Пример #1
0
    def run_mutant(self):
        self.mutation_history = []
        self.mutation_cluster = {}
        self.mutation = Mutation(self.configuration.get_mutation_trace(),
                                 self.databank)
        self.mutation_traces = self.make_mutation_traces()

        # run a default trace for compare
        logging.info(" start run default trace")
        self.executor.start()
        self.executor.goto_url()
        initial_state = self.get_initail_state()
        self.run_mutant_script(initial_state)
        self.close()

        # run all mutation traces
        logging.info(' total %d mutation traces ', len(self.mutation_traces))
        for n in xrange(len(self.mutation_traces)):
            logging.info(" start run number %d mutant trace", n)
            self.executor.start()
            self.executor.goto_url()
            initial_state = self.get_initail_state()
            self.run_mutant_script(initial_state, self.mutation_traces[n])
            self.close()
        self.save_mutation_history()
Пример #2
0
	def mutate(self, remainingProteins):
		for i in remainingProteins:
			willItChange = randint(0, 99)
			if willItChange == 0:
				mutation = Mutation(self.proteinString[i])
				self.proteinString = self.proteinString[0:i] + mutation.getProtein() + self.proteinString[i+1:]
				
				self.mutations.append(mutation)
Пример #3
0
	def next_generation(self, population):
		selection = Selection(deepcopy(population), strategy=SelectionStrategy.TOURNAMENT.value)
		mating = Mating(selection)
		crossover = Crossover(mating)

		for i, individual in enumerate(crossover.mating.selection.population.individuals):
			mutation = Mutation(individual)
			crossover.mating.selection.population.individuals[i] = mutation.mutate()

		print(f'Individuals: {len(self.individuals)}')
		print(f'New generation: {len(crossover.new_generation)}')
		return crossover.mating.selection.population
    def createChildren(self, parents):
        roulette = Roulette(parents)
        children = []
        for _ in range(5):
            parent_1 = roulette.select_parent()
            parent_2 = roulette.select_parent()
            new_children = Crossover(parent_1, parent_2).generate_children()
            Mutation(new_children[0]).mutate()
            Mutation(new_children[1]).mutate()
            children.append(new_children[0])
            children.append(new_children[1])

        return children
Пример #5
0
def load_mutation_from_dict(d):
    mutation_id = d['id']

    ref_counts = int(d['ref_counts'])
    var_counts = int(d['var_counts'])

    mutation = Mutation(mutation_id, ref_counts, var_counts)

    for state_dict in d['states']:
        state = load_state_from_dict(state_dict)

        mutation.add_state(state)

    return mutation
Пример #6
0
	def next(self):
		if self.__f is None:
			self.__open()
			line, stripped_line = self.__readline()
			self.hdr = {self.rename_cols.get(c, c).upper() : i for i, c in enumerate(stripped_line.split(self.separator))}
			all_cols = set(self.hdr.keys())
			coord_cols = all_cols & self.COLUMNS
			req_gen_headers = len(set(["CHR", "START"]) & coord_cols) == 2 and len(set(["REF", "ALT"]) & coord_cols) >= 1
			req_prot_headers = len(set(["TRANSCRIPT", "PROTEIN"])) >= 1 and "AA_POS" in coord_cols and len(set(["AA_REF", "AA_ALT"]) & coord_cols) >= 1
			if self.coord_type is None: # infer type of coordinates from the columns header
				if req_gen_headers:
					self.coord_type = Mutation.GENOMIC
					columns = all_cols & self._G_COLS
				elif req_prot_headers:
					self.coord_type = Mutation.PROTEIN
					columns = all_cols & self._P_COLS
				else:
					raise Exception("Not possible to infer which kind of coordinates to use from the headers")
			elif self.coord_type == Mutation.GENOMIC:
				columns = all_cols & self._G_COLS
				if not req_gen_headers:
					raise Exception("Missing required headers for genomic coordinates: CHR, START and any of REF or ALT")
			elif self.coord_type == Mutation.PROTEIN:
				columns = all_cols & self._P_COLS
				if not req_prot_headers:
					raise Exception("Missing required headers for proteomic coordinates: any of TRANSCRIPT or PROTEIN and AA_POS and any of AA_REF or AA_ALT")
			else:
				raise Exception("Unknown coordinate type: {}".format(self.coord_type))

			self.columns = [(c, self.hdr[c], self._MUT_ATTR[c], self._ATTR_TYPE.get(c)) for c in columns]

		line, stripped_line = self.__readline()

		if len(line) == 0:
			raise StopIteration

		line = stripped_line
		fields = line.split(self.separator)
		num_fields = len(fields)

		m = Mutation()
		m.coord = self.coord_type
		for col, ix, attr, atype in self.columns:
			if ix < num_fields:
				if atype is not None:
					setattr(m, attr, atype(fields[ix]))
				else:
					setattr(m, attr, fields[ix])

		return m
Пример #7
0
 def __init__(self,
              population_size,
              sample_genotype,
              crossover_rate=0.6,
              mutation_rate=0.2,
              maximize=True):
     self.population_size = population_size
     self.genotype = sample_genotype
     self.crossover_rate = crossover_rate
     self.mutation_rate = mutation_rate
     self.selector = RankSelector(maximize)
     self.crossover = OnePointCrossover()
     self.mutation = Mutation()
     self.generations = []
     self.maximize = maximize
Пример #8
0
def mutate(vcf_info, opts):

    abs_path = opts[util.ABSOLUTE_PATH_OPTION]
    output = opts[util.OUTPUT_OPTION]

    log_not_found = []
    ################################# RefSeq_human_full.fasta ###################################

    util.print_task(util.TASK_LOAD_PROTEIN_FILE)

    refseq_human = read_protein_file(abs_path)

    util.print_status(util.TASK_SUCCESS)

    #############################################################################################

    ############################# Transcripts_refseq.fasta reading ##############################

    util.print_task(util.TASK_LOAD_TRANSCRIPT_FILE)

    refseq_transc, nm_np_conversor = read_transcript_file(abs_path)

    util.print_status(util.TASK_SUCCESS)

    #############################################################################################

    ################################# vcf info file processing ##################################

    mutations = defaultdict(list)
    samples = set()
    curr_sample = 1

    util.print_task(util.TASK_PROCESS_MUTATION)

    with open(vcf_info, "r") as f:

        f.readline()

        for line in f:

            try:
                mutation = Mutation(line, nm_np_conversor, refseq_transc, refseq_human)
            except KeyError:
                log_not_found.append(line.rstrip())
                continue
            
            samples.add(mutation.sample)

            if mutation.mut_protein_sequence:
                if len(samples) == curr_sample:
                    mutations[mutation.transcript].append(mutation)
                else:
                    generate_report.mutation(mutations[mutations.keys()[0]][0].sample, mutations, output)
                    mutations = defaultdict(list)
                    mutations[mutation.transcript].append(mutation)
                    curr_sample += 1
                
    generate_report.mutation(mutations[mutations.keys()[0]][0].sample, mutations, output)

    util.print_status(util.TASK_SUCCESS)
 def createChildren(self, parents):
     # Cria a roleta
     roulette = Roulette(parents)
     children = []
     # Cria 10 filhos
     for _ in range(5):
         parent_1 = roulette.select_parent()
         parent_2 = roulette.select_parent()
         new_children = Crossover(parent_1, parent_2).generate_children()
         # Realiza a mutação nos filhos (respeitando a proporcionalidade)
         Mutation(new_children[0]).mutate()
         Mutation(new_children[1]).mutate()
         children.append(new_children[0])
         children.append(new_children[1])
         
     return children
Пример #10
0
    def attempt_breeding(self, individual_i, individual_j):

        """
        Attempt to breed the two individuals (several times if necessary)
        If the breeding is successful and the Neural Networks can be built,
        the two offsprings are added into the next generation.

        The breeding process is the following:
            - cross-over between the two lovers
            - mutate the offsprings with probability p
            - create the offsprings neural networks

        """

        successful_breedings = 0
        breeding_attempts = 0

        while(successful_breedings < 2 and breeding_attempts < Settings.MAX_BREEDING_ATTEMPTS):
            
            try:
                # cross over the two individuals
                offspring_1, offspring_2 = Cross_Over(self.population[individual_i], self.population[individual_j]).breed()
            
            except NoBridgeException as e:
                print(e)
                print("Failed to cross-over the individuals")
                return (False)
            except Exception as e:
                print("Failed to cross-over the individuals")
                return (False)
                

            for offspring in [offspring_1, offspring_2]:

                # apply (several if we are stuck in a local optimum) mutations to the offspring  
                for _ in range(self.mutations_per_breeding):
                    offspring = Mutation(offspring).mutate()
                
                mutated_offspring = offspring

                # build and train the crossed-mutated graphs on the spot
                if(successful_breedings < 2):
                        
                    try:
                        mutated_offspring_fitness = self.build_and_train_network(mutated_offspring)

                        self.next_generation_dna.append(mutated_offspring)
                        self.next_generation_fitness.append(mutated_offspring_fitness)
                        successful_breedings += 1

                    except Exception as e:
                        print("Failed to build the NN \n\n" + str(e))
                    
          
        return(successful_breedings)
Пример #11
0
 def __init__(self, population_size, sample_genotype, crossover_rate=0.6,
              mutation_rate=0.2, maximize=True):
     self.population_size = population_size
     self.genotype = sample_genotype
     self.crossover_rate = crossover_rate
     self.mutation_rate = mutation_rate
     self.selector = RankSelector(maximize)
     self.crossover = OnePointCrossover()
     self.mutation = Mutation()
     self.generations = []
     self.maximize = maximize
Пример #12
0
    def revolution(self, args):
        #config
        if (args.crossmode == "one"):
            cross_func = Crossover.onePoint
        elif (args.crossmode == "two"):
            cross_func = Crossover.twoPoints
        else:
            cross_func = Crossover.randomPoints

        # Prepare dataset
        dataset = readDataset(args.dpath)

        # Create individuals & population
        ppl = Population()
        for i in range(args.individuals):
            individual = Individual()
            individual.createGene(dataset, args.gene)
            ppl.addInd(individual)

        # Evolution
        for i in range(args.revolution):
            # Evaluation population in individuals
            ppl.calcFitness(self.evaluate)
            if ((i % 10) == 0):
                ppl.show()

            # Select parents
            if (args.elite):
                parents = Select.Elite(ppl, args.esize, args.mode)
                parents.extend(
                    Select.Tournament(ppl, args.individuals - args.esize,
                                      args.tornsize, args.mode))
            else:
                parents = Select.Tournament(ppl, args.individuals,
                                            args.tornsize, args.mode)

            # Clossover
            children = cross_func(parents, args.individuals, args.gene,
                                  args.crossrate)

            # Mutation
            children = Mutation.mutation(children, args.mutaterate, dataset)
            # Swap children
            ppl.setPpl(children)

        # show result
        ppl.calcFitness(self.evaluate)
        ppl.show()
Пример #13
0
def load_muts_from_file(opt, mut_fname):
    """
    Load all mutations from a population snapshot.

