))
        tqdm.write(
            '##################################################################################################'
        )

    print('Press a button to visualize')
    input()
    core.evaluate(n_episodes=5, render=True)
def experiment(n_epochs, n_iterations, ep_per_run, save_states_to_disk):
    np.random.seed()

    logger = Logger('plot_and_norm_example', results_dir=None)
    logger.strong_line()
    logger.info('Plotting and normalization example')

    # MDP
    mdp = LQR.generate(dimensions=2, max_pos=10., max_action=5., episodic=True)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    optimizer = AdaptiveOptimizer(eps=.01)
    algorithm_params = dict(optimizer=optimizer)
    agent = REINFORCE(mdp.info, policy, **algorithm_params)

    # normalization callback
    prepro = MinMaxPreprocessor(mdp_info=mdp.info)

    # plotting callback
    plotter = PlotDataset(mdp.info, obs_normalized=True)

    # Train
    core = Core(agent, mdp, callback_step=plotter, preprocessors=[prepro])

    # training loop
    for n in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset = core.evaluate(n_episodes=ep_per_run, render=False)
        J = np.mean(compute_J(dataset, mdp.info.gamma))
        logger.epoch_info(n + 1, J=J)

    if save_states_to_disk:
        # save normalization / plot states to disk path
        logger.info('Saving plotting and normalization data')
        os.makedirs("./logs/plot_and_norm", exist_ok=True)
        prepro.save("./logs/plot_and_norm/preprocessor.msh")
        plotter.save_state("./logs/plot_and_norm/plotting_state")

        # load states from disk path
        logger.info('Loading preprocessor and plotter')
        prerpo = MinMaxPreprocessor.load(
            "./logs/plot_and_norm/preprocessor.msh")
        plotter.load_state("./logs/plot_and_norm/plotting_state")
Пример #22
0
def experiment(alg, params, n_epochs, n_episodes, n_ep_per_fit):
    np.random.seed()
    print('============ start experiment ============')
    logger = Logger(alg.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + alg.__name__)

    # MDP
    mdp = GraspEnv()
    print('============ mdp ============')

    # Policy
    n_weights = 6
    mu = np.array([-0.5, 0.0, 0.91, m.pi, 0, 0])
    sigma = np.asarray([0.05, 0.05, 0.05, 0.1, 0.1,
                        0.1])  #np.asarray([0.15, 0.15, 0.15, 0.4, 0.4, 0.4])
    policy = Own_policy()
    dist = GaussianDiagonalDistribution(
        mu, sigma)  # TODO: is this distribution right? Yes.
    agent = alg(mdp.info, dist, policy, **params)

    # Train
    dataset_callback = CollectDataset(
    )  # TODO: should we also collect the dataset? Just keep this.
    core = Core(agent, mdp, callbacks_fit=[dataset_callback])
    #core = Core(agent, mdp)

    for i in range(n_epochs):
        print('================ core learn ================')
        core.learn(n_episodes=n_episodes, n_episodes_per_fit=n_ep_per_fit)

        J = compute_J(dataset_callback.get(), gamma=mdp.info.gamma)
        print('J:', J)
        print('============================')
        dataset_callback.clean()  # Todo: learning curve? Done

        p = dist.get_parameters()
        print('p:', p)
        mu_0.append(p[:n_weights][0])
        mu_1.append(p[:n_weights][1])
        mu_2.append(p[:n_weights][2])
        mu_3.append(p[:n_weights][3])
        mu_4.append(p[:n_weights][4])
        mu_5.append(p[:n_weights][5])

        current_avg_sigma = (p[n_weights:][0] + p[n_weights:][1] +
                             p[n_weights:][2] + p[n_weights:][3] +
                             p[n_weights:][4] + p[n_weights:][5]) / 6
        avg_sigma.append(current_avg_sigma)

        # record learning curve of cumulative rewards
        logger.epoch_info(i + 1,
                          J=np.mean(J),
                          mu=p[:n_weights],
                          sigma=p[n_weights:])
        list_J.append(np.mean(J))
Пример #23
0
def learn(alg, alg_params):
    # MDP
    mdp = CartPole()
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    # Policy
    epsilon_random = Parameter(value=1.)
    pi = EpsGreedy(epsilon=epsilon_random)

    # Approximator
    input_shape = mdp.info.observation_space.shape
    approximator_params = dict(
        network=Network if alg is not CategoricalDQN else FeatureNetwork,
        optimizer={
            'class': optim.Adam,
            'params': {
                'lr': .001
            }
        },
        loss=F.smooth_l1_loss,
        input_shape=input_shape,
        output_shape=mdp.info.action_space.size,
        n_actions=mdp.info.action_space.n,
        n_features=2,
        use_cuda=False)

    # Agent
    if alg not in [DuelingDQN, CategoricalDQN]:
        agent = alg(mdp.info,
                    pi,
                    TorchApproximator,
                    approximator_params=approximator_params,
                    **alg_params)
    elif alg is CategoricalDQN:
        agent = alg(mdp.info,
                    pi,
                    approximator_params=approximator_params,
                    n_atoms=2,
                    v_min=-1,
                    v_max=1,
                    **alg_params)
    else:
        agent = alg(mdp.info,
                    pi,
                    approximator_params=approximator_params,
                    **alg_params)

