Пример #1
0
    def fit(self, dataset):
        if not self._quiet:
            tqdm.write('Iteration ' + str(self._iter))

        state, action, reward, next_state, absorbing, last = parse_dataset(
            dataset)
        x = state.astype(np.float32)
        u = action.astype(np.float32)
        r = reward.astype(np.float32)
        xn = next_state.astype(np.float32)

        obs = to_float_tensor(x, self.policy.use_cuda)
        act = to_float_tensor(u, self.policy.use_cuda)
        v_target, np_adv = compute_gae(self._V, x, xn, r, absorbing, last,
                                       self.mdp_info.gamma, self._lambda)
        np_adv = (np_adv - np.mean(np_adv)) / (np.std(np_adv) + 1e-8)
        adv = to_float_tensor(np_adv, self.policy.use_cuda)

        # Policy update
        self._old_policy = deepcopy(self.policy)
        old_pol_dist = self._old_policy.distribution_t(obs)
        old_log_prob = self._old_policy.log_prob_t(obs, act).detach()

        zero_grad(self.policy.parameters())
        loss = self._compute_loss(obs, act, adv, old_log_prob)

        prev_loss = loss.item()

        # Compute Gradient
        loss.backward()
        g = get_gradient(self.policy.parameters())

        # Compute direction through conjugate gradient
        stepdir = self._conjugate_gradient(g, obs, old_pol_dist)

        # Line search
        self._line_search(obs, act, adv, old_log_prob, old_pol_dist, prev_loss,
                          stepdir)

        # VF update
        self._V.fit(x, v_target, **self._critic_fit_params)

        # Print fit information
        self._print_fit_info(dataset, x, v_target, old_pol_dist)
        self._iter += 1
Пример #2
0
    def diff(self, *args, **kwargs):
        """
        Compute the derivative of the output w.r.t. ``state``, and ``action``
        if provided.

        Args:
            state (np.ndarray): the state;
            action (np.ndarray, None): the action.

        Returns:
            The derivative of the output w.r.t. ``state``, and ``action``
            if provided.

        """
        if not self._use_cuda:
            torch_args = [torch.from_numpy(np.atleast_2d(x)) for x in args]
        else:
            torch_args = [
                torch.from_numpy(np.atleast_2d(x)).cuda() for x in args
            ]

        y_hat = self.network(*torch_args, **kwargs)
        n_outs = 1 if len(y_hat.shape) == 0 else y_hat.shape[-1]
        y_hat = y_hat.view(-1, n_outs)

        gradients = list()
        for i in range(y_hat.shape[1]):
            zero_grad(self.network.parameters())
            y_hat[:, i].backward(retain_graph=True)

            gradient = list()
            for p in self.network.parameters():
                g = p.grad.data.detach().cpu().numpy()
                gradient.append(g.flatten())

            g = np.concatenate(gradient, 0)

            gradients.append(g)

        g = np.stack(gradients, -1)

        return g