    Load the entire population of mutations from
    a population snapshot file.

    Inputs
    ------
    opt: global parameter set, used in initialising each mutation
    mut_fname: path to CSV file containing mutation snapshot (which
               must have been written using save_muts_to_file above)

    Returns
    -------
    2-tuple of dictionaries: (all_muts, mutation_map)

    all_muts: a dictionary of mutations of the form
              {mut_type: list of muts of that type}, passed
              back to simulation as master list of mutations.

    mutation_map: a dictionary of mutations of the form
                  {mut_id: Mutation}, used to reconstruct
                  the relationships between clones and mutations when
                  loading population snapshot from file.
    """
    all_muts = {'b': [], 'n': [], 'd': [], 'r': []}
    mutation_map = {}

    with open(mut_fname) as mut_file:
        mut_reader = csv.DictReader(mut_file)
        for row in mut_reader:
            # initialise new Mutation object
            new_mut = Mutation.init_from_file(opt, all_muts, row)

            # add it to ID map
            mutation_map[new_mut.mut_id] = new_mut

            # add it to main mutation dictionary
            try:
                all_muts[new_mut.mut_type].append(new_mut)
            except KeyError:
                raise KeyError("invalid mutation type (from file): {}".format(
                    new_mut.mut_type))

    return all_muts, mutation_map
Пример #14
0
 def __init__(self, starthgt=11, endhgt=-9, spins=3.5, radius=1,
     speed=SPD_DEFAULT, spawn_rate=1, pair_generator=random_pair):
     self.starthgt = starthgt
     self.endhgt = endhgt
     self.spins = spins
     self.maxhgt = self.starthgt - (math.pi)*self.spins
     self.radius = radius
     self._animas = 0
     self._rungs = []
     self._tba = []
     self.speed = speed
     self.spdmod = 1
     self._last_rung = None
     self._last_ends = []
     self.spawn_rate = spawn_rate
     self.pair_generator = pair_generator
     self.mutation = Mutation()
     self.enter_callback = None
     self.exit_callback = None
     self.in_box = []
Пример #15
0
def main():
    parser = argparse.ArgumentParser(description='Tweak GA parameters')
    parser.add_argument('-size','--populationSize', type=int, required=False, default=100,
                        help = 'Desired population size (int)')
    parser.add_argument('-iter','--maxIter',        type=int, required=False, default=100,
                        help = "Max number of iterations allowed (int)")
    parser.add_argument('-n','--n',                 type=int, required=False, default=10,
                        help = 'Desired number of neural_networks in the hidden layer')
    parser.add_argument('-k','--K',                 type=float, required=False, default=1.1,
                        help = "Chromosome is mutated by adding a number from the normal_distibution(0,K) to it's weights value")
    parser.add_argument('-err','--errThreshold',    type=float, required=False, default=0.1,
                        help = "Algorithm stops search if it has found a chromosome with error less than errThreshold")
    parser.add_argument('-train','--trainSet',      type=str, required=False, default="learningSet/train-set.txt",
                        help = "Path to training_set")
    #parser.add_argument('-test','--testSet',        type=str, required=False, default="learningSet/test-set.txt",
    #                    help = "Path to test_set")

    args = parser.parse_args()
    ERR_THRESHOLD = args.errThreshold
    VEL_POP  = args.populationSize
    MAX_ITER = args.maxIter
    N = args.n
    K = args.K

    train_set = parseLearningSet(args.trainSet)

    ## initialize needed operators
    fitnessOp  = Fitness(train_set)
    mutationOp = Mutation(K, N, VEL_POP)

    ##initialize population
    P = Population(N, VEL_POP)

    ##returns best neural_network (individual)
    best_nn = run_GA(P, fitnessOp, mutationOp, VEL_POP, MAX_ITER, ERR_THRESHOLD)
    test_set  = [] # parseLearningSet(args.testSet)
    test_dict = {} #parseLearningDict(args.testSet)

    writeOut(best_nn, test_set, test_dict)
Пример #16
0
    def run_mutant(self):
        self.mutation_history = []
        self.mutation_cluster = {}
        self.mutation = Mutation(self.configuration.get_mutation_trace(), self.databank)
        self.mutation_traces = self.make_mutation_traces()
        
        # run a default trace for compare
        logging.info(" start run default trace")
        self.executor.start()
        self.executor.goto_url() 
        initial_state = self.get_initail_state()
        self.run_mutant_script(initial_state)
        self.close()

        # run all mutation traces
        logging.info(' total %d mutation traces ', len(self.mutation_traces))
        for n in xrange(len(self.mutation_traces)):
            logging.info(" start run number %d mutant trace", n)
            self.executor.start()
            self.executor.goto_url()    
            initial_state = self.get_initail_state()
            self.run_mutant_script(initial_state, self.mutation_traces[n])
            self.close()
        self.save_mutation_history()
Пример #17
0
def main():
    parser = argparse.ArgumentParser(
        description="Simple toolkit to test changes in RBP/TF binding affinity"
        "caused by genetic variants.")
    parser.add_argument(dest='vcf', help='Path to the VCF file')
    parser.add_argument(dest='bed', help='Path to the bed file')
    parser.add_argument(dest='fasta', help='Path to the fasta file.')
    parser.add_argument(
        '--list',
        action='store_true',
        help='If bed argument represents a list of bed file to process'
        ' (one per line)')
    parser.add_argument(
        '--chr',
        action='store_true',
        help='Input files should contain chr string. If not found,'
        ' a fix is tried.')
    parser.add_argument(
        '--gtf',
        help=
        'gtf file to further take into account intron/exon boundaries. Canonical transcripts'
        'will be retrieved.')
    parser.add_argument(
        '--gtf_is_processed',
        action='store_true',
        help='If set \'--gtf\' argument represents the processed'
        'daraframe from an original gtf file.')
    parser.add_argument('-o',
                        '--output',
                        default=os.getcwd(),
                        help='Output directory. Default: current directory')
    parser.add_argument(
        '-p',
        '--fromPickle',
        help="If given, analysis should start from previously serialized object."
        "Input file will be ignored")
    args = parser.parse_args()

    osutils = OSutils()
    is_pickle = False
    if args.fromPickle:
        osutils.is_pickled(args.fromPickle)
        with open(args.fromPickle, 'rb') as file_object:
            raw_data = file_object.read()
        deserialized = pickle.loads(raw_data)
        is_pickle = True

    else:
        Logger.print_advances('Validating input data')
        if args.gtf:
            gtf = GTF(args.gtf, args.gtf_is_processed, args.output)
        else:
            gtf = None

        mutation = Mutation(args.vcf, args.bed, args.fasta, gtf, args.list,
                            args.chr, args.output)
        deserialized = {}
        Logger.print_advances('Starting analysis')
        for name, bedobj in mutation.beds.items():
            Logger.print_advances("Processing {} peak file.".format(name))
            Logger.log("Intercepting variants")
            fn = mutation.vcf_intersect(mutation.vcf_bed, bedobj, name)

            Logger.log('Extracting peaks fasta sequences')
            bed_seq = mutation.get_peak_sequence(bedobj, mutation.fasta)
            bed_peak_fasta = mutation.save_fasta_sequence(
                bed_seq, osutils.set_out_fn(mutation.outdir, name + ".fasta"))

            Logger.log("Mutating fasta sequences")
            isec = Isec(fn)
            seqs_mut = mutation.mutate_fasta(bed_peak_fasta, isec)
            deserialized[name] = seqs_mut
            Logger.log("Done")

        Logger.log("Dumping data structure to {}".format("data.pickle"))
        serialized = pickle.dumps(deserialized)
        with open(osutils.set_out_fn(mutation.outdir, "data.pickle"),
                  'wb') as file_object:
            file_object.write(serialized)

    motdisrupt = PeaksMutated(deserialized, is_pickle, args.output)
    motdisrupt.list_beds()
    motdisrupt.write_object()
    pwm = PWMs()
    pwm.parse_cisBP_pwm()
Пример #18
0
    creator.create("FitnessMax", base.Fitness, weights=(-1.0,))
creator.create("Individual", Individual, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

# Structure initializers
toolbox.register("individual", initIndividual, creator.Individual)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

# use multiple processors 
pool = multiprocessing.Pool(5)
toolbox.register("map", pool.map)

# register operators 
fit = Fitness("data/"+trainset_name)
mut = Mutation()
cross = Crossover()

toolbox.register("evaluate", fit.evaluate)
toolbox.register("mate", cross.cxOnePoint)
toolbox.register("mutate", mut.mutate)
toolbox.register("select", tools.selTournament, tournsize=3)

def main(id, checkpoint_name=None):
    # random.seed(64)

    if checkpoint_name:
        # A file name has been given, then load the data from the file
        cp = pickle.load(open(checkpoint_name, "rb"))
        pop = cp["population"]
        start_gen = cp["generation"] + 1
Пример #19
0
        print("roullette")
        roulet = Roulette_wheel(variable_config)
        roulette = roulet.roulette(variable_config, func_solution, popul)
        selection = roulette
        #print(roulette)
    '''

    #KRZYŻOWANIE
    #print("KRZYŻOWANIE")
    crosov = CrossingOver(variable_config)
    crosingover = crosov.crosingOver(variable_config, selection)
    #print(crosingover)

    #MUTACJA
    #print("MUTACJA")
    mutat = Mutation(variable_config)
    mutation = mutat.mutation(variable_config, crosingover)
    #print(mutation)

    #INWERSJA
    #print("INWERSJA")
    inver = Inversion(variable_config)
    inversion = inver.inversion(variable_config, mutation)
    #print(inversion)

    offspring = np.asarray(inversion)
    #print(offspring)

    decision_variables2 = randomBinSol.decVariables(variable_config, offspring)
    #print(decision_variables2)
Пример #20
0
# Structure initializers
toolbox.register("individual", initIndividual, creator.Individual)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

# use multiple processors or GPU
if config.global_config["device"]["device_type"] == "CPU":
    n_cpus = config.global_config["device"]["n_cpus"]
    pool = multiprocessing.Pool(n_cpus)
    toolbox.register("map", pool.map)
    logging.info(f"Running on {n_cpus} CPUs")
else:
    logging.info(f"Running on GPU.")