    # Algorithm
    core = Core(agent, mdp)

    core.learn(n_steps=500, n_steps_per_fit=5)

    return agent
Пример #24
0
def learn(alg):
    mdp = Gym('Pendulum-v0', 200, .99)
    mdp.seed(1)
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    # Policy
    policy_class = OrnsteinUhlenbeckPolicy
    policy_params = dict(sigma=np.ones(1) * .2, theta=.15, dt=1e-2)

    # Settings
    initial_replay_size = 500
    max_replay_size = 5000
    batch_size = 200
    n_features = 80
    tau = .001

    # Approximator
    actor_input_shape = mdp.info.observation_space.shape
    actor_params = dict(network=ActorNetwork,
                        n_features=n_features,
                        input_shape=actor_input_shape,
                        output_shape=mdp.info.action_space.shape,
                        use_cuda=False)

    actor_optimizer = {'class': optim.Adam, 'params': {'lr': .001}}

    critic_input_shape = (actor_input_shape[0] +
                          mdp.info.action_space.shape[0], )
    critic_params = dict(network=CriticNetwork,
                         optimizer={
                             'class': optim.Adam,
                             'params': {
                                 'lr': .001
                             }
                         },
                         loss=F.mse_loss,
                         n_features=n_features,
                         input_shape=critic_input_shape,
                         output_shape=(1, ),
                         use_cuda=False)

    # Agent
    agent = alg(mdp.info, policy_class, policy_params, actor_params,
                actor_optimizer, critic_params, batch_size,
                initial_replay_size, max_replay_size, tau)

    # Algorithm
    core = Core(agent, mdp)

    core.learn(n_episodes=10, n_episodes_per_fit=5)

    return agent.policy
Пример #25
0
def experiment():
    np.random.seed()

    # MDP
    mdp = CarOnHill()

    # Policy
    epsilon = Parameter(value=1.)
    pi = EpsGreedy(epsilon=epsilon)

    # Approximator
    approximator_params = dict(input_shape=mdp.info.observation_space.shape,
                               n_actions=mdp.info.action_space.n,
                               n_estimators=50,
                               min_samples_split=5,
                               min_samples_leaf=2)
    approximator = ExtraTreesRegressor

    # Agent
    algorithm_params = dict(n_iterations=20)
    agent = FQI(mdp.info,
                pi,
                approximator,
                approximator_params=approximator_params,
                **algorithm_params)

    # Algorithm
    core = Core(agent, mdp)

    # Render
    core.evaluate(n_episodes=1, render=True)

    # Train
    core.learn(n_episodes=1000, n_episodes_per_fit=1000)

    # Test
    test_epsilon = Parameter(0.)
    agent.policy.set_epsilon(test_epsilon)

    initial_states = np.zeros((289, 2))
    cont = 0
    for i in range(-8, 9):
        for j in range(-8, 9):
            initial_states[cont, :] = [0.125 * i, 0.375 * j]
            cont += 1

    dataset = core.evaluate(initial_states=initial_states)

    # Render
    core.evaluate(n_episodes=3, render=True)

    return np.mean(compute_J(dataset, mdp.info.gamma))
Пример #26
0
def experiment(alg, env_id, horizon, gamma, n_epochs, n_steps, n_steps_per_fit,
               n_step_test, alg_params, policy_params):
    logger = Logger(A2C.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + A2C.__name__)

    mdp = Gym(env_id, horizon, gamma)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.RMSprop,
                             'params': {
                                 'lr': 7e-4,
                                 'eps': 1e-5
                             }
                         },
                         loss=F.mse_loss,
                         n_features=64,
                         batch_size=64,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    alg_params['critic_params'] = critic_params

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    dataset = core.evaluate(n_steps=n_step_test, render=False)

    J = np.mean(compute_J(dataset, mdp.info.gamma))
    R = np.mean(compute_J(dataset))
    E = agent.policy.entropy()

    logger.epoch_info(0, J=J, R=R, entropy=E)

    for it in trange(n_epochs):
        core.learn(n_steps=n_steps, n_steps_per_fit=n_steps_per_fit)
        dataset = core.evaluate(n_steps=n_step_test, render=False)

        J = np.mean(compute_J(dataset, mdp.info.gamma))
        R = np.mean(compute_J(dataset))
        E = agent.policy.entropy()

        logger.epoch_info(it + 1, J=J, R=R, entropy=E)

    logger.info('Press a button to visualize')
    input()
    core.evaluate(n_episodes=5, render=True)
Пример #27
0
def test_maxmin_q_learning():
    pi, mdp, _ = initialize()
    agent = MaxminQLearning(mdp.info, pi, Parameter(.5), n_tables=4)

    core = Core(agent, mdp)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_q = np.array([[0., 0., 0., 0.], [0., 7.5, 0., 0.], [0., 0., 0., 5.],
                       [0., 0., 0., 0.]])

    assert np.allclose(agent.Q[0].table, test_q)
Пример #28
0
def experiment(alg, params, n_epochs, fit_per_epoch, ep_per_fit):
    np.random.seed()

    logger = Logger(alg.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + alg.__name__)

    # MDP
    mdp = ShipSteering()

    # Policy
    high = [150, 150, np.pi]
    low = [0, 0, -np.pi]
    n_tiles = [5, 5, 6]
    low = np.array(low, dtype=np.float)
    high = np.array(high, dtype=np.float)
    n_tilings = 1

    tilings = Tiles.generate(n_tilings=n_tilings,
                             n_tiles=n_tiles,
                             low=low,
                             high=high)

    phi = Features(tilings=tilings)
    input_shape = (phi.size, )

    approximator = Regressor(LinearApproximator,
                             input_shape=input_shape,
                             output_shape=mdp.info.action_space.shape)

    policy = DeterministicPolicy(approximator)

    mu = np.zeros(policy.weights_size)
    sigma = 4e-1 * np.ones(policy.weights_size)
    distribution = GaussianDiagonalDistribution(mu, sigma)

    # Agent
    agent = alg(mdp.info, distribution, policy, features=phi, **params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_fit)
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    logger.epoch_info(0, J=np.mean(J))

    for i in range(n_epochs):
        core.learn(n_episodes=fit_per_epoch * ep_per_fit,
                   n_episodes_per_fit=ep_per_fit)
        dataset_eval = core.evaluate(n_episodes=ep_per_fit)
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        logger.epoch_info(i + 1, J=np.mean(J))
Пример #29
0
def test_rq_learning():
    pi, mdp, _ = initialize()

    agent = RQLearning(mdp.info, pi, Parameter(.1), beta=Parameter(.5))

    core = Core(agent, mdp)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_q = np.array([[0.32411217, 2.9698436, 0.46474438, 1.10269504],
                       [2.99505139, 5.217031, 0.40933461, 0.37687883],
                       [0.41942675, 0.32363486, 0., 4.68559],
                       [0., 0., 0., 0.]])

    assert np.allclose(agent.Q.table, test_q)

    agent = RQLearning(mdp.info, pi, Parameter(.1), delta=Parameter(.5))

    core = Core(agent, mdp)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_q = np.array([[1.04081115e-2, 5.14662188e-1, 1.73951634e-2, 1.24081875e-01],
                       [0., 2.71, 1.73137500e-4, 4.10062500e-6],
                       [0., 4.50000000e-2, 0., 4.68559],
                       [0., 0., 0., 0.]])

    assert np.allclose(agent.Q.table, test_q)

    agent = RQLearning(mdp.info, pi, Parameter(.1), off_policy=True,
                       beta=Parameter(.5))

    core = Core(agent, mdp)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_q = np.array([[3.55204022, 4.54235939, 3.42601165, 2.95170908],
                       [2.73877031, 3.439, 2.42031528, 2.86634531],
                       [3.43274708, 3.8592342, 3.72637395, 5.217031],
                       [0., 0., 0., 0.]])

    assert np.allclose(agent.Q.table, test_q)

    agent = RQLearning(mdp.info, pi, Parameter(.1), off_policy=True,
                       delta=Parameter(.5))

    core = Core(agent, mdp)

    # Train
    core.learn(n_steps=100, n_steps_per_fit=1, quiet=True)

    test_q = np.array([[0.18947806, 1.57782254, 0.21911489, 1.05197011],
                       [0.82309759, 5.217031, 0.04167492, 0.61472604],
                       [0.23620541, 0.59828262, 1.25299991, 5.217031],
                       [0., 0., 0., 0.]])

    assert np.allclose(agent.Q.table, test_q)
Пример #30
0
def experiment(n_epochs, n_iterations, ep_per_run, save_states_to_disk):
    np.random.seed()

    # MDP
    mdp = LQR.generate(dimensions=2, max_pos=10., max_action=5., episodic=True)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    learning_rate = AdaptiveParameter(value=.01)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = REINFORCE(mdp.info, policy, **algorithm_params)

    # normalization callback
    prepro = MinMaxPreprocessor(mdp_info=mdp.info)

    # plotting callback
    plotter = PlotDataset(mdp.info, obs_normalized=True)

    # Train
    core = Core(agent, mdp, callback_step=plotter, preprocessors=[prepro])

    # training loop
    for n in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset = core.evaluate(n_episodes=ep_per_run, render=False)
        print('Epoch: ', n, '  J: ', np.mean(compute_J(dataset,
                                                       mdp.info.gamma)))

    if save_states_to_disk:
        # save normalization / plot states to disk path
        os.makedirs("./temp/", exist_ok=True)
        prepro.save_state("./temp/normalization_state")
        plotter.save_state("./temp/plotting_state")

        # load states from disk path
        prepro.load_state("./temp/normalization_state")
        plotter.load_state("./temp/plotting_state")