# register operators
fit = Fitness(**config.global_config["dataset"])
mut = MutationConv() if use_conv_layers else Mutation()
cross = CrossoverConv() if use_conv_layers else Crossover()

toolbox.register("eval_batch", fit.evaluate_batch)
toolbox.register("evaluate", fit.evaluate)
toolbox.register("mate", cross.cxOnePoint)
toolbox.register("mutate", mut.mutate)
if nsga_number == 3:
    ref_points = tools.uniform_reference_points(2, 12)
    toolbox.register("select", tools.selNSGA3, ref_points=ref_points)
elif nsga_number == 2:
    # nsgaII - deap implementation
    toolbox.register("select", tools.selNSGA2)
elif nsga_number == 1:
    # stepan's version of nsga
    toolbox.register("select", selectNSGA)
Пример #21
0
class Helix:
    def __init__(self, starthgt=11, endhgt=-9, spins=3.5, radius=1,
        speed=SPD_DEFAULT, spawn_rate=1, pair_generator=random_pair):
        self.starthgt = starthgt
        self.endhgt = endhgt
        self.spins = spins
        self.maxhgt = self.starthgt - (math.pi)*self.spins
        self.radius = radius
        self._animas = 0
        self._rungs = []
        self._tba = []
        self.speed = speed
        self.spdmod = 1
        self._last_rung = None
        self._last_ends = []
        self.spawn_rate = spawn_rate
        self.pair_generator = pair_generator
        self.mutation = Mutation()
        self.enter_callback = None
        self.exit_callback = None
        self.in_box = []
        
    def mutate(self, amt):
        self.mutation.mutate(amt)
        self.spdmod += amt * SPD_MUT_RATIO

    ### DO NOT USE
    def make_rung(self, next=None):
        rung = Rung(self, self.pair_generator())
        if next:
            rung.next = next
            self._last_rung.prev = rung
        self._rungs.append(rung)
        self._last_ends = rung
        self._last_rung = rung

    def obscure(self):
        map(Rung.obscure, self._rungs)

    def unobscure(self):
        map(Rung.unobscure, self._rungs)

    def register_callbacks(self, enter_callback, exit_callback):
        self.enter_callback = enter_callback
        self.exit_callback = exit_callback

    def update(self, dt):
        ## update the mutation
        self.mutation.update(dt)

        ## check to see if the last rung is far enough away for a new one
        if self._last_rung:
            if self._last_rung._hgt <= self.starthgt - self.spawn_rate:
                self.make_rung(self._last_rung)
        else:
            self.make_rung()

        ## compute the speed with mod -1.12 -> -1.3
        speed = self.speed*self.spdmod    
        #print "speed", speed

        ## update the mutation
        self.mutation.update(dt)

        ## check to see if the last rung is far enough away for a new one
        if self._last_rung:
            if self._last_rung._hgt <= self.starthgt - self.spawn_rate:
                self.make_rung(self._last_rung)
        else:
            self.make_rung()
            
        self.spdmod = max(self.spdmod - dt*SPD_DECAY, 1)
        ## compute the speed with mod -1.12 -> -1.3
        speed = self.speed*self.spdmod    

        for r in self._rungs:
            if r._hgt < -1.12 and r._hgt > -1.3:
                if not r.in_box:
                    r.in_box=True
                    if self.enter_callback:
                        self.enter_callback(r)
            if r.in_box and r._hgt < -1.3:
                r.in_box = False
                if self.exit_callback:
                    self.exit_callback(r)
            r.update(dt, speed)
            
        ## update and kill the rungs that have it coming :P
        dead = []
        for entity in self._rungs:
            if entity.dead:
                dead.append(entity)
        for e in dead:
            self._rungs.remove(e)
Пример #22
0
        # Select parents for offspring generation
        for ch in range(0, scored_population.__len__(), 1):
            # perform parent selection from scored population
            selection = Selection(population=scored_population)
            parents = selection.select()

            # perform crossover based on 50% probability
            crossover_prob = random.choice([True, False])
            crossover = Crossover(parents,
                                  crossover_probability=crossover_prob)
            offspring = crossover.perform_crossover()

            # perform mutation based on 50% probability
            mutation_prob = random.choice([True, False])
            mutation = Mutation(offspring, mutation_probability=mutation_prob)
            final_offspring = mutation.mutate()

            # add offspring to next generation
            next_gen_population.append(final_offspring)

        # Score next gen population
        scored_next_gen_population = []
        for chromosome in next_gen_population:
            fitness = Fitness(chromosome=chromosome, fitness_goal=fitness_goal)
            scored_next_gen_chromosome = fitness.calculate_fitness()
            scored_next_gen_population.append(scored_next_gen_chromosome)

        # Get generation best
        scored_next_gen_population.sort(key=lambda x: x[1])
        last_index = scored_next_gen_population.__len__() - 1
Пример #23
0
class SeleniumCrawler(Crawler):
    def __init__(self, configuration, executor, automata, databank, algorithm):
        self.configuration = configuration
        self.executor = executor
        self.automata = automata
        self.databank = databank

        #ALGO
        self.algorithm = algorithm
        self.algorithm.set_utility(self, configuration, executor, automata)
    
        #list of event:(state, clickable, inputs, selects, iframe_list)
        self.event_history = []

    def run(self):
        #start time
        self.time_start = time.time()

        self.executor.start()
        self.executor.goto_url()
        initial_state = self.get_initail_state()
        self.run_script_before_crawl(initial_state)
        self.crawl(1)
        return self.automata

    #the core
    def run_algorithm(self):
        # repeat for trace_amount times
        for i in range( self.configuration.get_trace_amount() ):
            print ('=initial state')
            self.initial()
            print ('=get into loop')
            j=0
            while self.action_events and self.configuration.get_max_depth() != 0:
                print('==start an action event')
                #string = ''.join([ str(action['action']['clickable'].get_id())+str(action['depth'])+str(action['state'].get_id()) for action in self.action_events ])
                string = ''.join([ str(action['depth'])+str(action['state'].get_id()) for action in self.action_events ])
                logging.info(' action_events : '+string )
                #print(' action_events : '+string)
                print('==get next action')
                state, action, depth = self.get_next_action()
                
                print('==change state')
                self.change_state(state, action, depth)
                print('==change edge')
                edge = self.trigger_action(state, action, depth)
                print('==update state')
                new_state,new_depth =self.update_states(state, edge, action, depth)
                print('==end an action event')
                print ("new depth:", new_depth)
                print ("max depth:", self.configuration.get_max_depth())
                print ("new state:", new_state.get_id(),j)
                print ("max state:", self.configuration.get_max_states())
                #check depth
                if new_depth > self.configuration.get_max_depth():
                    print("reach max depth")
                #check state
                if int(new_state.get_id()) >= self.configuration.get_max_states():
                    print("reach max state")
                    break
                #check time
                if (time.time() - self.time_start) > self.configuration.get_max_time():
                    logging.info("|||| TIMO OUT |||| end crawl ")
                    break
                j=j+1
                
            print('=end a for_loop')
            self.close()
        
        return self.automata

    def initial(self):
        self.action_events = []
        #start time
        self.time_start = time.time()
        print('==prepare algorithm')
        self.algorithm.prepare()
        print('==get current state && add new events')
        current_state = self.automata.get_current_state()
        self.add_new_events(current_state, None, 0)

    def close(self):
        self.algorithm.end()
        self.executor.close()
        print("close browser")

    def get_next_action(self):
        event = self.algorithm.get_next_action( self.action_events )
        return event['state'], event['action'], event['depth']

    def change_state(self, state, action, depth):
        current_state = self.automata.get_current_state()

        if current_state != state:
            self.algorithm.change_state(state, action, depth)

        logging.info(' now depth(%s) - max_depth(%s); current state: %s', depth, self.configuration.get_max_depth(), state.get_id() )

    def trigger_action(self, state, action, depth):
        inputs     = state.get_copy_inputs( action['iframe_key'] )
        selects    = state.get_copy_selects(action['iframe_key'])
        checkboxes = state.get_copy_checkboxes(action['iframe_key'])
        radios     = state.get_copy_radios(action['iframe_key'])

        new_edge = Edge(state.get_id(), None, action['clickable'], inputs, selects, checkboxes, radios, action['iframe_key'] )
        self.algorithm.trigger_action( state, new_edge, action, depth )
        return new_edge

    #have to run two automata in p2b2?
    def update_states(self, current_state, new_edge, action, depth):
        dom_list, url, is_same = self.is_same_state_dom(current_state)

        if is_same:
            self.algorithm.update_with_same_state(current_state, new_edge, action, depth, dom_list, url)
            return current_state,depth

        if self.is_same_domain(url):
            logging.info(' |depth:%s state:%s| change dom to: %s', depth, current_state.get_id(), self.executor.get_url())

            # check if this is a new state
            temp_state = State(dom_list, url)
            new_state, is_newly_added = self.automata.add_state(temp_state)
            self.automata.add_edge(new_edge, new_state.get_id())
            # save this click edge
            current_state.add_clickable(action['clickable'], action['iframe_key'])
            self.automata.change_state(new_state)
            # depth GO ON
            depth += 1
            self.event_history.append(new_edge)

            if is_newly_added:
                self.algorithm.update_with_new_state(current_state, new_state, new_edge, action, depth, dom_list, url)
                return new_state,depth

            else:
                self.algorithm.update_with_old_state(current_state, new_state, new_edge, action, depth, dom_list, url)
                return new_state,depth

        else:
            self.algorithm.update_with_out_of_domain(current_state, new_edge, action, depth, dom_list, url)
            return current_state,depth

    def add_new_events(self, state, prev_state, depth):
        self.algorithm.add_new_events(state, prev_state, depth)

    #=========================================================================================
    # BASIC CRAWL
    #=========================================================================================        
    def get_initail_state(self):
        logging.info(' get initial state')
        dom_list, url = self.executor.get_dom_list(self.configuration)
        initial_state = State( dom_list, url )
        is_new, state = self.automata.set_initial_state(initial_state)
        if is_new:
            logging.info(' is new, save state')
            self.automata.save_state( initial_state, 0)
            self.automata.save_state_shot(self.executor, initial_state)
            log_list = self.automata.save_log(self.executor,initial_state)
            coor_list = self.automata.save_coor(self.executor,initial_state)
            
        else:
            self.automata.change_state(state)
        time.sleep(self.configuration.get_sleep_time())
        print('return state')
        return state

    def run_script_before_crawl(self, prev_state):
        for edge in self.configuration.get_before_script():
            #self.click_event_by_edge(edge)
            self.executor.click_event_by_edge(edge)
            self.event_history.append(edge)

            dom_list, url, is_same = self.is_same_state_dom(prev_state)
            if is_same:
                continue
            logging.info(' change dom to: ', self.executor.get_url())
            # check if this is a new state
            temp_state = State(dom_list, url)
            new_state, is_newly_added = self.automata.add_state(temp_state)
            self.automata.add_edge(edge, new_state.get_id())
            # save this click edge
            prev_state.add_clickable(edge.get_clickable(), edge.get_iframe_list())
            if is_newly_added:
                logging.info(' add new state %s of: %s', new_state.get_id(), url)
                self.automata.save_state(new_state, 0)
                self.automata.save_state_shot(self.executor, new_state)
                self.automata.change_state(new_state)
            prev_state = new_state

    #=============================================================================================
    # BACKTRACK
    #=============================================================================================
    def backtrack(self, state):
        # check if depth over max depth , time over max time
        if (time.time() - self.time_start) > self.configuration.get_max_time():
            logging.info("|||| TIMO OUT |||| end backtrack ")
            return

        #if url are same, guess they are just javascipt edges
        if self.executor.get_url() == state.get_url():
            #first, just refresh for javascript button
            logging.info('==<BACKTRACK> : try refresh')
            self.executor.refresh()
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't , try go back form history
        logging.info('==<BACKTRACK> : try back_history ')
        self.executor.back_history()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True

        #if can't , try do last edge of state history
        if self.event_history:
            logging.info('==<BACKTRACK> : try last edge of state history')
            self.executor.forward_history()
            #self.click_event_by_edge( self.event_history[-1] )
            self.executor.click_event_by_edge( self.event_history[-1] )
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't, try go through all edge
        logging.info('==<BACKTRACK> : start form base ur')
        self.executor.goto_url()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True
        edges = self.automata.get_shortest_path(state)
        for edge in edges:
            self.executor.click_event_by_edge( edge )
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't, restart and try go again
        logging.info('==<BACKTRACK> : retart driver')
        edges = self.automata.get_shortest_path(state)
        self.executor.restart_app()
        self.executor.goto_url()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True
        for edge in edges:
            self.executor.click_event_by_edge(edge)
            #check again if executor really turn back. if not, sth error, stop
            state_to = self.automata.get_state_by_id( edge.get_state_to() )
            dom_list, url, is_same = self.is_same_state_dom(state_to)
            if not is_same:
                try:
                    err = State(dom_list, url)
                    with open('debug/debug_origin_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write(state_to.get_all_dom(self.configuration))
                    with open('debug/debug_restart_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write(err.get_all_dom(self.configuration))
                    with open('debug/debug_origin_nor_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write( state_to.get_all_normalize_dom(self.configuration) )
                    with open('debug/debug_restart_nor_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write( err.get_all_normalize_dom(self.configuration) )
                    logging.error('==<BACKTRACK> cannot traceback to %s \t\t__from crawler.py backtrack()', state_to.get_id() )
                except Exception as e:  
                    logging.info('==<BACKTRACK> save diff dom : %s', str(e))

        dom_list, url, is_same = self.is_same_state_dom(state)
        return is_same

    def both_executors_backtrack(self, state, other_executor=None):
        # check if depth over max depth , time over max time
        logging.info("both exe backtrack")
        print("both exe backtrack")
        if (time.time() - self.time_start) > self.configuration.get_max_time():
            logging.info("|||| TIMO OUT |||| end backtrack ")
            return

        #if url are same, guess they are just javascipt edges
        if self.executor.get_url() == state.get_url() and other_executor.get_url() == state.get_url():
            #first, just refresh for javascript button
            logging.info('==<BACKTRACK> : try refresh')
            self.executor.refresh()
            other_executor.refresh()
            #!!!!!!!!CBT
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't , try go back form history
        logging.info('==<BACKTRACK> : both exe try back_history ')
        before_url = self.executor.get_url()
        self.executor.back_history()
        print('exe back')
        dom_list, after_url, is_same = self.is_same_state_dom(state)
        if before_url == other_executor.get_url():
            other_executor.back_history()
            print('other exe back')
        
        if is_same:
            return True

        #if can't , try do last edge of state history
        if self.event_history:
            logging.info('==<BACKTRACK> : try last edge of state history')
            self.executor.forward_history()
            other_executor.forward_history()
            self.executor.click_event_by_edge( self.event_history[-1] )
            other_executor.click_event_by_edge( self.event_history[-1] )
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't, try go through all edge
        logging.info('==<BACKTRACK> : start form base ur')
        self.executor.goto_url()
        other_executor.goto_url()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True
        edges = self.automata.get_shortest_path(state)
        for edge in edges:
            self.executor.click_event_by_edge( edge )
            other_executor.click_event_by_edge( edge )
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't, restart and try go again
        logging.info('==<BACKTRACK> : restart driver')
        edges = self.automata.get_shortest_path(state)
        self.executor.restart_app()
        self.executor.goto_url()
        other_executor.restart_app()
        other_executor.goto_url()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True
        for edge in edges:
            self.executor.click_event_by_edge(edge)
            other_executor.click_event_by_edge(edge)
            #check again if executor really turn back. if not, sth error, stop
            state_to = self.automata.get_state_by_id( edge.get_state_to() )
            dom_list, url, is_same = self.is_same_state_dom(state_to)
            if not is_same:
                try:
                    err = State(dom_list, url)
                    with open('debug/debug_origin_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write(state_to.get_all_dom(self.configuration))
                    with open('debug/debug_restart_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write(err.get_all_dom(self.configuration))
                    with open('debug/debug_origin_nor_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write( state_to.get_all_normalize_dom(self.configuration) )
                    with open('debug/debug_restart_nor_'+state_to.get_id()+'.txt', 'w') as f:
                        f.write( err.get_all_normalize_dom(self.configuration) )
                    logging.error('==<BACKTRACK> cannot traceback to %s \t\t__from crawler.py backtrack()', state_to.get_id() )
                except Exception as e:  
                    logging.info('==<BACKTRACK> save diff dom : %s', str(e))

        dom_list, url, is_same = self.is_same_state_dom(state)
        return is_same

    #=========================================================================================
    # EVENT
    #=========================================================================================
    def make_value(self, edge):
        rand = random.randint(0,1000)

        for input_field in edge.get_inputs():
            data_set = input_field.get_data_set(self.databank)
            #check data set
            value = data_set[ rand % len(data_set) ] if data_set \
                else ''.join( [random.choice(string.lowercase) for i in xrange(8)] )
            input_field.set_value(value)
            logging.info(" set input:%s value:%s "%(input_field.get_id(), value))

        for select_field in edge.get_selects():
            data_set = select_field.get_data_set(self.databank)
            #check data set
            selected = data_set[ rand % len(data_set) ] if data_set \
                else random.randint(0, len(select_field.get_value()))
            select_field.set_selected(selected)
            logging.info(" set select:%s value:%s "%(select_field.get_id(), selected))

        for checkbox_field in edge.get_checkboxes():
            data_set = checkbox_field.get_data_set(self.databank)
            #check data set
            selected_list = data_set[ rand % len(data_set) ].split('/') if data_set \
                else random.sample( xrange(len(checkbox_field.get_checkbox_list())),
                                    random.randint(0, len(checkbox_field.get_checkbox_list())) )
            checkbox_field.set_selected_list(selected_list)
            logging.info(" set checkbox:%s value:%s "%(checkbox_field.get_checkbox_name(), str(selected_list)))

        for radio_field in edge.get_radios():
            data_set = radio_field.get_data_set(self.databank)
            #check data set
            selected = data_set[ rand % len(data_set) ] if data_set \
                else random.randint(0, len(radio_field.get_radio_list()))
            radio_field.set_selected(selected)
            logging.info(" set radio:%s value:%s "%(radio_field.get_radio_name(), selected))

    #=========================================================================================
    # DECISION
    #=========================================================================================
    def is_same_domain(self, url):
        base_url = urlparse( self.configuration.get_url() )
        new_url = urlparse( url )
        if base_url.netloc == new_url.netloc:
            return True
        else:
            for d in self.configuration.get_domains():
                d_url = urlparse(d)
                if d_url.netloc == new_url.netloc:
                    return True
            return False

    def is_same_state_dom(self, cs):
        #cs is other executor's state,or previous state
        dom_list, url = self.executor.get_dom_list(self.configuration)
        cs_dom_list = cs.get_dom_list(self.configuration)
        if url != cs.get_url():
            return dom_list, url, False
        elif len( cs_dom_list ) != len( dom_list ):
            return dom_list, url, False
        else:
            for dom, cs_dom in zip(dom_list, cs_dom_list):
                if not dom == cs_dom:
                    return dom_list, url, False
        print ('same dom to: ', cs.get_id())
        return dom_list, url, True

    def cbt_is_same_state_dom(self, cs):
        #cs is other executor
        dom_list, url = self.executor.get_dom_list(self.configuration)
        cs_dom_list = cs.get_dom_list(self.configuration)
        if url != cs.get_url():
            str=("urls are different:%s v.s %s",url,cs.get_url())
            return str
        else:
            for dom, cs_dom in zip(dom_list, cs_dom_list):
                if not dom == cs_dom:
                    str=("dom are different")
                    return str
        str = 'same dom to: ', cs.get_id()
        return str


#=========================================================================================
# TODO FOR MUTATION
#=========================================================================================

    def run_mutant(self):
        self.mutation_history = []
        self.mutation_cluster = {}
        self.mutation = Mutation(self.configuration.get_mutation_trace(), self.databank)
        self.mutation_traces = self.make_mutation_traces()
        
        # run a default trace for compare
        logging.info(" start run default trace")
        self.executor.start()
        self.executor.goto_url() 
        initial_state = self.get_initail_state()
        self.run_mutant_script(initial_state)
        self.close()

        # run all mutation traces
        logging.info(' total %d mutation traces ', len(self.mutation_traces))
        for n in xrange(len(self.mutation_traces)):
            logging.info(" start run number %d mutant trace", n)
            self.executor.start()
            self.executor.goto_url()    
            initial_state = self.get_initail_state()
            self.run_mutant_script(initial_state, self.mutation_traces[n])
            self.close()
        self.save_mutation_history()

    def make_mutation_traces(self):
        self.mutation.set_method(self.configuration.get_mutation_method())
        self.mutation.set_modes(self.configuration.get_mutation_modes())
        self.mutation.make_data_set()
        self.mutation.make_mutation_traces()
        # use a int to select sample of mutation traces
        mutation_traces = self.mutation.get_mutation_traces()
        #mutation_traces = random.sample( mutation_traces, 
        #min( self.configuration.get_max_mutation_traces(), len(mutation_traces) ) )
        return mutation_traces

    def run_mutant_script(self, prev_state, mutation_trace=None):
        depth = 0
        edge_trace = []
        state_trace = [prev_state]
        # use -1 to mark
        cluster_value = prev_state.get_id() if mutation_trace else "-1"+prev_state.get_id()
        for edge in self.configuration.get_mutation_trace():
            new_edge = edge.get_copy()
            new_edge.set_state_from( prev_state.get_id() )
            if mutation_trace:
                self.make_mutant_value(new_edge, mutation_trace[depth])
            self.executor.click_event_by_edge(new_edge)
            self.event_history.append(new_edge)

            dom_list, url, is_same = self.is_same_state_dom(prev_state)
            if not is_same: 
                logging.info(' change dom to: %s', url)
            # check if this is a new state
            temp_state = State(dom_list, url)
            new_state, is_newly_added = self.automata.add_state(temp_state)
            self.automata.add_edge(new_edge, new_state.get_id())
            # save this click edge
            prev_state.add_clickable(edge.get_clickable(), new_edge.get_iframe_list())
            if is_newly_added:
                logging.info(' add new state %s of: %s', new_state.get_id(), url)
                self.automata.save_state(new_state, depth+1)
                self.automata.save_state_shot(self.executor, new_state)
                self.automata.change_state(new_state)
            # save the state, edge
            state_trace.append( new_state )
            edge_trace.append( new_edge )
            cluster_value += new_state.get_id()
            # prepare for next edge
            prev_state = new_state
            depth += 1

        self.mutation_history.append( (edge_trace, state_trace, cluster_value ) )
        logging.warning( [ c for e,s,c in  self.mutation_history ] )

    def cluster_mutation_trace(self):
        #then cluster other mutation traces
        for edge_trace, state_trace, cluster_value in self.mutation_history:
            if cluster_value in self.mutation_cluster:
                self.mutation_cluster[cluster_value].append( (edge_trace, state_trace) )
            else:
                self.mutation_cluster[cluster_value] = [ (edge_trace, state_trace) ]

    def save_mutation_history(self):
        self.cluster_mutation_trace()
        traces_data = {
            'method': self.configuration.get_mutation_method(),
            'traces': []
        }
        for cluster_key, mutation_traces in self.mutation_cluster.items():
            for edge_trace, state_trace in mutation_traces:
                trace_data = {
                    'edges':[],
                    'states':[],
                    'cluster_value': cluster_key
                }
                for edge in edge_trace:                
                    trace_data['edges'].append(edge.get_edge_json())
                for state in state_trace:
                    trace_data['states'].append(state.get_simple_state_json(self.configuration))
                if cluster_key.startswith('-1'):
                    traces_data['traces'].insert(0, trace_data)
                else:
                    traces_data['traces'].append(trace_data)

        with codecs.open(os.path.join(self.configuration.get_abs_path('root'), 'mutation_traces.json'), 'w', encoding='utf-8' ) as f:
            json.dump(traces_data, f, indent=2, sort_keys=True, ensure_ascii=False)
Пример #24
0
class GeneticAlgorithm(object):

    def __init__(self, population_size, sample_genotype, crossover_rate=0.6,
                 mutation_rate=0.2, maximize=True):
        self.population_size = population_size
        self.genotype = sample_genotype
        self.crossover_rate = crossover_rate
        self.mutation_rate = mutation_rate
        self.selector = RankSelector(maximize)
        self.crossover = OnePointCrossover()
        self.mutation = Mutation()
        self.generations = []
        self.maximize = maximize

    def evolve(self, fitness_obj=FitnessFunction, num_generations=10):
        # initialize population
        population = []
        for _ in range(self.population_size):
            chromosome = self.genotype.create_random_instance()
            population.append(chromosome)

        # process each generation
        for _ in range(num_generations):
            # track generations
            self.generations.append(population)
            next_population = []

            # calculate fitness for population
            for chromosome in population:
                chromosome.fitness = fitness_obj.evaluate(chromosome)

            # select parents for generation
            parents = self.selector.select_pairs(population=population)
            # perform crossover
            for parent in parents:
                do_crossover = random.random() < self.crossover_rate
                if do_crossover:
                    child_1, child_2 = self.crossover.recombine(
                        parent[0].genes,
                        parent[1].genes
                    )
                    chrom_child_1 = Chromosome(genes=child_1)
                    chrom_child_2 = Chromosome(genes=child_2)

                    # add new children to next population
                    next_population.append(chrom_child_1)
                    next_population.append(chrom_child_2)
                else:
                    # no crossover, add parents as is
                    next_population.append(parent[0])
                    next_population.append(parent[1])

            # do mutation
            do_mutation = random.random() < self.mutation_rate
            if do_mutation:
                next_population = self.mutation.mutate(self.genotype,
                                                       next_population)

            population = next_population

        # calculate fitness for last generation
        for chromosome in population:
            chromosome.fitness = fitness_obj.evaluate(chromosome)
        return population

    def best_individual(self, population):
        population.sort(key=lambda x: x.fitness, reverse=self.maximize)

        best_individual = population[0]

        fittest = dict()
        for i in range(len(best_individual.genes)):
            fittest[self.genotype.get_label_at(i)] = best_individual.genes[i]

        return fittest
Пример #25
0
    def __init__(self, algorithm_config):
        start = time.time()
        variable_config = algorithm_config
        tab_epoch = []
        tab_mean = []
        tab_std = []
        tab_mean2 = []
        tab_std2 = []
        tab_epoch2 = []
        tab_elitary = []
        tab_epoch3 = []
        tab_epoch4 = []
        tab_elitary2 = []
        # chrom = Chromosome(variable_config)
        # chrom = chrom.initialChromosome(variable_config)
        # print(chrom)

        # generujemy populację
        pop = Population(variable_config)
        popul = pop.initialPopulation(variable_config)
        # print(popul)

        randomBinSol = evaluateFitness(variable_config)
        # pojedyncze x
        decision_variables = randomBinSol.decVariables(variable_config, popul)
        # print(decision_variables)

        # dekodujemy na odpowiedniki dziesietne
        decimal = randomBinSol.decoding(decision_variables, variable_config)
        # print(decimal)

        # zamieniamy na zmienne rzeczywiste
        real = randomBinSol.realVariables(variable_config, decimal)
        # print(real)

        # obliczamy wartosc funkcji dla kazdej kolumny

        func_solution = randomBinSol.funcSolution(variable_config, real)
        # print(func_solution)
        tab_mean.append(np.mean(func_solution))
        tab_std.append(np.std(func_solution))
        tab_epoch.append(0)

        counter = 1
        countEp = 0
        selType = SelectionType(variable_config)
        while (counter < variable_config.T):
            selection = selType.selType(variable_config, func_solution, popul)

            # KRZYŻOWANIE
            # print("KRZYŻOWANIE")
            crosov = CrossingOver(variable_config)
            crosingover = crosov.crosingOver(variable_config, selection)
            # print(crosingover)

            # MUTACJA
            # print("MUTACJA")
            mutat = Mutation(variable_config)
            mutation = mutat.mutation(variable_config, crosingover)
            # print(mutation)

            # INWERSJA
            # print("INWERSJA")
            inver = Inversion(variable_config)
            inversion = inver.inversion(variable_config, mutation)
            # print(inversion)

            offspring = np.asarray(inversion)
            # print(offspring)

            decision_variables2 = randomBinSol.decVariables(
                variable_config, offspring)
            # print(decision_variables2)

            # dekodujemy na odpowiedniki dziesietne
            decimal2 = randomBinSol.decoding(decision_variables2,
                                             variable_config)
            # print(decimal2)

            # zamieniamy na zmienne rzeczywiste
            real2 = randomBinSol.realVariables(variable_config, decimal2)
            # print(real2)

            # obliczamy wartosc funkcji dla kazdej kolumny

            func_solution2 = randomBinSol.funcSolution(variable_config, real2)

            combin = Combinate()
            combination = combin.newPopulation(popul, offspring, func_solution,
                                               func_solution2, variable_config)
            popul = combination[0]
            func_solution = combination[1]
            best = combination[2]

            tab_mean.append(np.mean(func_solution))
            tab_std.append(np.std(func_solution))
            tab_epoch.append(counter)
            tab_elitary.append(best)
            tab_epoch3.append(countEp)
            print(tab_elitary)
            if counter != 1:
                tab_mean2.append(np.mean(func_solution))
                tab_std2.append(np.std(func_solution))
                tab_epoch2.append(counter)

            if countEp != 0:
                tab_epoch4.append(countEp)
                tab_elitary2.append(best)

            counter += 1
            countEp += 1

        end = time.time()
        print("wynik czasu")
        el_time = (end - start)

        self.__el_time = el_time
        self.__tab_mean = tab_mean
        self.__tab_std = tab_std
        self.__tab_epoch = tab_epoch
        self.__tab_mean2 = tab_mean2
        self.__tab_std2 = tab_std2
        self.__tab_epoch2 = tab_epoch2
        self.__tab_elitary = tab_elitary
        self.__tab_epoch3 = tab_epoch3
        self.__tab_elitary2 = tab_elitary2
        self.__tab_epoch4 = tab_epoch4
Пример #26
0
            pop_fsum = pop_fsum + fitness_function.sum_all_fitness()
            population[i] = fitness_function.chromosome

        parents = []
        for i in range(2):  #select 2 chromosomes for crossover
            parent = RouletteSelection(population).do_selection()
            parents.append(parent)

        point = choice(range(0, len(parents[0]), 2))

        children = OnePoint().exe(parents[0], parents[1], point)

        probability = 100
        mutated_children = []
        for i in range(2):
            mutated_children.append(Mutation(
                children[i], probability).exe())  #mutate offspring

        i = 0
        for chromosome in population:  #replace current population with new one
            if str(chromosome) == str(parents[0]):
                population[i] = mutated_children[0]
                i = i + 1
            elif str(chromosome) == str(parents[1]):
                population[i] = mutated_children[1]
                i = i + 1
            else:
                i = i + 1

        #get list of fitness for each individual
        fsums = []
        for i in range(p):
Пример #27
0
from molecule import Molecule
from mutation import Mutation
from utils import connect

import random
import os

if __name__ == "__main__":

    mol = Molecule("examples/DA.xyz")

    ewg_dir = "mutations/EWG/"
    edg_dir = "mutations/EDG/"

    ewg_files = [Mutation(ewg_dir + f) for f in os.listdir(ewg_dir)]
    edg_files = [Mutation(edg_dir + f) for f in os.listdir(edg_dir)]

    print(ewg_files)
    print(edg_files)

    mol.bonds = [(1, 7), (2, 8)]
    #mol.bonds = [(6,12),(3,9)]

    unique_structures = []

    for i in range(50):
        print('Generating', i, '...')
        # Which n mutations?

        # Which n mutations?
Пример #28
0
class GeneticAlgorithm(object):
    def __init__(self,
                 population_size,
                 sample_genotype,
                 crossover_rate=0.6,
                 mutation_rate=0.2,
                 maximize=True):
        self.population_size = population_size
        self.genotype = sample_genotype
        self.crossover_rate = crossover_rate
        self.mutation_rate = mutation_rate
        self.selector = RankSelector(maximize)
        self.crossover = OnePointCrossover()
        self.mutation = Mutation()
        self.generations = []
        self.maximize = maximize

    def evolve(self, fitness_obj=FitnessFunction, num_generations=10):
        # initialize population
        population = []
        for _ in range(self.population_size):
            chromosome = self.genotype.create_random_instance()
            population.append(chromosome)

        # process each generation
        for _ in range(num_generations):
            # track generations
            self.generations.append(population)
            next_population = []

            # calculate fitness for population
            for chromosome in population:
                chromosome.fitness = fitness_obj.evaluate(chromosome)

            # select parents for generation
            parents = self.selector.select_pairs(population=population)
            # perform crossover
            for parent in parents:
                do_crossover = random.random() < self.crossover_rate
                if do_crossover:
                    child_1, child_2 = self.crossover.recombine(
                        parent[0].genes, parent[1].genes)
                    chrom_child_1 = Chromosome(genes=child_1)
                    chrom_child_2 = Chromosome(genes=child_2)

                    # add new children to next population
                    next_population.append(chrom_child_1)
                    next_population.append(chrom_child_2)
                else:
                    # no crossover, add parents as is
                    next_population.append(parent[0])
                    next_population.append(parent[1])

            # do mutation
            do_mutation = random.random() < self.mutation_rate
            if do_mutation:
                next_population = self.mutation.mutate(self.genotype,
                                                       next_population)

            population = next_population

        # calculate fitness for last generation
        for chromosome in population:
            chromosome.fitness = fitness_obj.evaluate(chromosome)
        return population

    def best_individual(self, population):
        population.sort(key=lambda x: x.fitness, reverse=self.maximize)

        best_individual = population[0]

        fittest = dict()
        for i in range(len(best_individual.genes)):
            fittest[self.genotype.get_label_at(i)] = best_individual.genes[i]

        return fittest
Пример #29
0
constants = get_constants(lower=-10, upper=10, bit=True)
ppl.createPopulation(functions=functions,
                     constants=constants,
                     n_ind=n_ind,
                     n_gene=n_gene,
                     n_register=n_register)
eval_function = lambda x: x[0] ^ x[1]  # xor
ppl.excute_all(inputs, eval_function)

# revolution
p = ProgressBar(0, revolution)
for i in range(revolution):
    #print("revolution: ", i)
    p.update(i + 1)
    elite = Selection.elite(ppl, elite_size)
    new_p = copy.deepcopy(elite)
    for j in range(n_ind - elite_size):
        parent = Selection.tournament(ppl, tourn_size)
        elite.append(parent)
        child = Crossover.randomPoints(elite, cross_rate)
        child = Mutation.mutation(child, mutate_rate, n_register, functions,
                                  constants)
        new_p.append(child)
    ppl.setPopulation(new_p)
    ppl.excute_all(inputs, eval_function)
    if ((i % 100) == 0):
        ppl.result()
ppl.result()
ppl.write_result(path)
p.finish()
Пример #30
0
class SeleniumCrawler(Crawler):
    def __init__(self, configuration, executor, automata, databank, algorithm):
        self.configuration = configuration
        self.executor = executor
        self.automata = automata
        self.databank = databank

        #ALGO
        self.algorithm = algorithm
        self.algorithm.set_utility(self, configuration, executor, automata)

        #list of event:(state, clickable, inputs, selects, iframe_list)
        self.event_history = []

    def run(self):
        #start time
        self.time_start = time.time()

        self.executor.start()
        self.executor.goto_url()
        initial_state = self.get_initail_state()
        self.run_script_before_crawl(initial_state)
        self.crawl(1)
        return self.automata

    def run_algorithm(self):
        # repeat for trace_amount times
        for i in range(self.configuration.get_trace_amount()):

            self.initial()

            while self.action_events:
                #check time
                if (time.time() -
                        self.time_start) > self.configuration.get_max_time():
                    logging.info("|||| TIMO OUT |||| end crawl ")
                    break

                string = ''.join([
                    str(action['action']['clickable'].get_id()) +
                    str(action['depth']) + str(action['state'].get_id())
                    for action in self.action_events
                ])
                logging.info(' action_events : ' + string)

                state, action, depth = self.get_next_action()
                self.change_state(state, action, depth)
                edge = self.trigger_action(state, action, depth)
                self.update_states(state, edge, action, depth)

            self.close()

            self.algorithm.save_traces()
            self.automata.save_automata(
                self.configuration.get_automata_fname())
            Visualizer.generate_html(
                'web',
                os.path.join(self.configuration.get_path('root'),
                             self.configuration.get_automata_fname()))

        return self.automata

    def initial(self):
        self.action_events = []
        #start time
        self.time_start = time.time()
        self.algorithm.prepare()

        current_state = self.automata.get_current_state()
        self.add_new_events(current_state, None, 0)

    def close(self):
        self.algorithm.end()
        self.executor.close()

    def get_next_action(self):
        event = self.algorithm.get_next_action(self.action_events)
        return event['state'], event['action'], event['depth']

    def change_state(self, state, action, depth):
        current_state = self.automata.get_current_state()

        if current_state != state:
            self.algorithm.change_state(state, action, depth)

        logging.info(' now depth(%s) - max_depth(%s); current state: %s',
                     depth, self.configuration.get_max_depth(), state.get_id())

    def trigger_action(self, state, action, depth):
        inputs = state.get_copy_inputs(action['iframe_key'])
        selects = state.get_copy_selects(action['iframe_key'])
        checkboxes = state.get_copy_checkboxes(action['iframe_key'])
        radios = state.get_copy_radios(action['iframe_key'])

        new_edge = Edge(state.get_id(), None, action['clickable'], inputs,
                        selects, checkboxes, radios, action['iframe_key'])
        self.algorithm.trigger_action(state, new_edge, action, depth)
        return new_edge

    def update_states(self, current_state, new_edge, action, depth):
        dom_list, url, is_same = self.is_same_state_dom(current_state)

        if is_same:
            self.algorithm.update_with_same_state(current_state, new_edge,
                                                  action, depth, dom_list, url)

        if self.is_same_domain(url):
            logging.info(' |depth:%s state:%s| change dom to: %s', depth,
                         current_state.get_id(), self.executor.get_url())

            # check if this is a new state
            temp_state = State(dom_list, url)
            new_state, is_newly_added = self.automata.add_state(temp_state)
            self.automata.add_edge(new_edge, new_state.get_id())
            # save this click edge
            current_state.add_clickable(action['clickable'],
                                        action['iframe_key'])
            self.automata.change_state(new_state)
            # depth GO ON
            depth += 1
            self.event_history.append(new_edge)

            if is_newly_added:
                self.algorithm.update_with_new_state(current_state, new_state,
                                                     new_edge, action, depth,
                                                     dom_list, url)

            else:
                self.algorithm.update_with_old_state(current_state, new_state,
                                                     new_edge, action, depth,
                                                     dom_list, url)

        else:
            self.algorithm.update_with_out_of_domain(current_state, new_edge,
                                                     action, depth, dom_list,
                                                     url)

    def add_new_events(self, state, prev_state, depth):
        self.algorithm.add_new_events(state, prev_state, depth)

    #=========================================================================================
    # BASIC CRAWL
    #=========================================================================================
    def get_initail_state(self):
        logging.info(' get initial state')
        dom_list, url = self.executor.get_dom_list(self.configuration)
        initial_state = State(dom_list, url)
        is_new, state = self.automata.set_initial_state(initial_state)
        if is_new:
            self.automata.save_state(self.executor, initial_state, 0)
            self.automata.save_state_shot(self.executor, initial_state)
        else:
            self.automata.change_state(state)
        time.sleep(self.configuration.get_sleep_time())
        return state

    def run_script_before_crawl(self, prev_state):
        for edge in self.configuration.get_before_script():
            self.executor.click_event_by_edge(edge)
            self.event_history.append(edge)

            dom_list, url, is_same = self.is_same_state_dom(prev_state)
            if is_same:
                continue
            logging.info(' change dom to: ', self.executor.get_url())
            # check if this is a new state
            temp_state = State(dom_list, url)
            new_state, is_newly_added = self.automata.add_state(temp_state)
            self.automata.add_edge(edge, new_state.get_id())
            # save this click edge
            prev_state.add_clickable(edge.get_clickable(),
                                     edge.get_iframe_list())
            if is_newly_added:
                logging.info(' add new state %s of: %s', new_state.get_id(),
                             url)
                self.automata.save_state(new_state, 0)
                self.automata.save_state_shot(self.executor, new_state)
                self.automata.change_state(new_state)
            prev_state = new_state

    #=============================================================================================
    # BACKTRACK
    #=============================================================================================
    def executor_backtrack(self, state, *executors):
        # check if depth over max depth , time over max time
        if (time.time() - self.time_start) > self.configuration.get_max_time():
            logging.info("|||| TIMO OUT |||| end backtrack ")
            return

        #if url are same, guess they are just javascipt edges
        if executors[0].get_url() == state.get_url():
            #first, just refresh for javascript button
            logging.info('==<BACKTRACK> : try refresh')
            for exe in executors:
                exe.refresh()
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't , try go back form history
        logging.info('==<BACKTRACK> : try back_history ')
        for exe in executors:
            exe.back_history()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True

        logging.info('==<BACKTRACK> : try back_script ')
        for exe in executors:
            exe.back_script()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True

        #if can't , try do last edge of state history
        if self.event_history:
            logging.info('==<BACKTRACK> : try last edge of state history')
            for exe in executors:
                exe.forward_history()
                exe.click_event_by_edge(self.event_history[-1])
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't, try go through all edge
        logging.info('==<BACKTRACK> : start form base ur')
        for exe in executors:
            exe.goto_url()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True
        for edge in self.automata.get_shortest_path(state):
            for exe in executors:
                exe.click_event_by_edge(edge)
            dom_list, url, is_same = self.is_same_state_dom(state)
            if is_same:
                return True

        #if can't, restart and try go again
        logging.info('==<BACKTRACK> : retart driver')
        for exe in executors:
            exe.restart_app()
            exe.goto_url()
        dom_list, url, is_same = self.is_same_state_dom(state)
        if is_same:
            return True
        for edge in self.automata.get_shortest_path(state):
            for exe in executors:
                exe.click_event_by_edge(edge)
            #check again if executor really turn back. if not, sth error, stop
            state_to = self.automata.get_state_by_id(edge.get_state_to())
            dom_list, url, is_same = self.is_same_state_dom(state_to)
            if not is_same:
                try:
                    debug_dir = os.path.join(
                        self.configuration.get_abs_path('dom'), state.get_id(),
                        'debug')
                    if not os.path.isdir(debug_dir):
                        os.makedirs(debug_dir)
                    err = State(dom_list, url)
                    with codecs.open(os.path.join(
                            debug_dir,
                            'debug_origin_' + state_to.get_id() + '.txt'),
                                     'w',
                                     encoding='utf-8') as f:
                        f.write(state_to.get_all_dom(self.configuration))
                    with codecs.open(os.path.join(
                            debug_dir,
                            'debug_restart_' + state_to.get_id() + '.txt'),
                                     'w',
                                     encoding='utf-8') as f:
                        f.write(err.get_all_dom(self.configuration))
                    with codecs.open(os.path.join(
                            debug_dir,
                            'debug_origin_nor_' + state_to.get_id() + '.txt'),
                                     'w',
                                     encoding='utf-8') as f:
                        f.write(
                            state_to.get_all_normalize_dom(self.configuration))
                    with codecs.open(os.path.join(
                            debug_dir,
                            'debug_restart_nor_' + state_to.get_id() + '.txt'),
                                     'w',
                                     encoding='utf-8') as f:
                        f.write(err.get_all_normalize_dom(self.configuration))
                    logging.error(
                        '==<BACKTRACK> cannot traceback to %s \t\t__from crawler.py backtrack()',
                        state_to.get_id())
                except Exception as e:
                    logging.info('==<BACKTRACK> save diff dom : %s', str(e))

        dom_list, url, is_same = self.is_same_state_dom(state)
        return is_same

    #=========================================================================================
    # EVENT
    #=========================================================================================
    def make_value(self, edge):
        rand = random.randint(0, 1000)

        for input_field in edge.get_inputs():
            data_set = input_field.get_data_set(self.databank)
            #check data set
            value = data_set[ rand % len(data_set) ] if data_set \
                else ''.join( [random.choice('abcdefghijklmnopqrstuvwxyz') for i in range(8)] )
            input_field.set_value(value)
            logging.info(" set input:%s value:%s " %
                         (input_field.get_id(), value))

        for select_field in edge.get_selects():
            data_set = select_field.get_data_set(self.databank)
            #check data set
            selected = data_set[ rand % len(data_set) ] if data_set \
                else random.randint(0, len(select_field.get_value()))
            select_field.set_selected(selected)
            logging.info(" set select:%s value:%s " %
                         (select_field.get_id(), selected))

        for checkbox_field in edge.get_checkboxes():
            data_set = checkbox_field.get_data_set(self.databank)
            #check data set
            selected_list = data_set[ rand % len(data_set) ].split('/') if data_set \
                else random.sample( range(len(checkbox_field.get_checkbox_list())),
                                    random.randint(0, len(checkbox_field.get_checkbox_list())) )
            checkbox_field.set_selected_list(selected_list)
            logging.info(
                " set checkbox:%s value:%s " %
                (checkbox_field.get_checkbox_name(), str(selected_list)))

        for radio_field in edge.get_radios():
            data_set = radio_field.get_data_set(self.databank)
            #check data set
            selected = data_set[ rand % len(data_set) ] if data_set \
                else random.randint(0, len(radio_field.get_radio_list()))
            radio_field.set_selected(selected)
            logging.info(" set radio:%s value:%s " %
                         (radio_field.get_radio_name(), selected))

    #=========================================================================================
    # DECISION
    #=========================================================================================
    def is_same_domain(self, url):
        base_url = urlparse(self.configuration.get_url())
        new_url = urlparse(url)
        if base_url.netloc == new_url.netloc:
            return True
        else:
            for d in self.configuration.get_domains():
                d_url = urlparse(d)
                if d_url.netloc == new_url.netloc:
                    return True
            return False

    def is_same_state_dom(self, cs):
        dom_list, url = self.executor.get_dom_list(self.configuration)
        cs_dom_list = cs.get_dom_list(self.configuration)
        if url != cs.get_url():
            return dom_list, url, False
        elif len(cs_dom_list) != len(dom_list):
            return dom_list, url, False
        else:
            for dom, cs_dom in zip(dom_list, cs_dom_list):
                if not dom == cs_dom:
                    return dom_list, url, False
        print('same dom to: ', cs.get_id())
        return dom_list, url, True

#=========================================================================================
# TODO FOR MUTATION
#=========================================================================================

    def run_mutant(self):
        self.mutation_history = []
        self.mutation_cluster = {}
        self.mutation = Mutation(self.configuration.get_mutation_trace(),
                                 self.databank)
        self.mutation_traces = self.make_mutation_traces()

        # run a default trace for compare
        logging.info(" start run default trace")
        self.executor.start()
        self.executor.goto_url()
        initial_state = self.get_initail_state()
        self.run_mutant_script(initial_state)
        self.close()

        # run all mutation traces
        logging.info(' total %d mutation traces ', len(self.mutation_traces))
        for n in xrange(len(self.mutation_traces)):
            logging.info(" start run number %d mutant trace", n)
            self.executor.start()
            self.executor.goto_url()
            initial_state = self.get_initail_state()
            self.run_mutant_script(initial_state, self.mutation_traces[n])
            self.close()
        self.save_mutation_history()

    def make_mutation_traces(self):
        self.mutation.set_method(self.configuration.get_mutation_method())
        self.mutation.set_modes(self.configuration.get_mutation_modes())
        self.mutation.make_data_set()
        self.mutation.make_mutation_traces()
        # use a int to select sample of mutation traces
        mutation_traces = self.mutation.get_mutation_traces()
        #mutation_traces = random.sample( mutation_traces,
        #    min( self.configuration.get_max_mutation_traces(), len(mutation_traces) ) )
        return mutation_traces

    def run_mutant_script(self, prev_state, mutation_trace=None):
        depth = 0
        edge_trace = []
        state_trace = [prev_state]
        # use -1 to mark
        cluster_value = prev_state.get_id(
        ) if mutation_trace else "-1" + prev_state.get_id()
        for edge in self.configuration.get_mutation_trace():
            new_edge = edge.get_copy()
            new_edge.set_state_from(prev_state.get_id())
            if mutation_trace:
                self.make_mutant_value(new_edge, mutation_trace[depth])
            self.executor.click_event_by_edge(new_edge)
            self.event_history.append(new_edge)

            dom_list, url, is_same = self.is_same_state_dom(prev_state)
            if not is_same:
                logging.info(' change dom to: %s', url)
            # check if this is a new state
            temp_state = State(dom_list, url)
            new_state, is_newly_added = self.automata.add_state(temp_state)
            self.automata.add_edge(new_edge, new_state.get_id())
            # save this click edge
            prev_state.add_clickable(edge.get_clickable(),
                                     new_edge.get_iframe_list())
            if is_newly_added:
                logging.info(' add new state %s of: %s', new_state.get_id(),
                             url)
                self.automata.save_state(new_state, depth + 1)
                self.automata.save_state_shot(self.executor, new_state)
                self.automata.change_state(new_state)
            # save the state, edge
            state_trace.append(new_state)
            edge_trace.append(new_edge)
            cluster_value += new_state.get_id()
            # prepare for next edge
            prev_state = new_state
            depth += 1

        self.mutation_history.append((edge_trace, state_trace, cluster_value))
        logging.warning([c for e, s, c in self.mutation_history])

    def cluster_mutation_trace(self):
        #then cluster other mutation traces
        for edge_trace, state_trace, cluster_value in self.mutation_history:
            if cluster_value in self.mutation_cluster:
                self.mutation_cluster[cluster_value].append(
                    (edge_trace, state_trace))
            else:
                self.mutation_cluster[cluster_value] = [(edge_trace,
                                                         state_trace)]

    def save_mutation_history(self):
        self.cluster_mutation_trace()
        traces_data = {
            'method': self.configuration.get_mutation_method(),
            'traces': []
        }
        for cluster_key, mutation_traces in self.mutation_cluster.items():
            for edge_trace, state_trace in mutation_traces:
                trace_data = {
                    'edges': [],
                    'states': [],
                    'cluster_value': cluster_key
                }
                for edge in edge_trace:
                    trace_data['edges'].append(edge.get_edge_json())
                for state in state_trace:
                    trace_data['states'].append(
                        state.get_simple_state_json(self.configuration))
                if cluster_key.startswith('-1'):
                    traces_data['traces'].insert(0, trace_data)
                else:
                    traces_data['traces'].append(trace_data)

        with codecs.open(os.path.join(self.configuration.get_abs_path('root'),
                                      'mutation_traces.json'),
                         'w',
                         encoding='utf-8') as f:
            json.dump(traces_data,
                      f,
                      indent=2,
                      sort_keys=True,
                      ensure_ascii=False)
Пример #31
0
#from autots import Molecule
#from autots import Mutation
#from autots import connect

from molecule import Molecule
from mutation import Mutation
from utils import connect

import random

if __name__ == "__main__":

    mol = Molecule("examples/diels-alder.xyz")

    muts1 = [
        Mutation("mutations/8.xyz"),
        #Mutation("mutations/cn.xyz"),
        #Mutation("mutations/cooh.xyz"),
        #Mutation("mutations/nh2.xyz"),
        #Mutation("mutations/oh.xyz")
    ]

    unique_structures = []

    for i in range(100):
        print('Generating', i, '...')
        # How many mutations?
        #n = random.randint(1, 3)
        n = 6

        # Which n bonds?
Пример #32
0
#    num = random.randint(0, numOfLuckyFew)
#    isInList(which_lucky_few, num, numOfLuckyFew)
#    which_lucky_few.append(num)
#
#for x in range(numOfLuckyFew):
#    lucky_few.append(temp_population[which_lucky_few[x]])
#
#print("The lucky few that will survive are: " + str(lucky_few))

Breeders = Breeders(population, password, best_sample, lucky_few)

print("The next generation is: ")
print(Breeders.selectFromPopulation(Breeders.computePerfPopulation(population, password), best_sample, lucky_few))

print("Time for reproduction...")

Reproduction = Reproduction()  /// TODO
print("What chance of mutation?")
chance_of_mutation = int(input())

Mutation = Mutation(population, chance_of_mutation)

population = Mutation.mutatePopulation(population, chance_of_mutation)

print("The new population is: ")
print(population)


#Fitness = Fitness()
#Reproduction = Reproduction()
Пример #33
0
p = Population(folder)

# train initial individuals
for i in range(0, p.__len__()):
    if p.individuals[i].accuracy == 0:
        a = p.individuals[i]
        acc = worker.test(a)
        p.individuals[i].accuracy = acc
        a.accuracy = acc
        print("train", folder.file_name(p.individuals[i]), "to", acc)
        folder.create_file(a.to_proto())

# begin evolution
while folder.history.__len__() < C:
    print("This is", folder.history.__len__()-p.__len__()+1, " cycle:")
    sample = random.sample(range(p.__len__()), k=S)

    parent = Arch()
    for s in sample:
        if p.individuals[s].accuracy > parent.accuracy:
            parent = copy(p.individuals[s])
    child = copy(parent)
    # mutation
    Mutation.hidenStateMutate(child)
    acc = worker.test(child)
    child.accuracy = acc
    print("train child to", acc)
    p.add(child)
    p.dead()

Пример #34
0
import random
import numpy as np

from math import sin, cos, pi

from population import Population
from selection import Selection
from crossover import Crossover
from mutation import Mutation
from toolkits import GAEngine

f = lambda x, y: y * sin(2 * pi * x) + x * cos(2 * pi * y)

population = Population(100, [-2, 2], [-2, 2]).init()
selection = Selection(f, 100)
crossover = Crossover(pe=0.5)
mutation = Mutation([-2, 2], [-2, 2], pm=0.5)

engine = GAEngine(population, selection, crossover, mutation)

if '__main__' == __name__:
    engine.run(200)
Пример #35
0
 def __mutation(self):
     mutator = Mutation(self.__childs, self.mutation_probability)
     mutator.perform()
Пример #36
0
    def update(self, opt, select_pressure, mutagenic_pressure, t_curr,
               prolif_adj, all_muts):
        """Update this clone and its children for one time step."""
        if self.is_dead_end():
            return (
                0,
                0,
                0,
                0,
            )

        new_pop_size = new_sub_count = new_mut_agg = new_pro_agg = 0

        if not self.is_dead():
            if self.is_resistant:
                # warning: as currently implemented, the value of
                # resist_strength is not actually guaranteed to be
                # in the interval [0,1]
                eff_pressure = select_pressure * (1.0 - self.resist_strength)
                effective_prolif = self.prolif_rate - prolif_adj - eff_pressure
                effective_mut = self.mut_rate
            else:
                effective_prolif = self.prolif_rate - prolif_adj - select_pressure
                if mutagenic_pressure:
                    effective_mut = self.mut_rate * mutagenic_pressure
                else:
                    effective_mut = self.mut_rate
            # sample for cell death, division and mutation
            # note that we sample for both division AND death before
            # updating the clone size. This means that a 'cell'
            # can reproduce and die in the same cycle
            # (i.e. if cells_dead + cells_new > initial_size)
            cells_new = safe_binomial_sample(self.size, effective_prolif)
            cells_dead = safe_binomial_sample(self.size, self.death_rate)
            self.size = self.size + cells_new - cells_dead
            # this is the total number of mutations this cycle,
            # not necessarily number of new subclones to spawn
            new_mutns = safe_binomial_sample(cells_new, effective_mut)
        else:
            # clone is dead - update its attributes
            # if it died on the previous cycle
            if self.size < 0:
                self.size = 0
            if not self.d_time:
                self.d_time = t_curr

        # update child nodes - whether or not clone is alive
        for node in self.nodes:
            node_results = node.update(opt, select_pressure,
                                       mutagenic_pressure, t_curr, prolif_adj,
                                       all_muts)
            node_pop, node_sub_count, node_mut_agg, node_pro_agg = node_results
            new_pop_size += node_pop
            new_sub_count += node_sub_count
            new_mut_agg += node_mut_agg
            new_pro_agg += node_pro_agg
        # check again whether clone is alive;
        # clones which have died in this update
        # will now register as dead
        if not self.is_dead():
            for _i in xrange(new_mutns):
                new_mutn = Mutation(opt, t_curr, all_muts)
                if self.is_neutral_mutn(new_mutn):
                    new_mutn.classify_neutral(all_muts)
                    new_mutn.original_clone = self
                    self.num_neutral_mutns += 1
                else:
                    self.new_child(t_curr, opt, new_mutn)
                    self.size -= 1
                    new_sub_count += 1
                    new_pop_size += 1

        # finally, add this clone's stats to the return values
        new_pop_size += self.size
        new_sub_count += 1
        # return aggregate prolif and mut rates, ignoring
        # selective and mutagenic pressure
        new_mut_agg += self.mut_rate * self.size
        new_pro_agg += (self.prolif_rate - prolif_adj) * self.size

        return new_pop_size, new_sub_count, new_mut_agg, new_pro_agg